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Variations on a theorem of Émile Borel
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This short note is meant to be an introduction to a class of results that arise frequently in analysis on real

manifolds. But in its present form it was written mainly for my own use. In distributing it, I apologize for its
roughness, but hope that even as it is it might prove useful.

I am not a true expert in this difficult subject, and shall be glad to receive notice of errors.
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Part I. Borel’s Theorem

1. Borel’s Theorem—the elementary proof

If f is a smooth function in Rn, its Taylor series at 0 is the power series

τ(f) =
∑ 1

k!
f (k)(0)xk

where the k are multiindices (ki) in Nn so that

k! =
∏

ki!, f (k) =
∂kf

∂xk
=

(∏ ∂ki

∂xki

i

)
f, xk =

∏
xki

i .

This defines a map τ from C∞(Rn) toC[[x]]. It is continuous in the natural topologies on each of these vector
spaces.

The following result is found in [Borel:1895] (bottom of p. 44).

1.1. Theorem. (Borel’s Lemma) The map τ is surjective.

I shall offer an elementary proof in this section, one only slightly different from that in [Narasimhan:1968],
and sketch a much less elementary but conceptually simpler one in the next.
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Proof. Let C∞
b (Rn) be the subspace of smooth functions on Rn all of whose derivatives are bounded. On

this space we have a seminorm defined by

‖f‖m = sup
x∈R

n

|k|<m

∣∣f (k)(x)
∣∣

Here |k| =
∑

ki. We begin with:

1.2. Lemma. Suppose P = Pm to be a homogeneous polynomial of degreem on Rn. Given ε > 0 there exists
f(x) = fP (x) in C∞

b (Rn) which is identically P near 0 and such that

‖f‖m ≤ ε .

This is at least plausible, since the kth derivatives of P vanish at 0 for |k| < m and we don’t care a lot how

f behaves away from 0 as long as it is small. The main ideas of the proof of the Lemma appear already for
n = 1, which I’ll assume in order to obtain a slight simplification in notation.

Proof of the Lemma. In order to exhibit the basic idea, I’ll look first at a few small values of m.

Say m = 1, so P = c1x for some constant c1. Given ε > 0, I have to find f in C∞(R) identically equal to c1x
near 0, but with |f(x)| ≤ ε everywhere. I perform a common trick. First of all, I choose once and for all a
smooth function ϕ identically 1 near 0 and vanishing for |x| ≥ 1. Let M0 be a bound for |ϕ(x)|. For c > 0
the function

ϕc(x) = ϕ(cx)

has support on |x| ≤ 1/c, is still equal to 1 near 0, and is still bounded everywhere by M0. Thus the product

ϕcP will have support on |x| ≤ 1/c and will be bounded by M0|c1|/c in that region since |P (x)| ≤ c1/c in

the region |x| ≤ c. If we therefore set
f = ϕcP

with c ≥ M0|c1|/ε, we deduce ∣∣f(x)
∣∣ ≤ ε .

everywhere.

Now say m = 1, so P = c2x
2. We again set

f = ϕcP

and hope to guarantee both
∣∣f(x)

∣∣ ≤ ε and
∣∣f ′(x)

∣∣ ≤ ε everywhere if we just choose c large enough. As

before f will have support on |x| ≤ 1/c. If Mi is a bound for ϕ(i)(x), then ciMi is a bound for ϕ
(i)
c since

ϕ
(i)
c (x) = ciϕ(i)(cx). For |x| ≤ 1/c we have:

|f(x)| = |ϕc(x)P (x)|

≤ M0|c2|/c2

∣∣f ′(x)
∣∣ =

∣∣ϕ′
c(x)P (x) + ϕc(x)P ′(x)

∣∣

≤ cM1 |c2| |x|
2 + 2M0 |c2| |x|

≤ cM1 |c2| c
−2 + 2M0 |c2| c

−1

≤ |c2| (M1/c + 2M0/c)

=
|c2|

c
(M1 + 2M0)
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so we must choose c large enough so that

c2 ≥ M0|c2|/ε

c ≥ |c2| (M1 + 2M0)/ε ,

which is certainly possible.

You can anticipate how this is going to proceed for an arbitrary m. We set P = cmxm and f = ϕcP . We then
have by Leibniz’ formula, with k < m:

f (k)(x) =

k∑

0

(
k

i

)
ck−iϕ(k−i)(cx)P (i)(x)

= cm

[
k∑

0

(
k

i

)
ck−iϕ(k−i)(cx)

m!

