Self-duality of local fields

Bill Casselman University of British Columbia cass@math.ubc.ca

A unitary character of a locally compact Abelian group G is a continuous homomorphism from G to the group \mathbb{S} of complex numbers of unit norm. The unitary dual \hat{G} of G is the group of all unitary characters, itself an Abelian topological group with group operation $[\varphi \cdot \psi](x) = \varphi(x)\psi(x)$. It has as basis of neighbourhoods of the identity the sets

$$W(\Omega, U) = \{ \chi \, | \, \chi(\Omega) \subseteq U \}$$

for compact sets Ω in *G* and *U* open in \mathbb{S} . With this topology it becomes a locally compact group. Every element *g* of *G* determines the character of \hat{G} taking

$$\psi\longmapsto\psi(g)\,,$$

and we get in this way a canonical map from G to its double dual \hat{G} . There is a general theory of duality due to Pontrjagin which asserts that this is an isomorphism. One standard reference for this is [Weil:1965].

Now suppose *F* to be the additive group of a local field and ψ a non-trivial unitary character of *F*. For every *x* in *F* define the unitary character

$$\psi_x \colon y \mapsto \psi(xy)$$
.

The map taking x to ψ_x is a continuous homomorphism from F to its unitary dual. In this elementary note I shall prove the well known result that it is an isomorphism. This implies Pontrjagin's theorem in this case, and more.

Contents

1. A simple duality	1
2. p-adic fields	2
3. The real and complex fields	3
4. References	3

1. A simple duality

I recall that the *p*-torsion in any Abelian group *G* is the subgroup of *x* in *G* such that $p^n x = 0$ for some $n \ge 0$. Let

$$\mu = \mathbb{Q}/\mathbb{Z}$$
$$\mu(p^n) = \{x \in \mu \mid p^n x = 0\}$$
$$\mu^{[p]} = \bigcup_n \mu(p^n),$$

Thus $\mu^{[p]}$ is the *p*-torsion in μ , equal to the union of the $(1/p^n)\mathbb{Z}$ modulo \mathbb{Z} . It may also be identified with $\mathbb{Q}/\mathbb{Z}_{(p)}$, or equivalently with $\mathbb{Q}_p/\mathbb{Z}_p$. Here $\mathbb{Z}_{(p)}$ is the **local ring** of all fractions $(m/n)p^k$ with $k \ge 0$, m and n relatively prime to p. The group $\mu^{[p]}$ may be considered a topological group, with the discrete topology.

If *x* lies in the ideal (p^n) and $p^n y$ lies in \mathbb{Z} , then xy lies in \mathbb{Z} . Therefore the map

$$(x,y)\longmapsto e^{2\pi ixy}$$

defines a pairing of \mathbb{Z}/p^n with $\mu(p^n)$. In fact, it induces an isomorphism of .

Every *z* in \mathbb{Z}_p determines a unique image z_n in each \mathbb{Z}/p^n , with

$$z_{n+1} \equiv z_n \pmod{p^n}$$
.

Conversely, every sequence (z_n) satisfying this condition determines a unique z in \mathbb{Z}_p . In other words, \mathbb{Z}_p is the **projective limit** of the finite rings \mathbb{Z}/p^n .

The isomorphism of \mathbb{Z}/p^n with the dual of $\mu(p^n)$ therefore defines a map from \mathbb{Z}_p to the dual of $\mu^{[p]}$.

1.1. Proposition. This map from \mathbb{Z}_p to the dual of $\mathbb{Q}_p/\mathbb{Z}_p$ is an isomorphism.

More succinctly, to z in \mathbb{Z}_p corresponds the character of $\mathbb{Q}_p/\mathbb{Z}_p$ taking

 $x \longmapsto e^{2\pi i x z}$.

The torsion group $\mu^{[p]}$ has the discrete topology, and \mathbb{Z}_p the projective limit topology, which makes it compact. In general, the dual of a discrete group is compact, and vice-versa. For example, the dual of \mathbb{Z} is \mathbb{S} itself.

