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This chapter is a brief introduction to geometric properties of arithmetic subgroups of SL2(R).

Let
G = SL2(R)

K = SO(2)

H = the upper half plane, which may be identified with G/K

P = subgroup of upper triangular matrices in G

N = subgroup of unipotent matrices in P .
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1. Proper discrete subgroups

A subgroup Γ of G is said to be discrete if there exists a neighbourhood U of the identity in G containing

no element of Γ other than I . The most important examples are SL2(Z) and its congruence subgroups,
which I shall examine in detail later on. But it is valuable not to restrict consideration to these alone, since

the role of geometry (as opposed to number theory) becomes more apparent without such restrictions.

ELEMENTARY PROPERTIES.

II.1.1. Lemma. Suppose Γ to be a discrete subgroup of G. Then

(a) there exists a neighbourhood U of 1 in G such that γ(U) ∩ U 6= ∅ only if γ = I ;
(b) any subset of Γ is closed in G;
(c) if U is any compact subset of G then the set of γ in Γ with γ(U) ∩ U 6= ∅ is finite.

Proof. For (a), let U∗ be a neighbourhood of 1 not containing any other element of Γ, and let U be such
that U ·U ⊂ U∗, U = U−1.

For (b), let Θ be any subset of Γ, x in its complement, U as in (a). The neighbourhood xU of x contains

at most one element of Γ. There then exists a neighbourhood of x contained in xU and not containing
any element of Θ.

For (c), let V = U ·U−1, which is compact. The intersection of Γ with V is compact, and covered by

disjoint neighbourhoods of each of its points. This intersection must therefore be finite.

II.1.2. Lemma. The group Γ acts discretely on H.

That is to say, given z on H there exists a neighbourhood V of z such that whenever γV meets V (for γ
in Γ) we have γ(z) = z.
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The set of such γ is contained in the isotropy subgroup of z, which is a conjugate of K . Because of (c)

above, this set is finite.

Proof. IdentifyH withG/K . Choose any compact neighbourhoodU of z, and letU∗ be its inverse image

in G, which is also compact. By Lemma II.1.1, the set of γ such that γU∗ ∪ U∗ 6= ∅ is finite, and this is
precisely the set of γ such that γU meets U . Let Θ be the subset of γ in this set which do not fix z, and

choose the neighbourhood V to be contained in U and small enough so that V and the γV for all γ in Θ
are disjoint.

CUSPS. For any q in R ∪ ∞, let Pq be the stabilizer in SL2(R) of q, with unipotent radical Nq . Thus

P = P∞. The intersection Γ ∩Nq is discrete in Nq, hence either (a) trivial or (b) generated by a single

element. In the second case the quotient Γ ∩Nq\Nq is compact and q is said to be a cusp of Γ.

II.1.3. Lemma. If q is a cusp of Γ then the intersection Γ ∩ Pq is either (a) the same as Γ ∩Nq or (b) the
slightly larger group

±

[

1 0
0 1

]

· (Γ ∩Nq) .

The second case occurs if and only if ±I is in Γ.

Proof. The image of Γ ∩ Pq modulo Γ ∩Nq must normalize the lattice Γ ∩Nq in Nq .

For each Y > 0 define the region in H

HY :=
{

z ∈ H
∣

∣ IM(z) > Y
}

.

For each g in SL2(R) let c(g) be the c appearing in the matrix expression

g =

[

a b
c d

]

.

The function |c(γ)| is a function on (Γ ∩ P )\Γ/(Γ ∩ P ).

The following Proposition states a basic property of cusps in several slightly different ways.

II.1.4. Proposition. Suppose ∞ to be a cusp of Γ. Then

(a) for any z in H, there exist only a finite number of points in its Γorbit modulo Γ ∩ P with greater
height;

(b) there exists a minimum value cΓ 6= 0 of |c(γ)| as γ ranges over Γ− Γ ∩ P ;
(c) for Y ≥ 1/cΓ

{γ ∈ Γ | γ(HY ) ∩HY 6= ∅} = Γ ∩ P .

(d) in these circumstances the canonical map

(Γ ∩ P )\HY −→ Γ\H

is an embedding.

Proof. If Γ ⊂ P , there is nothing to be proved, so assume that this is not the case. The possible values

of c(γ) then include nonzero numbers. Conjugating by an element of SL2(R), I may assume that

Γ ∩N = N(Z).