(m − i)!
xm−i

]

and in the range |x| ≤ 1/c this is bounded by

|cm|

[
k∑

0

(
k

i

)
(m + 1)!

(m − i)!
Mk−ic

k−ici−m−1

]

=
|cm|

cm−k

[
k∑

0

(
k

i

)
m!

(m − i)!
Mi

]

so again we can make ‖f‖m small by choosing c large enough.

The conclusion of the proof of Theorem 1.1 is now straightforward. Given a formal power series f̂ =
∑

ckxk,

choose for each m ≥ 1 a smooth function fm(x) which is identical to the homogeneous part of the series of
degree m near 0 and satisfies ‖fm‖m ≤ 1/2m. Then

c0 +
∑

m≥1

fm(x)

defines a smooth function on all of Rn whose Taylor series at 0 is f̂ .

Very roughly speaking, this proof works because although the derivatives of ϕc increase as c does, the
functions xm with m ≥ 1 vanish more rapidly near 0 in the range [−1/c, 1/c ] as c increases. These two

effects cancel each other out in Leibniz’ formula.

A very simple application of Borel’s Theorem to local number theory occusr in analyzing Tate’s local zeta

functions for R and C.

Define the Schwartz space S[0,∞) of the closed halfline to be the space of restrictions of functions in S(R)
to this halfline. A simple variant of Borel’s Theorem says taht is the same as the space of smooth functions

on (0,∞) that are smoothly asymptotic to a power series at 0. If S(0,∞) is the space of functions in S(R)
vanishing identically on (−∞, 0]0, it also says that the following sequence of modules of the multiplicative

group of positive real numbers is exact:

0 → S(0,∞) → S[0,∞) → C[[x]] → 0 .

Similarly, for C we get an exact sequence of C× modules

0 → S(C×) → S(C) → C[[z, z]] → 0 .

These are useful in understanding the uniqueness of certain distributions occurring in local functional
equations.
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2. The proof by functional analysis

The proof I sketch in this section can be found as Theorem 37.2 of [Treves:1967], and has the virtue of being
easily applicable in more general circumstances. It is based on the following criterion, which I shall not prove

here.

2.1. Lemma. Let U and V be Fréchet spaces with duals Û and V̂ . A continuous linear map f : U → V is

surjective if and only if the dual map f̂ : V̂ → Û is injective with weakly closed image.

How does this help to prove Borel’s Theorem? Both C∞(Rn) and C[[x]] are Fréchet spaces. The dual of C[[x]]
is the space generated by coefficient evaluations or, equivalently, the evaluation of partial derivatives. The
dual ofC∞(Rn) is the space of distributions of compact support. The dual map is certainly injective, because

the polynomials are in C∞(R). Closure is implied by the well known fact, which again I won’t prove here,

that the image of the dual map is the space of distributions with support at 0. This is the same as the space
spanned by the Dirac δ0 and its derivatives.

The advantage of this proof is that it handles generalizations easily. It is not much more difficult to show,
for example, that the map taking f to its family of Taylor series transverse to and along a linear subspace is

surjective.

3. Why the proof can’t be too elementary

If we are concerned only with finding a function with a given finite Taylor series, we can just choose the

Taylor series itself to be the function whose Taylor series it is. In other words, the map from C∞(Rn) to

C[[x]]/(xm+1) is not only surjective, but can be split. This is no longer true for the map τ itself. John Mather
provided me with the following observation and its proof.

3.1. Proposition. The surjective map
τ : C∞(R) −→ C[[x]]

does not possess a continuous splitting.

Proof. Suppose we have a splitting Φ. LetU be the open set of f inC∞(Rn) such that |f(x)| < 1 for ‖x‖ ≤ 1.
If f lies in U and f does not vanish on ‖x‖ ≤ 1 then some multiple of f will not lie in U .

Because Φ is continuous, Φ−1(U) must be an open set in C[[x]], hence contain some neighbourhood of 0.
A basis of neighbourhoods of 0 in C[[x]] is made up by the sets U = U(ε, m) of power series

∑
ckxk with

|ck| < ε for |k| < m. In particular, Φ−1(U) must contain some space Tm of all series with ck = 0 for |k| ≤ m.

The set Tm is a linear subspace of C[[x]], and hence so is its image under Φ.

Now let f = Φ(xm). Since its Taylor series at 0 is xm the function f does not vanish on ‖x‖ ≤ 1, so some

multiple of f does not lie in U . This is a contradiction, since all multiples of f also lie in Tm.

