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This essay is a brief introduction to the Fourier transform on R
n. Special features of the transform in

dimension one are covered elsewhere, as is the detailed relationship with the multiplicative group.
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Notation. Let ‖x‖ =
√
x•x be the Euclidean norm on R

m, |x| = sup |xi|.

1. Introduction

The theory of Fourier series tells us that if f(x) is a smooth function on Rn invariant under translations

in Z
n then

f(x) =
∑

m
fm e2πim•x ,

where

fm =

∫

Rn/Zn

f(x)e−2πim•x dx =

∫

|x|≤1/2

f(x)e−2πim•x.

The Fourier coefficients fm are of rapid decrease with respect to the variable m ∈ Zn, so the series

certainly converges absolutely and uniformly.

We can generalize this to deal with functions of arbitrary period. If f(x) is invariant under translations
in TZn then ϕ(x) = f(xT ) is invariant under Zn, and

ϕ(x) =
∑

m
ϕn e

2πim•x

where

ϕn =

∫

|x|≤1/2

ϕ(x)e−2πim•x dx

=
1

T n

∫

|y|≤T/2

f(y)e−2πim•y/T dy (y = xT ) .

This implies that

f(x) =
∑

λ∈Zn/T
fλe

2πiλ•x where fλ =
1

T n

∫

|y|≤T/2

f(y)e−2πiλ•y dy .

What happens as T → ∞?
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Define the Schwartz space S(Rn) to be the space of all smooth functions f on Rn such that all the
seminorms

‖f‖k,m = sup
x

(
1 + ‖x‖

)k
∣∣∣∣
∂mf

∂xm

∣∣∣∣
are bounded. In other words, f and all its derivatives decrease more rapidly at infinity than any negative
power of ‖x‖. This definition is independent of the coordinate system. An important class of examples

is made up of the functions P (x)e−Q(x), where P (x) is a polynomial and Q(x) is a positive definite

quadratic form.

If f is in S(Rn) the series

(1.1) [ΘT f ](x) =
∑

Zn
f(x+ nT )

will be a smooth function invariant with respect to TZn to which we can apply the results just recalled:

[ΘT f ](x) =
∑

λ∈Zm/T

fT,λe
2πiλ•x

with fT,λ =
1

T n

∫

|y|≤T/2

[ΘT f ](y)e
−2πiλ•y dy

=

∫

Rn

f(y)e−2πiλy dy .

As T → ∞ the value of ΘTf at any x converges to f(x), while the series expansion converges as a
Riemann sum with interval 1/T to the integral

f(x) =

∫

Rn

f̂(y)e2πix•y dy

with

f̂(y) =

∫

Rm

f(y)e−2πix•y dy .

For any f in S(Rm) the second formula defines its Fourier transform, and the first is the Fourier inversion
formula. In the next sections we’ll derive this formula, and in fact a much more general one, in a different

way.

2. The Fourier transform

If f is in L1(Rn), its Fourier transform is

f̂(y) =

∫

Rn

f(x)e−2πix•y dx .

As an example:

2.1. Proposition. If f(x) = e−π‖x‖2

then it is its own Fourier transform.

Proof. We have

f̂(y) =

∫

Rn

e−π‖x‖2

e−2πix•y dx

=

∫

Rn

e−π‖x‖2−2πix•y dx

= e−π‖y‖2

∫

Rn

e−π(‖x‖2−2ix•y−‖y‖2) dx

= e−π‖y‖2

∫

Rn

e−π‖x−iy‖2

dx

= e−π‖y‖2

∫

Rn

e−π‖x‖2

dx

= e−π‖y‖2

.
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One of these steps involves moving an integration contour in Cn.

For c 6= 0 let
µcf(x) = f(x/c) .

Also let

λaf(x) = f(x− a) .

The following is an elementary exercise:

2.2. Lemma. Suppose f , g to be in L1(Rn). Then

(a) the Fourier transform f̂ is bounded and continuous;
(b) the Fourier transform of the convolution f ∗ g is the product f̂ ĝ;

(c) the Fourier transform of e2πicxf(x) is f̂(y − c);
(d) ∫

Rn

f(x)ĝ(x) dx =

∫

Rn

f̂(x)g(x) dx .