2. p-adic fields

First let $F = \mathbb{Q}_p$. I start off by defining on F a character whose kernel is precisely the ring of p-adic integers \mathbb{Z}_p .

Every x in \mathbb{Q}_p may be written as

$$x = x_{-n}p^{-n} + x_{-(n-1)}p^{-(n-1)} + \dots + x_0 + x_1p + \dots$$

with all x_i in \mathbb{Z} . Its **polar part** with respect to this expression is is the finite sum

$$\overline{x} = x_{-n}p^{-n} + x_{-(n-1)}p^{-(n-1)} + \dots + x_{-1}p^{-1}$$

The expression for x, however, is certainly not unique. But all possible choices are equivalent:

2.1. Lemma. Any two polar parts for x in \mathbb{Q}_p differ by an integer.

As a consequence, the polar part gives us an embedding of $\mathbb{Q}_p/\mathbb{Z}_p$ into \mathbb{Q}/\mathbb{Z} , which identifies it with $\mu^{[p]}$.

We may now define an additive character Ψ of \mathbb{Q}_p , taking x to $e^{2\pi i \overline{x}}$. Its kernel is \mathbb{Z}_p .

I now claim that every character ψ of \mathbb{Q}_p is of the form $x \mapsto \Psi_x(y) = \Psi(xy)$ for a unique x in \mathbb{Q}_p . Given ψ , its kernel must contain some (p^n) , because of continuity, since \mathbb{S} does not have small subgroups. Then $\psi(yp^n)$ is a character of $\mathbb{Q}_p/\mathbb{Z}_p$, which by Proposition 1.1 is of the form $\Psi(xy)$ for some x. But then $\psi(y) = \Psi(xyp^n)$.

The argument for an arbitrary finite extension of \mathbb{Q}_p is similar. One gets a good character of F by combining Ψ with the trace from F to $\mathfrak{k} = \mathbb{Q}_p$. Then one has to be a bit careful, using the **relative different** defined by the condition

$$\vartheta_{F/\mathfrak{k}}^{-1} = \{ x \in F \mid \operatorname{trace}(x\mathfrak{o}) \in \mathbb{Z}_p \}$$

where o is the ring of integers in *F*. The analogue of Proposition 1.1 is that the pairing

$$(x, y) \longmapsto \Psi(\operatorname{trace}(xy))$$

induces a well defined isomorphism of \mathfrak{o} with F/ϑ^{-1} . The rest of the proof is almost identical.

3

Local self-duality

3. The real and complex fields

For each x in \mathbb{R} , the map

$$\psi_y: x \longmapsto e^{2\pi i x y}$$

is a character of \mathbb{R} . It is to be shown that every character of \mathbb{R} is of this form. Suppose ψ to be a character of \mathbb{R} . Pick some small $\varepsilon > 0$ and let

$$c = \int_0^\varepsilon \psi(y) \, dy \neq 0 \, .$$

Then

$$1 = \frac{1}{c} \int_0^\varepsilon \psi(t) dt$$

$$\psi(x) = \psi(x) \frac{1}{c} \int_0^\varepsilon \psi(t) dy$$

$$= \frac{1}{c} \int_0^\varepsilon \psi(x+t) dt$$

$$= \frac{1}{c} \int_x^{x+\varepsilon} \psi(t) dt,$$

The fundamental theorem of calculus now implies that φ is differentiable, and explicitly

$$\begin{split} \psi'(x) &= (1/c)(\psi(x+\varepsilon) - \psi(x)) \\ &= \psi(x) \frac{\psi(\varepsilon) - 1}{c} \\ &= \psi'(0)\psi(x) \\ &= (\mathrm{say}) \, 2\pi i C \, \psi(x) \, . \end{split}$$

This implies that ψ is smooth. Familiar results about differential equations imply that $\psi(x) = e^{2\pi i Cx}$. The case of \mathbb{C} is an easy consequence.

4. References

1. André Weil, L'intégration dans les groupes topologiques, Hermann, 1965.