4. A simple application to representation theory

In this section, let P = P1(R). The points of P are the lines in R2, and may be expressed in homogeneous

coordinates as ((x, y)) where at least one of x, y does not vanish. The space P is the union of points where
y 6= 0 and where x 6= 0. Each of these may be identified with R, the first via x 7→ ((x, 1)), the second via

y 7→ ((1, y)). On the overlap, where neither x nor y vanish, the coordinate change is y = 1/x. Let Iw be the

subspace of C∞(P) consisting of those functions that vanish of infinite order at ∞, and let I1 be the space of
formal series in y = 1/x. As an immediate consequence of Borel’s theorem:

4.1. Proposition. The sequence
0 → Iw → C∞(P) → I1 → 0

is exact.
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This is what I call the Bruhat filtration of C∞(P), which is the space C∞(P) of a smooth representation

of SL2(R). It is the analogue of a much simpler result for representations of padic groups induced from

parabolic subgroups that gives rise immediately to a filtration of what is called the Jacquet module of such a
representation. There aremany similarities and differences between the real and padic cases—one important

and curious one is that in the padic case the filtration is by components stable only with respect to parabolic

subgroups, whereas here the components are representations of sl2.

5. The extension theorems of Seeley and Mather

According to Proposition 3.1, there does not exist a continuous splitting of the map τ . The following result,

found in [Seeley:1964], may therefore be a surprise. Define C∞[0,∞) to be the space of functions f on the
open interval (0,∞) all of whose derivatives extend continuously on the closed interval [0,∞).

It follows easily from Borel’s Lemma that the restriction map

Res: C∞(R) −→ C∞[0,∞)

is surjective.

5.1. Proposition. There exists a continuous linear splitting of Res.

This is the main result of [Seeley:1964].

The situation is definitely a bit paradoxical. This feeling is not dispelled by a result of [Mather:1966] that

I’ll now explain. Suppose we are given a continuous linear map ϕ from C∞(Rk) to C[[x1, . . . , xn]]. Each

coefficient defines a distribution on Rk. We may therefore speak of the support of the map as the union of
the supports of these distributions.

5.2. Proposition. Suppose we are given a continuous linear map ϕ from C∞(Rk) to C[[x1, . . . , xn]], and
suppose its support is contained in a compact subset of Rk. Then there exists a continuous linear mapΦ from
C∞(Rk) to C∞(Rn) making the following diagram commute:

C∞(Rk)

C∞(Rn) C[[x1, . . . , xn]]
ϕ

Φ

To what extent does there exists a common generalization of Seeley’s and Mather’s theorems? A theorem

of Whitney asserts that the restriction map from C∞(Rn) to C∞(X) is surjective, where the second space is
defined by local conditions on the arbitrary closed subset X ⊆ Rn. For what sets X is there a continuous

linear splitting? This is answered in [Bierstone:1980]:

5.3. Proposition. If X is a closed subanalytic subset of Rn whose interior is dense in X , then the surjection
C∞(Rn) to C∞(X) has a continuous linear splitting.

6. References
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Part II. Whitney’s differentiable functions

A result which is nearer to the result we need than Borel’s theorem is a mild generalization. If f is in S(Rn)
then we can map it to its derivatives with respect to the variables xm+1, . . . , xn and then restrict to the

embedded copy of R
m in R

n defined by the equations xm+1 = 0, . . . , xn = 0. This defines a map from
S(R)n to the space of formal power series with coefficients in S(Rm). It is a simple generalization of Borels’

result that with C∞
c instead of S this map is surjective. Combining this with the characterization of S(Rn)

and S(Rm) in terms of smooth functions on spheres, and using a partition of unity on Sm, we can deduce

that the map on Schwartz spaces is also surjective. If we define S(Rn −Rm) to be the kernel, in other words,

we have an exact sequence

0 −→ S(Rn − R
m) −→ S(Rn) −→ S(Rm)[[xm+1, . . . , xn]] −→ 0 .

Roughly speaking, I am going to generalize these results to deal with various types of closed sets Y in
smooth spaces X , for example closed semialgebraic subsets of a real algebraic manifold. Eventually, I shall

define the Schwartz space of any semialgebraic manifold, and exhibit an exact sequence of Schwartz spaces

and analogues of formal power series spaces when one of these is embedded in another. The key ideas
of this material originated with [Whitney:1934], [Łojasiewicz:1959], and [Hironaka:1973]. The recent paper

[GourevitchAizenbud:2008] is a useful, but unfortunately not quite complete, summary.