(a) Suppose z in H. Choose a nonEuclidean disk U centred at z such that the γU are all either disjoint
or equal. If there exist γ with γ(z) of arbitrary height, then according to Lemma I.4.3 the widths of

the γ(U) increase in proportion. But if two are high enough, some γ(U) and γ(U) + n will overlap, a
contradiction.

(b) In a moment, we’ll need:
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II.1.5. Proposition. If c 6= 0 then the image of HY under the element

g =

[

a b
c d

]

in SL2(R) is the open disc of height 1/(c2Y ) just touching R at the rational point a/c.

Proof. Since g(∞) = a/c, according to Proposition I.2.1 the image of the horizontal line y = Y is a circle.

Since g takes P1(R) to itself, it must be tangent to R at g(∞) = a/c, say with top at a/c+ iy. According

to Corollary I.3.1, the imaginary part of g(x+ iY ) is

Y

|c(x+ iY ) + d|2
=

Y

(cx+ d)2 + c2Y 2
.

It achieves the maximum 1/(c2Y ) when cx+ d = 0.

Now suppose

g =

[

a b
c d

]

with c 6= 0, and suppose z = x + iy. What can we say about the set of gν(z) as ν traverses Γ ∩ N?

According to the Lemma, they will all lie on the circle touching the real line at a/c, and of height 1/cy2.

They will be distributed discretely, like this:

The highest will not oftenlie at the top of this circle, but it will not be far away.

II.1.6. Lemma. Suppose

g =

[

a b
c d

]

,

in SL2(R), z = x+ iy in H. The point z∗ among the g(z + n) of maximal height satisfies

y

c2(1/4 + y2)
≤ IM(z∗) ≤

1

c2y
.

Proof. The height of γ(z + n) is
y

(cx+ cn+ d)2 + c2y2
.

We can choose n such that |cx+ cn+ d| ≤ c/2, and then the denominator is at most c2/4 + c2y2.

If c(γ) is not bounded from below, this is unbounded from above. That contradicts (a).

Let cΓ be the greatest lower bound of these values of c(γ). It remains to be seen that there exists γ with
|c(γ)| = cΓ. This will follow from:

II.1.7. Lemma. For each C > 0 there exist only a finite number of possible values of c(γ) less than C.
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Proof. Choose Y ≥ 1/cΓ. The sets γHY are either disjoint or equal, and they lie in the region IM(z) <
1/c2ΓY . If c(γ) ≤ C then the diameter of γHY is at least 1/C2Y annd its (Euclidean) area is at least

4π/C4Y 2. It is equivalent modulo translations z 7→ z + n to one contained in the region |x| ≤ 1. There
can be only a finite set of such disks, since the area of the region |x| ≤ 1, y ≤ 1/c2ΓY is finite.

(c) If γ lies in Γ and c = c(γ) 6= 0, the image of HY is a circle of height 1/c2Y . If Y ≥ 1/cΓ, then

1/c2Y ≤ 1/c2ΓY ≤ Y , so HY and γHY are disjoint.

Item (d) is now immediate.

Suppose q to be a cusp, and that g(q) = ∞. The element g may be chosen so that g(Γ ∩ Nq)g
−1 =

N ∩ SL2(Z). I will call the pullback of the coordinates x, y along this g parabolic coordinates xq , yq in

the neighbourhood of q. They are well defined up to a shift of x. I define a parabolic domain in H to
be the pull back of some HY , or in other words a region yq ≥ Y . According to Proposition II.1.5 this is

either HY or a circle tangent to the real numbers.

Since every cusp can be transformed to ∞ by some element of SL2(R):

II.1.8. Proposition. If q is a cusp of Γ, then there exists a parabolic domain D in the neighbourhood of q
such that

{γ ∈ Γ | γ(D) ∩D 6= ∅} = Γ ∩ Pq .

In other words, there exists in the neighbourhood of q a parabolic domain D with the property that

the canonical map from Γ ∩ Pq\D to Γ\H is an injection. In this circumstance I shall call the image a

parabolic domain of Γ\H (in the neighbourhood of the cusp q). For example, if Γ = SL2(Z) then, by the
remark made just after Proposition II.1.4, any Y ≥ 1 will do.

