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A unitary character of a locally compact Abelian group G is a continuous homomorphism from G to the

groupS of complex numbers of unit norm. The unitary dual Ĝ ofG is the group of all unitary characters, itself

an Abelian topological groupwith group operation [ϕ ·ψ](x) = ϕ(x)ψ(x). It has as basis of neighbourhoods
of the identity the sets

W (Ω, U) = {χ |χ(Ω) ⊆ U}

for compact sets Ω in G and U open in S. With this topology it becomes a locally compact group. Every

element g of G determines the character of Ĝ taking

ψ 7−→ ψ(g) ,

and we get in this way a canonical map fromG to its double dual
̂̂
G . There is a general theory of duality due

to Pontrjagin which asserts that this is an isomorphism. One standard reference for this is [Weil:1965].

Now suppose F to be the additive group of a local field and ψ a non­trivial unitary character of F . For every
x in F define the unitary character

ψx: y 7→ ψ(xy) .

The map taking x to ψx is a continuous homomorphism from F to its unitary dual. In this elementary note I
shall prove the well known result that it is an isomorphism. This implies Pontrjagin’s theorem in this case,

and more.
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1. A simple duality

I recall that the p­torsion in any Abelian groupG is the subgroup of x inG such that pnx = 0 for some n ≥ 0.
Let

µ = Q/Z

µ(pn) = {x ∈ µ | pnx = 0}

µ[p] =
⋃

n µ(pn) ,

Thus µ[p] is the p­torsion in µ, equal to the union of the (1/pn)Z modulo Z. It may also be identified with
Q/Z(p), or equivalently with Qp/Zp. Here Z(p) is the local ring of all fractions (m/n)pk with k ≥ 0,m and

n relatively prime to p. The group µ[p] may be considered a topological group, with the discrete topology.

If x lies in the ideal (pn) and pny lies in Z, then xy lies in Z. Therefore the map

(x, y) 7−→ e2πixy
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defines a pairing of Z/pn with µ(pn). In fact, it induces an isomorphism of .

Every z in Zp determines a unique image zn in each Z/pn, with

zn+1 ≡ zn (mod pn) .

Conversely, every sequence (zn) satisfying this condition determines a unique z in Zp. In other words, Zp is

the projective limit of the finite rings Z/pn.

The isomorphism of Z/pn with the dual of µ(pn) therefore defines a map from Zp to the dual of µ[p].

1.1. Proposition. This map from Zp to the dual of Qp/Zp is an isomorphism.

More succinctly, to z in Zp corresponds the character of Qp/Zp taking

x 7−→ e2πixz .

The torsion groupµ[p] has the discrete topology, andZp the projective limit topology, whichmakes it compact.
In general, the dual of a discrete group is compact, and vice­versa. For example, the dual of Z is S itself.

2. p-adic fields

First let F = Qp. I start off by defining on F a character whose kernel is precisely the ring of p­adic integers
Zp.

Every x in Qp may be written as

x = x−np
−n + x−(n−1)p

−(n−1) + · · ·x0 + x1p+ · · ·

with all xi in Z. Its polar part with respect to this expression is is the finite sum

x = x−np
−n + x−(n−1)p

−(n−1) + · · · + x−1p
−1 .

The expression for x, however, is certainly not unique. But all possible choices are equivalent:

2.1. Lemma. Any two polar parts for x in Qp differ by an integer.

As a consequence, the polar part gives us an embedding of Qp/Zp into Q/Z, which identifies it with µ[p].

We may now define an additive character Ψ of Qp, taking x to e2πix. Its kernel is Zp.

I now claim that every character ψ of Qp is of the form x 7→ Ψx(y) = Ψ(xy) for a unique x in Qp. Givenψ, its
kernel must contain some (pn), because of continuity, since S does not have small subgroups. Then ψ(ypn)
is a character of Qp/Zp, which by Proposition 1.1 is of the form Ψ(xy) for some x. But then ψ(y) = Ψ(xypn).

The argument for an arbitrary finite extension of Qp is similar. One gets a good character of F by combining

Ψ with the trace from F to k = Qp. Then one has to be a bit careful, using the relative different defined by

the condition
ϑ−1

F/k
= {x ∈ F | trace(xo) ∈ Zp}

where o is the ring of integers in F . The analogue of Proposition 1.1 is that the pairing

(x, y) 7−→ Ψ
(
trace(xy)

)

induces a well defined isomorphism of o with F/ϑ−1. The rest of the proof is almost identical.
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3. The real and complex fields

For each x in R, the map
ψy: x 7−→ e2πixy

is a character of R. It is to be shown that every character of R is of this form.

Suppose ψ to be a character of R. Pick some small ε > 0 and let

c =

∫ ε

0

ψ(y) dy 6= 0 .

Then

1 =
1

c

∫ ε

0

ψ(t) dt

ψ(x) = ψ(x)
1

c

∫ ε

0

ψ(t) dy

=
1

c

∫ ε

0

ψ(x+ t) dt

=
1

c

∫ x+ε

x

ψ(t) dt ,

The fundamental theorem of calculus now implies that ϕ is differentiable, and explicitly

ψ′(x) = (1/c)(ψ(x+ ε) − ψ(x))

= ψ(x)
ψ(ε) − 1

c

= ψ′(0)ψ(x)

= (say) 2πiCψ(x) .

This implies that ψ is smooth. Familiar results about differential equations imply that ψ(x) = e2πiCx.

The case of C is an easy consequence.
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