Unfortunately, or perhaps fortunately, although final statements are relatively simple to formulate, I have not

been able to resist discussing many technical results along the way. To encourage the reader, I can say that in

my opinion the final results are vastly undervalued in representation theory. There have already been many
pretty good applications—one of my own favourites is the analysis of Whittaker models for representations

of real reductive groups in [CasselmanHechtMiličić:2000].

7. Introduction

Define the Schwartz space S[0,∞) of the closed halfline [0,∞) to be the space of restrictions of functions
in S(R) to [0,∞). This is a simple definition, but it is much better, and quite feasible, to have an equivalent

characterization of these restrictions purely in terms of their behaviour on [0,∞).

Let’s look at a somewhat simpler case first. Suppose ε > 0. For m ≥ 0 one could define the space Cm[0, ε)
to be the space of restrictions of functions in Cm(−ε, ε) to [0, ε). But this is not entirely satisfactory, for
many obvious reasons. One part of an intrinsic definition is that the function be in Cm(0, ε). Making this

completely explicit, this means that we are given a polynomial expression

∑

0≤k≤m

fk(x)

k!
tk

with the property that

f(y) =
∑

0≤k≤m

fk(x)

k!
(y − x)k + o(|y − x|m)

throughout (0, ε). Further: for each ℓ ≤ m we have

fℓ(y) =
∑

ℓ≤k≤m

fk(x)

k!
(y − x)k−ℓ + o(|y − x|m−ℓ)
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throughout. But this becomes the natural definition of Cm[0, ε) if we simply allow x and y to lie in [0, ε).
Justification is that every such function is the restriction to [0, ε) of a function in Cm(−ε, ε). The space

C∞[0, ε) is as the intersection of all Cm[0, ε).

Here is another way to put it. A function f(x) defined in the neighbourhood of a 0 is said to be asymptotic

to the power series

C(x) =
∑

ckxk

if for all m
f(x) −

∑

k≤m

ckxk = o(xm)

locally. If this is so, then f is necessarily differentiable at 0. By induction, it therefore makes sense to call f
smoothly asymptotic to the series if each derivative f (n) is asymptotic to C(n)(x).

The following is now an easy consequence of Borel’s Theorem:

7.1. Proposition. Suppose f to be a continuous function on [0,∞). It is the restriction to [0,∞) of a function
in S(R) if and only if

(a) it is smooth on the open halfline (0,∞);
(b) for all n, N

f (n)(x) ≪
n,N

1

(1 + x)N
;

(c) near 0 the function f is smoothly asymptotic to a power series

∑
ckxk .

The multiplicative group open halfline R× = (0,∞) embeds as a closed algebraic curve in R2:

x 7→ (x−1, x) ∈ {(x, y) |xy = 1} .

It inherits from R2 the norm
‖x‖ = sup |x|, 1/|x| .

The open halfline R>0 = (0,∞) is its connected component.

Define the Schwartz space S(0,∞) to be the space of all smooth functions f on (0,∞) such that

Dnf(x) ≪
f,n,N

‖x‖−N .

This definition is a special case of the definition of the Schwartz space of any semialgebraic set. These spaces

are an intrinsic part of a sets algebraic structure, as opposed to it analytic structure. For example, this space

is ery different from that it inherits from S(R) via the exponential map.

This Schwartz space may also be identified with the functions in S[0,∞) which vanish of infinite order at 0.
By Borel’s theorem, we have an exact sequence

0 → S(0,∞) → S[0,∞) → C[[x]] → 0 .

In other words, we have a natural filtration of S[0,∞). It is stable under multiplication by positive real
numbers. Similar spaces and filtrations are very useful in analysis on real algebraic varieties.

In higher dimensions, one wants to be able to speak of smooth functions defined on more complicated sets,

and define for spaces of such functions certain filtrations, whose graded components are easy to work with.
This is exactly what the definitions of [Whitney:1934] will allow you to do.
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8. Whitney’s extension theorem

In this section I shall sketch a generalization of Borel’s theorem due to Hassler Whitney.

Let X be an open set in R
n and Y a closed subset of X . The space J (Y, X) of continuous jets of infinite

order on Y (with respect to its embedding into Rn) may be defined as the ring of formal power series

C(Y )[[t]] = C(Y )[[t1, . . . tn]]

where C(Y ) is the ring of continuous functions on Y . For any jet F and k in Nn let F [k] be the product of k!
and the kth coefficient of F , so that

F =
∑

k∈Nn
F [k] tk

k!
.

