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Determinants

Suppose D to be a field, possibly non­commutative. The space Dn becomes a module over D through

multiplication on the right. Left multiplication by matrices identifiesMn(D) with the ring of endomorphisms

of Dn commuting with this right action. Let D
×

be the maximal abelian quotient of the multiplicative group

D×, the quotient of D× by its commutator subgroup.

The aim of this note is to demonstrate and comment on:

Theorem. There exists a unique homomomorphism

det: GLn(D) −→ D
×

such that if X is a diagonal matrix then det(X) is the image in D
×

of
∏

xi,i.

Of course this is well known if D is commutative, so the problem is how to deal with non­commutativity.

The principal references in the literature are [Dieudonné:1943] and §IV.1 of the book [Artin:1955]. Proofs
involve a lot of explicit matrix manipulations. It would be nice to have a treatment for the non­commutative

case like that for the commutative case, in which determinants are defined in terms of exterior products.

Some version of this is carried out in Appendice 2 of [Bourbaki:1981], but the result is not lucid.

All that is new here is brevity.
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1. Introduction

For 1 ≤ i, j ≤ n let ei,j be the elementary matrix with ei,j = 1, other entries 0, and for i 6= j, x in D let

ui,j(x) = I + xei,j .

It is unipotent. For 1 ≤ i ≤ n let d = εi(x) be the diagonal matrix with di,i = x, dj,j = 1 for j 6= i. For

1 ≤ i < n let δi(x) = εi(x)/εi+1(x).

Let En be the subgroup of GLn generated by the ui,j(x).

Gauss elimination (aka Bruhat factorization) expresses every matrix as a product n1wan2 with the ni upper
triangular, adiagonal, andw one of the twisted permutation matrices with integral entries and determinant 1.

It does this by applying row and column operations, which are effected through left and right multiplication

by one of the ui,j(x).

Since [
1 0

1/x 1

] [
1 −x
0 1

] [
1 0

1/x 1

]
=

[
0 −x

1/x 0

]
.

[
0 −x

1/x 0

] [
0 1

−1 0

]
=

[
x 0
0 1/x

]
,
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the elements δi(x) lie in En. Hence:

1.1. Proposition. The group GLn(D) is generated by the matrices ui,j(x) and εn(x).

Therefore every g in G conjugates an element of En to another element of En:

1.2. Corollary. The group En is a normal subgroup.

1.3. Proposition. If c is a commutator in D× then δn(c) is in En.

Proof. For a, b in D× [
a 0
0 b

]
=

[
a 0
0 1/a

] [
1 0
0 ab

]

=

[
1 0
0 ba

] [
a 0
0 1/a

]
.

We can therefore find a matrix m in En such that

m

[
1 0
0 ba

]
=

[
1 0
0 ab

]
, m =

[
1 0
0 aba−1b−1

]
.

A right­linear map f from Dn to another right­D­module satisfies the condition f(v · c) = f(v) · c. Given a
coordinate system, a right­linear map may be identified with multiplication on the left by a row vector with

coefficients in D.

A shear in GLn(D) is a linear transformation of Dn of the form

v 7−→ v + h · 〈f, v〉 ,

in which f 6= 0 is a right­linear map from Dn to D, and h 6= 0 in Dn satisfies the condition 〈f, h〉 = 0. It

translates vectors parallel to the hyperplane f = 0, in the direction of h. Every ui,j(x) is a shear.

The group GLn acts transitively on pairs f 6= 0, h 6= 0 with 〈f, h〉0, and

[
x 0
0 1

] [
1 c
0 1

] [
1/x 0
0 1

]
=

[
1 xc
0 1

]
.

Conversely, therefore, choosing coordinates suitably one sees that every shear is hence conjugate to some

u1,2(x).

Some elementary reasoning then leads to a proof of:

1.4. Proposition. All shears are conjugate in GLn(D).

1.5. Proposition. Except when D = F2 and n = 2, every shear is a commutator.

In the exceptional case, GLn(D) is isomorphic to S3, and the proposition is false.

Proof. Except when D = F2 and n = 2, every shear n can be expressed as n1n2 with the ni also shears. All

three of these lie in one conjugacy class. With respct to any homomorphism to an abelian group, they all
have the same image, say α. Then α+ α = α, and α = 0.

In particular, En is contained in the commutator subgroup. According to Proposition 1.1, every g can be

written as uεn(x) for u in En and x in D×. Therefore if the homomorphism det exists and satisfies the

hypothesis of the original Theorem, det(g) is the image of x in D
×

. This assures the uniqueness of the map
det. It remains to define it.
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2. The determinant

We now have a candidate for det(g), found by applying Gauss elimination. But we don’t have any idea as to

why the calculation always produces the same result. That’s what I’ll explain here.