(e) for c 6= 0

µ̂cf = c µ1/cf̂ ;

(f) λ̂af = e−2πiay f̂(y).

For example:

y = (1/c)e−π(x/c)2

c = 1

c = 1/5

c = 5

2.3. Theorem. Suppose that f and f̂ are both in L1(Rn), Then

f(x) =

∫

Rn

f̂(y)e2πixy dy .

Proof. Let

ϕ(x) = e−π‖x‖2

,

so that ϕ̂ = ϕ. Then (d) of Lemma 2.2 tells us that for all c

∫

Rn

ϕ(x/c) · f̂(x) dx =

∫

Rn

c ϕ(cx) ·f(x) dx .

As c→ ∞ the function ϕ(x/c) approaches the constant function 1, and the first integral approaches the
integral ∫

Rn

f̂(x) dx .

The function cϕ(cx) gets narrower as c → ∞, and the area under its graph remains equal to 1. The

second integral therefore approaches f(0).
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3. The Schwartz space

Any function f in S(Rn) is in L1(Rn), so its Fourier transform

f̂(y) =

∫

Rn

f(x)e−2πx•y dx

is well defined. More precisely, for k ≫ 0

∣∣f̂(y)
∣∣ ≤

∫

Rn

∣∣f(x)
∣∣ dx

=

∫

Rn

(
1 + ‖x‖

)k∣∣f(x)
∣∣ 1
(
1 + ‖x‖

)k dx

≤ sup
Rn

∣∣(1 + ‖x‖
)k
f(x)

∣∣
∫

Rn

1
(
1 + ‖x‖

)k dx .

3.1. Lemma. Suppose f to be in S(Rn). The Fourier transform of ∂f/∂xm is 2πiymf̂(y), and ∂f̂/∂ym is
the Fourier transform of −2πixmf(x).

This is the whole point of the Fourier transform—it transforms problems in analysis (differentiation) into
problems of algebra (multiplication).

Proof. The first claim follows from integration by parts, the first is straightforward.

3.2. Corollary. The Fourier transform takes S(Rn) to itself.

In other words, because f is smooth, its Fourier transform is rapidly decreasing, and because f is rapidly
decreasing, its Fourier transform is smooth.

I now offer a third proof of Fourier inversion.

3.3. Theorem. The map f 7→ f̂ is an isomorphism of S(Rn) with S(Rn).

Explicitly, I claim that the inverse map takes F (y) to

F∨(x) =

∫

Rn

F (y)e2πix•y dy

In other words, we want to prove that

f(x) =

∫

Rn

f̂(y) e2πix•y dy .

Proof. I do this in several steps.

Step 1. We know from Proposition 2.1 that the inversion formula is valid for e−π‖x‖2

, which is clearly in
the Schwartz space.

Step 2. In this step I reduce the equation to the special case x = 0. If ϕ(x) = f(x + a) then ϕ̂(y) =

e2πia•y f̂(y). Therefore Fourier inversion holds for f at a if and only if it holds for ϕ at 0.

Step 3. It remains to show that

f(0) =

∫

R

f̂(y) dy

for all f in S(Rn). But e−π‖x‖2

lies in the Schwartz space, Fourier inversion is valid for it, and f(x) −
f(0)e−π‖x‖2

vanishes at 0. So it suffices to show that the inversion formula is valid for x = 0 when
f(0) = 0.
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Step 4. It must be shown that if f(0) = 0 then
∫

R

f̂(y) dy = 0 .

This will follow in a moment from the observation that if f lies in S(Rn) then f(0) = 0 if and only if

there exist functions fk in S(Rn) with

f =
∑

k

xkfk .

But for later use, I’ll prove something slightly stronger. For 0 < R ≤ ∞ let

Cp
R = {x ∈ R

p | |x| ≤ R} .
Note that the cube Cp

R is a product of p intervals (possibly infinite) of dimension 1.