The space J (Y, X) may also be identified with that of continuous functions on Y with values in the formal

power series ring C[[t]]—to F and y is associated the series

∑
F [k](y)

tk

k!
.

The space J (Y, X) becomes a Fréchet space with the seminorms

‖F‖m,Ω := supy∈Ω,|k|≤m

∣∣F [k](y)
∣∣

where m lies in N and Ω a compact subset of Y .

The motivation for these definitions comes from Taylor series. Let T be the canonical map from C∞(X) to
J (Y, X), which to every function f assigns its Taylor’s series at y. Explicitly, for any smooth function f and

y in Y

T
[k]
f (y) = f (k)(y) .

These jets are mutually compatible in some obvious sense. Suppose F = Tf for some smooth function f on

X . Then for any x, y in X , hence in particular on Y , and for any ℓ ≤ m

(8.1) F [ℓ](y) =
∑

ℓ≤k≤m

F [k](x)

k!
(y − x)ℓ−k + o(‖y − x‖m−ℓ ,

uniformly on compact sets.

Conversely, define a jet on Y to be coherent , or a Whitney jet (also called in the literature a C∞ function

on Y in the sense of Whitney ), if it satisfies niformly on compact subsets of Y for all m. The peculiarity of
this definition is that it does not depend only on the set Y , but very definitely on its embedding in X . For

example, if Y is a single point then the corresponding space of functions is isomorphic to a formal power
series ring. Define

W(Y, X) := the space of all coherent jets on Y .

This becomes a Fréchet space if we define on it the seminorms

|||F |||m,Ω := ‖F‖m,Ω + supx,y∈Ω,|k|≤m

∣∣(Rm
y F )[k](x)

∣∣/|x − y|m−|k|+1.

The space W(X, X) is the same as C∞(X), and Whitney jets on Rm embedded in Rn may be identified
with formal power series in xm+1, , . . . , xn whose coefficients lie in C∞(Rm). Borel’s Theorem asserts that

every formal series at the origin in Rn is the Taylor series of some smooth function. A result of Whitney,

generalizing this, asserts that everyWhitney jet arises as the image under themap J of some smooth function
on X . I will reformulate this slightly.
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Define the Schwartz space of the open set X − Y (again, with respect to its embedding in X) to be

S(X − Y, X) := the kernel of the map J

the ideal in C∞(X) of those functions whose Taylor’s series vanish identically along Y . The terminology I
use is not conventional, but justified—I hope—by the emphasis to be placed on these as functions on X − Y .

Whitney’s theorem has then this formulation:

8.2. Proposition. The sequence of canonical maps

0 −→ S(X − Y, X) −→ C∞(X)
T

−→W(Y, X) −→ 0

is exact.

See §I.3 of [Malgrange:1966].

More generally, if Z is in turn a closed subset of Y I define the space of Schwartz jets S(Y −Z, X) on Y −Z
to be the subspace of jets inW(Y, X) vanishing on Z .

8.3. Corollary. We have the canonical exact sequence

0 −→ S(Y − Z, X) −→ W(Y, X) −→ W(Z, X) −→ 0 .

8.4. Proposition. The subspace of smooth functions on X which vanish in the neighbourhood of Y is dense
in S(X − Y, X).

This is the natural generalization of the fact that linear combinations of the Dirac delta δ0 and its derivatives
are the only distributions on Rn with support at 0. It is demonstrated in the course of the proof of Lemma

I.4.3 in [Malgrange:1966].

9. Local growth conditions

I call a smooth function on X − Y rapidly decreasing along Y if it vanishes locally more rapidly than any

power of d(x, Y ), and smoothly rapidly decreasing if this is true of all its derivatives as well. I call it of
moderate growth along Y if it is locally of moderate growth relative to d(x, Y ). I call it of smooth moderate

growth if this is true for each of its derivatives as well. For the following, I refer to IV.1 of [Malgrange:1966]

and IV.4 of [Tougeron:1972].

9.1. Proposition. The ideal S(X −Y, X) is the same as the space of all smooth functions on X −Y smoothly
rapidly decreasing along Y , and the topology on S(X − Y, X) induced from C∞(X) is the same as that
determined by the seminorms

sup
x∈Ω

|Dkf(x)|/d(x, Y )N .