PROPER SUBGROUPS. I’ll call a discrete subgroup Γ of SL2(R) proper if the quotientΓ\H is a finite union

of parabolic domains and a compact set. If Γ is proper, so is any subgroup of finite index, and conversely.

• From now on in this chapter I’ll assume Γ to be proper.

The closure of any parabolic domain in P1(R) is a single cusp fixed by a conjugate of P∞ in SL2(R). Let

H∗ be the union of H and all the cusps of Γ. One can assign it a topology—a set is open if and only if its

intersection with every parabolic domain is open. Then:

II.1.9. Proposition. A proper discrete subgroup Γ acts discretely on H∗, and the quotient Γ\H∗ is com
pact.

The measure
dx dy

y2

is invariant with respect to the action of G. The area of a parabolic domain Γ\HY is therefore

∫ 1

0

dx

∫ ∞

Y

dy

y2
=

1

Y
< ∞ ,

and we deduce:

II.1.10. Proposition. The area of Γ\H is finite.

Remark. It was proved in [Siegel:1971] that, conversely, if Γ is a discrete subgroup of SL2(R) with the
area of Γ\H finite, then Γ is proper. [Borel:1997] includes a proof, too.

◦ ———— ◦
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A parabolic subgroup P is called Γrational if its fixed point on P1(R) is a cusp of Γ. Under the

assumption that Γ is proper, the number of Γconjugacy classes of Γrational parabolic subgroups is

finite.

NORMS. On G = SL2(R) we have the ‘algebraic’ norm

sup‖v‖=1‖g(v)‖ (v ∈ R
2) ,

which induces a norm on H. Explicitly, as we have seen in Proposition I.6.3, this is equivalent to

(II.1.11) |||z||| =
x2 + (y + 1)2

y
.

This in turn determines a norm on Γ\H:

|||z|||Γ\H = infγ∈Γ|||γ(z)||| .

II.1.12. Lemma. If Ω is a compact subset of H then |||x|||Γ\H ≍ |||x||| on Ω.

In fact, this remains valid for any discrete Γ.

Proof. Let M be the maximum value of |||x||| on Ω, and let Ω∗ be the subset of H on which |||x||| ≤ M . It

is compact. By (c) of Proposition II.1.4 the set Ξ of γ such that γΩ∗ ∩ Ω∗ 6= ∅ is finite. Then for x in Ω∗

inf
γ∈Γ

|||γ(x)||| = inf
γ∈Ξ

|||γ(x)||| .

But then
infγ∈Ξ |||γ(x)|||

|||x|||

is an invertible continuous function on Ω∗.

The following is elementary:

II.1.13. Lemma. Say X , Y > 0. In the region |x| ≤ X , y ≥ Y

|||z||| ≍ y

and in the region |x| ≤ X , y ≤ Y
|||z||| ≍ 1/y .

More explicitly, we have

(II.1.14) y ≤ |||z||| ≤ y

(

1 +
X2 + Y + 1

Y 2

)

in the first case and

(II.1.15)
x2 + 1

y
≤ |||z||| ≤

x2 + 1

y
(Y + 1)2

in the second.

A region |xq| ≤ X , yq ≥ Y is called a Siegel domain for the cusp q. Because Γ is proper, the quotient
Γ\H is covered by a finite number of these.

Consequently, in any Siegel domain for the cusp at ∞ we have |||z||| ≍ IM(z).
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II.1.16. Proposition. Suppose z to be in H. In any Siegel domain there exist only a finite number of points
in the Γorbit of z.

Proof. Suppose U to be a compact neighbourhood of z such that The sets γU are either disjoint or

identical. Suppose C2 to be a bound on the height of points in the Γorbit of z, and C1 > 0 to be a lower
bound on S, and A a bound on the width of S. Hence every point of the orbit of z that lies in S lies

inside the region |x| ≤ A, C1 ≤ y ≤ C2. By Lemma I.4.3, the area of the sets γU is bounded from below,
so there can be only a finite number of the sets γU meeting the rectangle.

II.1.17. Theorem. On any Siegel domain S

|||z|||Γ\H ≍ |||z||| .

Proof. We have
‖g‖−1 · ‖x‖ ≤ ‖v‖ ≤ ‖g‖ ·‖x‖ ,

so transforming a region by g inG changes the norm by only a constant factor. Therefore we may assume

that the cusp involved is ∞. I may also assume that Γ ∩N = N(Z). Because of Lemma II.1.12, I may
assume that Y is large enough so that γHY ∩HY = ∅ unless γ is in Γ ∩ P .

