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Let
G = SL2(R)

Γ = SL2(Z) .

By definition, a smooth functionF belongs toAumg(Γ\G), the space of functions of uniformmoderate growth

on Γ\G, if and only if there exists a fixed M such that RXF (g) = O(‖g‖M ) for all X in U(g). It belongs to
the Schwartz space S(Γ\G) if RXF decreases rapidly at all cusps of Γ for all X . If F is a function on Γ\H,

this definition requires lifting F to a function on Γ\G by using the identification of H with G/SO(2). It is

a matter of curiousity to have a more intrinsic characterization of such functions on Γ\H. It seems to me
possible that this question and similar ones for other arithmetic quotients are important, although I’ll offer

no evidence for that here.

1. Proposition. A smooth function F on Γ\H lies in Aumg(Γ\H) if and only if there exists a fixed M such
that ∆kF = O(yM ) for all k.

2. Proposition. A smooth function F on Γ\H lies in S(Γ\H) if and only if ∆kF decreases rapidly in the
neighbourhood of all cusps of Γ.

These are certainly necessary conditions, since ∆ is the restriction to functions onH of the Casimir operator

in U(g). The criterion in the second of these is in fact the definition of the Schwartz space in [Ehrenpreis

Mautner:1962], which I believe to have been the first to introduce the notion.

By truncating F smoothly, we may assume that in the fundamental domain F has support in the region

y > 1. In that case, we may identify it with a function on (Γ ∩ N)\H. Resolve F into its Fourier series

F (x + iy) =
∑

Fn(y)e2πinx
(

Fn(y) =

∫ 1

0

F (x + iy)e−2πiinx dx
)

.

Then F satisfies the hypotheses of the theorem if and only if each of F0 and F − F0 separately do, and
similarly for the conclusion.

Let D = y∂/∂y. It is straightforward to see that the function F0 lies in Aumg if and only if there exists M
such that all DkF0 = O(yM ).

It is also easy to see that F lies in S if and only if all ∂k+ℓF/∂xk∂yℓ = O(y−N ) for all N . (Remember, F has
support in y > 1.)

The proof of the Proposition therefore comes in two halves.
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1. The constant term

I’ll deal with the constant term first.

1.1. Proposition. Suppose that F is a smooth function on (0,∞) with support in y > 1 such that for some
fixed M all ∆kF = O(yM ). Then all DkF = O(yM ); as well.

Proof. Suppose that F = F0.

|F (y)| ≤ C0y
M , (∆F ) = y2F ′′(y) ≤ C2y

M .

1.2. Lemma. SupposeF (y) and y2F ′′(y) are bothO(yM ), and of support near y = ∞. Then yF ′(y) = O(yM )
as well.

Proof. The idea is to reduce it to a variant of a well known lemma due originally to Landau:

1.3. Lemma. If
g(t) = O(eµt), g′′(t) = O(eµt)

then so also is
g′(t) = O(eµt) .

Proof of Landau’s Lemma.

g(t) − g(t − ε) = εg′(t) + (ε2/2)g′′(θ1) (t − ε < θ1 < t)

g(t + ε) − g(t) = εf ′(t) + (ε2/2)g′′(θ2) (t < θ1 < t + ε)

g(t + ε) − g(t − ε) = 2εf ′(t) + (ε2/2)
(

g′′(θ1) + g′′(θ2)
)

2εf ′(t) = g(t + ε) − g(t − ε) − (ε2/2)
(

g′′(θ1) + g′′(θ2)
)

2ε|f ′(t)| ≤ P
(

eµ(t+ε) + eµ(t−ε)
)

+ Q(ε2/2)
(

eµθ1 + eµθ2

)

≤ Peµt
(

eµε + e−µε
)

+ (ε2/2)Qeµt
(

eµε + 1
)

≤ Peµt
(

eµε + 1
)

+ (ε2/2)Qeµt
(

eµε + 1
)

|f ′(t)/eµt| ≤

(

eµε + 1

2

) (

P

ε
+

Qε

2

)

for all ε > 0. The function of ε

E(ε) =

(

eµε + 1

2

) (

P

ε
+

Qε

2

)

approaches ∞ near 0 and also as ε → ∞, and somewhere in between takes a minimum positive value Emin.

Thus for all t
|f ′(t)| ≤ Emineµt .

This concludes the proof of the two lemmas. Applied to all the ∆kF in turn these imply that all DkF0 =
O(yM ), and this in turn implies that F0 is of uniform moderate growth or rapid decrease, depending on the
assumption on the ∆kF . Q.E.D.We start with

F (y) = O(ym), y2F ′′(y) = O(yM ) .