Proof. Suppose f to lie in S(X − Y, X). Let Ω be any compact subset of X . If x lies in Ω, then d(x, Y ) is

bounded by δ = d(x, Ω∩ Y ). There exists a line segment from x to a point y in Ω∩ Y of length δ with all but
the endpoint in X − Y . Since

f(x) =
(−1)k

(k − 1)!

∫ 1

0

tk−1(d/dt)kf(x + t(y − x)) dt

for any positive integer k, there exists C good for all x in Ω such that

|f(x)| ≤ C |y − x|k
∑

|i|≤k

sup |Dif | ,
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so that f is rapidly decreasing along Y .

Conversely, suppose f to be a function on X − Y smoothly rapidly decreasing along Y . It is then straight
forward to see that the extension of f then it is clear that the extension of f to all of X obtained by setting it

equal to 0 on Y is smooth and has vanishing Taylor’s series along Y . The agreement of topologies is equally

straightforward.

It may be of some interest that, at least in some circumstances, if f is of smoothmoderate growth along Y and

also rapidly decreasing along Y then it is automatically smoothly rapidly decreasing along Y . This follows
from an elementary modification of the proof of Landau’s Lemma on p. 40 of [Duistermaat:1974].

9.2. Proposition. If f is of smooth moderate growth and 1/f is of moderate growth along Y , then 1/f is of
smooth moderate growth along Y .

Proof. Elementary calculus.

As we’ll see later, stereographic projection identifies the Schwartz space of Rn with the smooth functions

on Sn that vanish at a pole. This observation is true because the vector fields ∂/∂xi, when expressed in

coordinates near the pole, are linear expressions of partial derivatives with coefficients of smooth moderate
growth. This argument generalizes. Suppose that smooth vector fields V1, . . ., Vn are defined on X − Y ,

which at every point ofX−Y form a nondegenerate frame. For any m ∈ Nn define the differential operator

V m := V m1 . . . V mn .

9.3. Proposition. Suppose that the coefficients of the Vi in terms of the fields ∂/∂xi are of smooth moderate
growth along Y . Then S(X−Y, X) consists of those smooth functionsF onX−Y with all the V mF rapidly
decreasing along Y .

As amild generalization of the observation of Schwartz it is not difficult to see that the Schwartz jets alongRm

embedded in R
n and embedded in turn in the nsphere may be identified with formal series in xm+1, . . . xn

with coefficients in S(Rm). This generalizes to a result concerning the Schwartz jets S(Y, X) when Y is

singular, but is a bit more difficult to formulate since the notion of transverse derivatives is trickier. In that
direction:

The set Y is called regular if (a) Y is locally connected and (b) locally on each component, for some p > 0,
any two points x, y in Y can be connected by a path in Y of length bounded by O(d(x, y)p).

The topology defined above onW(Y, X) is general distinct from that induced by that on J (Y, X). However,

from IV.3.10–3.12 of [Tougeron:1972]:

9.4. Proposition. If Y is regular then these topologies agree.

Two closed subsets Y and Z are said to be regularly situated if locally on X for some p, C > 0

d(x, Y ) + d(x, Z) ≥ C d(x, Y ∩ Z)p,

or equivalently

d(y, Z) ≥ C d(y, Y ∩ Z)p

on Y . This is elementary:

9.5. Proposition. If Y ∪ Z is regular then Y and Z are regularly situated.

Two sets that are not regularly situated are the graph of y = e−1/|x| and the xaxis in R2. They are too close

together near the origin.

The following is deeper, and due to [Łojasiewicz:1959] (see I.5.5 of [Malgrange:1966] for a short proof):
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9.6. Proposition. In order for closed subsets Y and Z of X to be regularly situated it is necessary and
sufficient that the canonical sequence

0 −→ W(Y ∪ Z, X) −→ W(Y, X) ⊕W(Z, X) −→ W(Y ∩ Z, X) −→ 0

be exact.

The point is exactness in the middle.

Suppose now that X is any smooth manifold (automatically assumed Hausdorff and σcompact). For any
point x of X let Rx be the ring of germs of smooth functions in the neighbourhood of x, Mx the maximal

ideal in Rx of functions vanishing at x. The space of jets at a point x of X is invariantly characterized as the

projective limit of the quotients Rx/Mn
x . The spaces J (Y, X), W(Y, X), S(X − Y, X) as well as the map J

from C∞(X) to W(Y, X) may all be defined by local specifications on coordinate patches—in other words,

they are spaces of sections of sheaves on X , and even sheaves which are fine. Onemay define Y to be regular

if it is regular locally, and call Y and Z regularly situated in X if they are locally. All of the above results then
remain valid even without rewording.