The group Γ may be partitioned into Γ ∩ P and its complement. So |||z|||Γ\GH is the minimum of

infΓ∩P |||γ(z)|||, infΓ−Γ∩P |||γ(z)||| .

For z in the region |x| ≤ X , y ≥ Y , |||z||| ≍ IM(z) and for γ inΓ∩P we have IM(γ(z)) = IM(z). Therefore,
up to constants

infΓ∩P |||γ(x+ iy)||| = y .

This takes care of the first case.

If γ is not in Γ ∩ P then z∗ = γ(z) lies in the region IM(z∗) ≤ 1/c2Γy, and we may shift it to lie in the

region |x| ≤ 1/2, in which |||x∗ + iy∗||| ≍ 1/y∗. Lemma II.1.6 tells us that

y

c2
Γ
(1/4 + y2)

≤ IM(z∗) ≤
1

c2
Γ
y
,

and then

infΓ−Γ∩P |||γ(z)||| ≍
1

IM(z∗)
≍ c2ΓIM(z) .

2. The group SL(2,Z)

In these notes a lattice will be a copy ofZ2 inC, given the Euclidean structure determined by the complex
norm. The dot product in C is calculated as u•v = RE(uv).

A reduced basis of a lattice is a pair u, v satisfying these conditions:

(a) the length of u is less than or equal to that of v;
(b) the perpendicular projection of v onto the real line through u lies in the closed interval [−u/2, u/2];
(c) the pair u, v is positively oriented in the sense that v/u has positive imaginary component.
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u

v

A strictly reduced pair

It will called strictly reduced if

(b’) The perpendicular projection of v onto the real line through u lies in the half open interval

[−u/2, u/2), and if |u| = |v| it lies in [−u/2, 0].

I recall that the perpendicular projection of v onto u is the complex number

(

u•v

|u|2

)

u

so that condition (b) means −1/2 ≤ u•v/|u|2 ≤ 1/2.

The significance of this is:

II.2.1. Proposition. If u, v is a reduced basis, then |u| is minimal among the lengths of vectors in the
lattice they span.

Proof. Suppose a, b integers. Then

|au+ bv|2 = a2|u|2 + 2ab(u•v) + b2|v|2 ≥ (a2 + b2)|u|2 − 2|ab|(u•v) ≥ (a2 + b2 − |a| |b|)|u|2 .

But a2 − ab + b2 is the norm form of the lattice spanned by 1 and a cube root of unity, which has a

minimum norm of 1.

Conversely, suppose u to be a vector of least possible length in this lattice. Since u is primitive, we may
find v such that u and v form a basis of the lattice with IM(v/u) > 0. Hence:

II.2.2. Proposition. Every lattice in C possesses a reduced basis.

Lattices will usually be specified by a basis, that is to say a pair of complex numbers u, v such that v/u is

not a real number. By changing v to −v if necessary we may assume this basis to be positive in the sense
that IM(v/u) > 0. There is a simple algorithm originally due, I believe, to Lagrange that finds a reduced

basis explicitly, starting from a given positive basis.

(0) (Initial signed swap) If |u| > |v| then replace u and v by −v and u.

(1) (Translation) At this point, |v| ≥ |u|. If necessary, replace v by v − nu so as get the projection of v
onto the line through u between ±u/2. Explicitly, let x = u•v/|u|2 + 1/2 and n = ⌊x⌋.

(2) (Signed swap) At this point the projection of v is correct. If |u| > |v| then replace u and v by −v
and u and go to (1); otherwise stop.

Each positive basis u, v of a lattice in C determines the point z = v/u in H. The points of H in fact
classify positive bases of lattice in C up to oriented similarity, that is up to multiplication by a nonzero

complex number. Any quotient of C by an embedded copy of Z2 defines an elliptic curve, and the
quotient SL2(Z)\H parametrizes isomorphism classes of elliptic curves.

The algorithm above translates into one for points of H:
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(0) (Initial signed swap) If |z| < 1, replace it by −1/z;

(1) (Translation) Replace z by z − n where n = ⌊RE(z) + 1/2⌋, so that n ≤ x+ 1/2 < n+ 1.