We can write

y2F ′′ = (D2 − D)F = (D − 1/2)2F − 1/4F

if D = y∂/∂y, and then deduce

(D − 1/2)2F = O(yM ) .
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If we set G(y) = yλF (y), then

DG = yλDF + λyλF

= yλ(D + λ)G

D2G = λyλ(D + λ)F + yλD(D + λ)F

= yλ(D + λ)2F .

Set λ = −1/2, so

G = y−1/2F (y)

= O(yM−1/2)

D2G = y−1/2(D − 1/2)2F (y)

= O(yM−1/2)

If we change the independent variable to y = et we get equations

G(t) = O(e(M−1/2)t)

G′′(t) = O(e(M−1/2)t)

2. The rest

Now I’ll deal with the rest of F .

2.1. Proposition.SupposeF to be a smooth functiononΓ∩N\Hwith support iny > 1 andall∆kF = O(yM ).
If F0 = 0 then all the ∂k+ℓΦ/∂xk∂yℓ = O(y−N ) for all N .

Proof. I’ll start off by looking at the the individual terms in the Fourier expansion. We have

(∆F )n(y) = y2F ′′
n (y) − 4π2n2Fn(y)

and we may assume n 6= 0. If ∆kF = O(yM ) for all k then so is ∆kFn(y) = O(yM ) for all k.

2.2. Proposition. Let F (y) = O(yM ) be a smooth function on R with support on (1,∞), and suppose that
for some λ ≥ 1

y2(F ′′ − λ2F ) ≤ CyM .

Then F ≤ (CCM/λ)yM−2 for some constant depending only on M .

Since the λ we are concerned with are the 4π2n2 and the series
∑

n>0 1/n2 < ∞, this imples the bound we

want on F itself.

Proof. Let G(y) = y2(F ′′ − λ2F ). Since F has support on (1,∞) so does G. Since E(x) = −e−λ|x|/2λ
satisfies the distributional differential equation

E′′ − λ2E = δ0

an easy calculation tells us that

F (y) = c+eλy + c−e−λy −
1

2λ

∫ ∞

1

e−λ|x−y|G(y) dy .

Since G(y) = O(yM ) an easy calculation tells us that the integral is of moderate growth, and therefore since
F is of moderate growth the coefficient c+ has to vanish. Thus

F (y) = c−e−λy −
1

2λ

∫ ∞

1

e−λ|x−y|G(y) dy .
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Since F (0) = 0

c− =
1

2λ

∫ ∞

1

e−λxG(x) dx

and hence

F (y) =
e−λy

2λ

∫ ∞

1

e−λxG(x) dx −
1

2λ

∫ ∞

1

e−λ|x−y|G(x) dx .

For the moment, let

IN =

∫ ∞

1

e−λxxN dx .

Integration by parts and an easy estimate gives

IN ≤ 1 (N ≤ −2)

IN =
e−λ

λ
+

N

λ
IN−1

=
e−λ

λ

(

1 +
N

λ
+

N(N − 1)

λ2
+ +

N(N − 1) · · · (N − n)

λn+1

)

=
e−λ

λ
(1 + N + N(N − 1) + · · · + N(N − 1) · · · (N − n))

=
e−λ

λ
EN

≤ EN/e

if n = ⌈N + 1⌉, keeping in mind that λ ≥ 1. Thus the first term above is bounded by

CEM−2 e−λy

2λe
.

The second term can be broken up into two parts:

∫ ∞

1

e−λ|x−y|G(x) dx =

∫ y

1

e−λ(y−x)G(x) dx +

∫ ∞

y

e−λ(x−y)G(x) dx

≤ C

∫ y

1

e−λ(y−x)xM−2 dx + C

∫ ∞

y

e−λ(x−y)xM−2 dx .

For the first of these integrals:

∫ y

1

e−λ(y−x)xM−2 dx =

[

e−λ(y−x)xM−2

λ

]y

1

−
M − 2

λ

∫ y

1

e−λ(y−x)xM−3 dx

=
yM−2 − e−λ(y−1)

λ
−

M − 2

λ

∫ y

1

e−λ(y−x)xM−3 dx

≤
yM−2 − e−λ(y−1)

λ
+

yM−2 − 1

λ

≤
2yM−2

λ
,

which implies that the term is bounded by

CyM−2

λ2
≤

yM−2

λ
.
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For the second:
∫ ∞

y

e−λ(x−y)xM−2 dx =

∫ ∞

0

e−λs(s + y)M−2 ds

=

∫ ∞

0

e−λs(s + y)m−2 ds (m = ⌈M⌉) .

To this last expression we can apply the binomial theorem and the estimate of the first integral to see that this

second term is at most CC∗
MyM−2/λ.

So now we know that F itself is rapidly decreasing. It remains to show that all its partial derivatives are also

rapidly decreasing. I leave this as an exercise! Q.E.D.
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