Assume that X is an open subspace of the differentiable manifold M . The Schwartz space S(X, M) may be
identifiedwith the space of all smooth functions onX vanishing locally onM −X , alongwith all derivatives,

more rapidly than any power of d(x, M − X). It becomes a nuclear Fréchet space if given the local norms

sup |Dkf(x)|/d(x, M − X)N .

The definition of S(X, M) certainly depends on the particular embedding of X in M , as opposed to the
intrinsic structure of the differentiable manifold X . This may be obvious but as a simple example suppose

that X = R. If X is embedded in the circle obtained from stereographic projection in R2 then the Schwartz

space is theusual one, but ifmapped via the exponentialmaponto (0,∞) followedby stereographicprojection
then the Schwartz space is quite different.

Continue to assume X open in M , and let Y be closed in X . I recall that the Schwartz jets S(Y, M) are those
Whitney jets on Y which vanish on ∂Y = Y − Y . With respect to the map J : C∞(M) → W(Y , M) any

element in S(X, M) has as image an element of S(Y, M). The kernel of this map from S(X, M) to S(Y, M)
may clearly be identified with S(X − Y, M).

9.7. Proposition. If Y and M − X are regularly situated then S(Y, M) may be identified with the space of
elements of W(Y ∪ (M − X), M) vanishing on M − X , and this canonical sequence is exact:

0 −→ S(X − Y, M) −→ S(X, M) −→ S(Y, M) −→ 0 .

Proof. I call temporarily T the space of elements ofW(Y ∪ (M −X), M) vanishing on M −X . By definition

we have an exact sequence

0 −→ T −→ W(Y ∪ (M − X), M) −→ W(M − X, M) −→ 0

and from a previosu result we also have a short exact sequence

0 −→ S(X − Y, M) −→ S(X, M) −→ T −→ 0 .

If Y and M − X are regularly situated then the identification of T and S(Y, X, M) follows.

If X1 and X2 are two open subsets of M , then the inclusions induce a map from the direct sum of their

Schwartz spaces into the Schwartz space of their union. The following is then simply a reformulation of what
we have seen before:
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9.8. Proposition. Let X1 and X2 be open subsets of M , X = X1 ∪ X2, and assume that the complements of
X1 and X2 are regularly situated. Then the space S(X) is the sum of the images of S(X1) and S(X2), or
equivalently this canonical sequence is exact:

0 −→ S(X1 ∩ X2) −→ S(X1) ⊕ S(X2) −→ S(X) −→ 0 .

The space of tempered distributions D(X, M) on X (relative to the given embedding into M ) is defined to
be the strong dual of S(X, M). By HahnBanach, it is the same as the space of distributions on X which may

be extended to all of M . For the following, see Prop. IV.1.4 of [Malgrange:1966].

9.9. Proposition. If f is a smooth function on X of smooth moderate growth along the complement M − X
then multiplication by f induces continuous maps from S(X, M) and D(X, M) to themselves.

10. Invariance of Schwartz spaces

There are simple prototypes for the two basic results we shall need. The first is the well known observation

found in [Schwartz:1966] (Théorème II, pp. 235–236). The space S(Rn) is defined to be that of all smooth

functions on Rn all of whose derivatives decay at infinity more rapidly than any inverse power of r2 =
x2

1 + · · ·+ x2
n. But Rn may be embedded by means of stereographic projection into the nsphere Sn in Rn+1,

and Schwartz’ result is this:

10.1. Proposition. Bymean of stereographic projection, the Schwartz space of Rn may be identified with the
space of all smooth functions on Sn whose Taylor’s series vanishes at the north pole.

The proof is straightforward. We can choose as coordinates at infinity

ti =
xi∑
x2

j

, xi =
ti∑
t2j

and calculate that
∂

∂ti
=

∑

j

∂xj

∂ti

∂

∂xj

∂xj

∂ti
=

(∑
k t2k

)
− 2t2i

( ∑
k t2k

)2 (i = j)

=
(∑

k

x2
k

)
− 2x2

i (i = j)

=
−2titj(∑

k t2k

)2 (i! = j)

= −2xixj .