(2) (Signed swap) If |z| < 1 then replace z by −1/z and go to (1); otherwise stop.

II.2.3. Corollary. The region
|z| ≥ 1, −1/2 ≤ x ≤ 1/2

is a fundamental domain for SL2(Z).

The algorithm can be refined to produce a unique strictly reduced basis, and in effect to show that every
z in H is equivalent to a unique strictly reduced pair.

Another way of describing the quotient Γ\H is by saying that it parametrizes isomorphism classes of

lattices up to oriented similarity, or equivalently isomorphism classes of elliptic curves, which are the
quotients of C by embedded copies of Z2.

One consequence of the discussion so far is that if Γ = SL2(Z) then the quotient Γ\H has a single cusp.

More precisely:

II.2.4. Proposition. The cusps of SL2(Z) in C are the rational points in R ∪ ∞, on which SL2(Z) acts
transitively.

Proof. It is straightforward to see that any cusp has to be rational.

I describe an algorithm that shows how SL2(Z) acts transitively. Given a pair of integers (c, d), the

Euclidean algorithm keeps dividing c by d until there is no remainder, in which case the last divisor is
the greatest common divisor. If we set c0 = c, d0 = d, the more precise version maintains a matrix Mn

which starts out as M0 = I and at every step satisfies

Mn

[

c0
d0

]

=

[

cn
dn

]

.

In each step, we set

cn = qdn + r (0 ≤ r < |dn|)

cn+1 = dn

dn+1 = r
[

cn+1

dn+1

]

=

[

0 1
1 −q

] [

cn
dn

]

=

[

0 1
1 −q

]

Mn

[

c0
d0

]

Mn+1 =

[

0 1
1 −q

]

Mn

getting in the end, assuming the greatest common divisor to be 1, a matrix M with

M

[

c
d

]

=

[

1
0

]

.

The matrix M might not have determinant 1, but that can be easily corrected.
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3. Congruence groups

The principal congruence subgroup of level N is

Γ(N) :=
{

γ ∈ SL2(Z)
∣

∣ γ ≡ I (mod N)
}

.

Thus Γ(N) is the kernel of the canonical homomorphism from SL2(Z) to SL2(Z/N).

II.3.1. Proposition. The canonical homomorphism from SL2(Z) to SL2(Z/N) is surjective.

Proof. One possible proof uses the Bruhat decomposition and is valid for SL2 over any algebraic number

field, but I offer here another. It comes down to showing that given a matrix η in M2(Z) with

det(η) ≡ 1 (mod N)

there exists γ in SL2(Z) with γ ≡ η. Transforming η on left and right by elements of SL2(Z), we may
assume η to be diagonal (elementary divisor theorem). Suppose it is

η =

[

a∗ 0
0 d∗

]

with a∗d∗ ≡ 1 (mod N). Choose a and d in Z which are inverse modulo N2, congruent modulo N to

a∗, d∗ respectively. Thus

ad− bN2 = 1

for some integer b, which implies that
[

a N
bN d

]

is the matrix we are looking for.

II.3.2. Corollary. The sequence

1 −→ Γ(N) −→ SL2(Z) −→ SL2(Z/N) −→ 1

is exact.

By the Chinese Remainder Theorem, the ring Z/N is the direct product of rings Z/pnp if N =
∏

pnp .

The sequence
1 −→ Γ(p)/Γ(pn) −→ SL2(Z/p

n) −→ SL2(Z/p) −→ 1

is exact, so:

II.3.3. Corollary. If N =
∏

pnp with np > 0 then the index of Γ(N) in SL2(Z) is N3
∏

p

(

1−
1
p2

)

.

The group SL2(Z) acts transitively on the relatively prime pairs (c, d) in Z2. Two such points are
equivalent under Γ(N) if and only if they are congruent modulo N . If a/c and a∗/c∗ are two rational

numbers expressed in reduced form then they are equivalent under Γ(N) if and only if a ≡ a∗, c ≡
c∗ modN . Hence:

II.3.4. Proposition. The correspondence a/c 7→

[

a
c

]

is a bijective SL2(Z)covariant correspondence

between the cusps of Γ(N) and the points of P1(Z/N).

The quotient Γ(N)\H parametrizes isomorphism classes of elliptic curves E together with an isomor
phism of the N torsion of E with (Z/N)2 (often called a level structure).
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