The construction of det goes by induction on n. For n = 1 it takes x in D× to its image in D
×

.

Suppose now that A is an n × n matrix with n ≥ 2. Choose a non­zero element ai,1 in the first column.
Subtract off from the other rows a multiple of the i­th row to make the rest of the first column vanish. Let

this new matrix be B. Let B̂i,1 be the (n− 1)× (n− 1) matrix obtained from B by eliminating the i­th row
and first column. The usual formula that is valid in the case of commutative fields suggests that we set

(2.1) det(A) = (−1)i−1ai,1 det(B̂i,1) .

In order to know that det is well defined, it is necessary to show it is independent of the choice of i. This will
be done by an induction argument I’ll explain in a moment.

But first I’ll look at n = 2. Let

A =

[
a b
c d

]
.

Ambiguity arises only if both a 6= 0, c 6= 0. On the one hand, we go

[
a b
c d

]
−→

[
a b
0 d− ca−1b

]
, det = image of ad− aca−1b .

On the other, we go

[
a b
c d

]
−→

[
0 b− ac−1d
c d

]
, det = image of cac−1d− cb .

So we want to prove that

ad− aca−1b ≡ cac−1d− cb

modulo the commutator subgroup of D×. The left hand side is ad− aca−1c−1 ·cb and the right hand side is

cac−1a−1 ·ad− cb. The first is ad− x ·cb if x = aca−1c−1, while second is x−1 ·ad− cb. But

x−1 ·ad− bc = x−1(ad− x ·cb) .

Since x is a commutator, this proves the equivalence, and concludes also the verification that the determinant
of a 2× 2 matrix is at least well defined.

I leave as exercise the verification of these properties:

(a) det(In) = 1;
(b) if r and s are distinct rows, replacing r by r + xs does not change det;
(c) replacing a row r by xr changes det to xdet;

We now come to a major result:

2.2. Proposition. For all n ≥ 3, (2.1) is a valid definition, and the determinant so defined satisfies these
properties (a)–(c).

We know it to be true for n ≤ 2. Following Dieudonné’s admirable suggestion, I look just at n = 3, where all

important phenomena appear, in order not to burden notation. So consider

A =



a1,1 A1

a2,1 A2

a3,1 A3


 .
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Again for simplicity, I’ll look only at the case ai,1 6= 0 for i = 1, 2. One reduction goes

A −→



a1,1 A1

0 A2 − a2,1a
−1

1,1A1

0 A3 − a3,1a
−1

1,1A1




giving as candidate determinant the image of

a1,1 det

([
A2 − a2,1a

−1

1,1A1

A3 − a3,1a
−1

1,1A1

])
.

The other goes

A −→




0 A1 − a1,1a
−1

2,1A2

a2,1 A2

0 A3 − a3,1a
−1

2,1A2




giving determinant the image of

−a2,1 det

([
A1 − a1,1a

−1

2,1A2

A3 − a3,1a
−1

2,1A2

])
.

So now I must show that

a1,1 det

([
A2 − a2,1a

−1

1,1A1

A3 − a3,1a
−1

1,1A1

])
≡ −a2,1 det

([
A1 − a1,1a

−1

2,1A2

A3 − a3,1a
−1

2,1A2

])
.

We can write these as

a1,1a2,1 det

([
a−1

2,1A2 − a−1

1,1A1

A3 − a3,1a
−1

1,1A1

])
, a2,1a1,1 det

([
a−1

2,1A2 − a−1

1,1A1

A3 − a3,1a
−1

2,1A2

])
,

then express the bottom row of one as a row subtraction. I leave it as exercise to finish this, and also to finish

the proofs of Theorem 1.

2.3. Proposition. The determinant is a homomorphism whose kernel is En.

Proof. Straightforward, from what has been proved.

It is conventionally called SLn(D).

3. The norms on D

In general, very little is known about D
×

, but there are important cases where it is known completely.

If F is a (commutative) field, a central simple algebra over F is an algebra A whose center is isomorphic
to F such that E ⊗F A ∼= Mn(E) for some field extension E/F . In these circumstances, the determinant

on Mn(E) defines a multiplicative norm on A, which takes its values in F . It induces a homomorphism
NM: A× → F×, which of course must contain the commutators of A×. It is natural to ask, when is the kernel
of NM exactly equal to the commutator subgroup? This is now part of the subject of algebraic K­theory (see,

for example, [Milnor:1971]).

The following is a basic fact in local class field theory. It is due to [Matsushima­Nakayama:1943] for p­adic
groups. The case of the real quaternions is mentioned in [Dieudonné:1943], and presumably well known at

that time.

3.1. Theorem. If F is a local field and A a central simple algebra over F , then the commutator subgroup of
A× is equal to the kernel of NM.
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