This allows us to prove by inductions that for any multiindex α

∂α/∂tα =
∑

β

Pα
β (x)

∂β

∂xβ

where the functions Pα
β are polynomials in x. From this the Proposition follows immediately.
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A second prototype is the classical theorem of E. Borel, which in this case asserts that the Taylor’s series map

at ∞ on Sn, taking smooth functions to formal power series in the ti, is surjective. Combining these two

observations we have an exact sequence

0 −→ S(Rn) −→ C∞(Sn) −→ C[[x1, x2, . . . , xn]] −→ 0 .

Now supposeM to be a realanalytic manifold. A subset ofM is called semi-analytic if it is defined locally by

a finite number of analytic equalities and inequalities. The union and intersection of a finite family of semi
analytic subsets is again semianalytic, as is the difference of any two, the components, and the boundary of

a semianalytic subset (see [Łojasiewicz:1959] or for some cases [Malgrange:1966]). A subset of M is called

subanalytic if locally on M it is the image of a semianalytic subset with respect to a proper analytic map.
At the beginning of [Hironaka1973b:] it is shown that such a set need not be semianalytic. The family of

subanalytic subsets is again closed under elementary operations. A third family of subsets may be defined

when M is algebraic (i.e. covered by coordinate patches with rational coordinate transformations): a subset
in this case is called semi-algebraic if defined by polynomial equalities and inequalities. These have the

convenient property that the image of a semialgebraic subset under an algebraic set is again semialgebraic
(see [Łojasiewicz:1959] for a geometric proof of this result due to Seidenberg), so that there is no need to

extend this definition in turn. Łojasiewicz proved that every semianalytic subset is regular, and this has

been generalized:

10.2. Proposition. Every subanalytic subset is regular.

I do not know to whom this is due, but the outline of a proof can be found in §6 of the article [Hardt:1983],
and an almost equivalent result in Theorem 6.17 of [Bierstone:1980] (Bierstone has also explained to me a

more elementary line of reasoning than seems to be in the literature).

Along the same lines is Łojasiewicz’ Inequality, from Theorem IV.3.1 of [Malgrange:1966]:

10.3. Proposition. If f is an analytic function then 1/f is of moderate growth along the zero set of f .

10.4. Proposition. If X is embedded into twomanifolds M1 and M2 and Φ is a proper analytic map fromM1

toM2 inducing a diffeomorphism of the images of X , thenΦ induces an isomorphism between the Schwartz
spaces S(X, M1) and S(X, M2).

Proof. [work in progress] .

Now letX be the set of Rvalued points on a nonsingular algebraic variety defined overR. According to the

well known result of [Nagata:1962] it may be embedded into some complete algebraic variety X also defined

over R. [du Cloux:1990] points out that it may even be embedded into affine space. By [Hironaka:1964] one
may assume X to be nonsingular. Define the Schwartz space S(X) of X to be S(X, X). Since any two

choices along the way are dominated by a third, this space is by ctually independent of the choices made,
and this space is defined intrinsically by the algebraic structure on X .

If V is an algebraic vector bundle defined over the real algebraic manifold X then one may define as well
in an analogous fashion the space of Schwartz sections ΓS(X, V ) of V over X . If Y is a nonsingular

closed algebraic submanifold of X then the conormal bundle along Y will be an algebraic vector bundle

ΩY,X . If IY is the ideal sheaf of smooth functions vanishing along Y then locally IY /I2
Y may be identified

with ΩY,X , and more generally Im
Y /Im+1

Y may be identified with the symmetric tensor product Sm(ΩY,X).
Define Sm(Y, X) in twoways: Im

Y S(Y, X) or the functions in S(X) vanishing of order m along Y —i.e. those

belonging everywhere locally to Im
Y . Then Sm(Y, X) may be identified also with Im

Y S(X).

10.5. Proposition. The quotient ImS(X)/Im+1S(X) may be identified with the space of Schwartz sections
of Sm(ΩY,X), and S(Y, X) with the projective limit of the quotients S(X)/ImS(X).

Proof. [work in progress].
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10.6. Proposition. If G is a real affine algebraic group then S(X) is the space of all smooth functions on X
all of whose right derivatives RXF (X ∈ U(g)) vanish rapidly at infinity.

Proof. This is because with respect to any nonsingular completion ofG the vector fields defined by elements

of g are meromorphic.

The Schwartz space of R in this sense is just the usual one. The Schwartz space of the multiplicative group
R× consists of all functions in the Schwartz space of R which vanish of infinite order at 0. The Schwartz

space of any unipotent group is, in an obvious way, isomorphic to the Schwartz space of Euclidean space of
the same dimension.
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