To go along with this, I want to introduce some new notation. Let

S(Cp
R) =

{
S(Rp) if R = ∞
C∞

c (Cp
R) otherwise.

In addition, consider Rp embedded in the first p dimensions of Rn, and let R
n−p

be its orthogonal

complement in Rn, so that Rn = Rp × R
n−p

. Similiarly, let Cn
R = Cp

R × C
n−p

R .

The basic point of the argument to come can be seen already in dimension one—it a standard result in

calculus that if f is in S(C1
R) then

f(x)− f(0) = x

∫ 1

0

f ′(tx) dt ,

so that if f(0) = 0 then f(x)/x is in S(C1
R). Something like this holds also in any dimension: if f(x) lies

in S(Cp

R) and f |Rp−1) = 0, then f/xp also belongs to S(Cp
R). This is because

f(x∗, x) = xp ·
∫ 1

0

(
∂f

∂xp

)
(x∗, tx) dt .

We can now prove:

3.4. Lemma. If f is in S(Cn
R) and f(0) = 0 then

f =
∑n

1
xifi

for functions fi in S(Cn
R).

Proof (sketch). We do it by induction on dimension. We can start out in dimension one, to find a function

ϕ1 in S(C1
R) such that

f(x1, 0) = x1ϕ(x1, 0) .

We may pull this back to all of Rn and multiply it by a function ψ on C
n−1

R to get a function x1f1 in
S(Cn

R) whose restriction to R1 agrees with f . So now f − x1f1 vanishes on R1.

Continuing, we can find a function ϕ2 in S(C2
R) such that f − x1f1 = x2ϕ2. We pull this back to Rn and

multiply by a function in S(Cn−2

R ) to get a function f2 in S(Cn
R) such that

f − x1f1 − x2f2

vanishes on R2. Etc.

Step 5. Why does the Lemma imply the integral formula we want? It suffices now to see that the Fourier

transform of each function xmfm(x) is a partial derivative whose integral vanishes.

The Fourier inversion theorem may be restated:

3.5. Corollary. If f̂(y) = ϕ(y) then ϕ̂(x) = f(−x).
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4. The Plancherel theorem

We shall see here that the Fourier transform extends to a map from L2(Rn) to itself, and induces an

isometry of Hilbert spaces.

As a corollary of (d) in Lemma 2.2 and the inversion theorem:

4.1. Theorem. For f , g in S(Rn)

∫

Rn

f(x)g(x) dx =

∫

Rn

f̂(x)ĝ(y) dy .

4.2. Corollary. (The Plancherel Theorem) The Fourier transform taking S(Rn) to itself extends to an
isometry of L2(Rn) with itself.

This is a bit subtle, because the integral defining the Fourier transform does not make obvious sense for
f in L2(Rn). What follows from Theorem 4.1 is that the definition of the Fourier transform on a function

f in L2(Rn) is as a limit in a Hilbert space:

f̂ = lim
R→∞

f̂R

where

fR =

∫

‖x‖≤R

f(x)e−2πix•y dx .

5. Schwartz’ PaleyWiener theorem

There are many theorems characterizing the support of a function on Rn by analycity properties of its

Fourier transform. Questions of this kind were first raised and answered in joint work of R. E. A. C. Paley
and Norbert Wiener, particularly in the book [PaleyWiener:1934], and a certain category of such results

(those involving Fourier transforms that are analytic functions) are often called PaleyWiener theorems.

Laurent Schwartz took up such questions in his work on what he calls Laplace transforms (see Chaptar
VIII in [Schwartz:1952].) One of the most useful of these characterizations is for C∞

c (Rn). If f is

integrable and has support in the compact subset Ω of Rn, then the integral

f̂(s) =

∫

Rn

f(x)e−2πis•x dx =

∫

Ω

f(x)e−2πis•x dx

is absolutely and uniformly convergent for all s in Cn.

For R > 0 let BR be the Euclidean ball ‖x‖ ≤ R.

5.1. Proposition. If f is a smooth function on Rn with support in BR, then its Fourier transform F (s)
satisfies these conditions:

PW(a) F (s) is holomorphic on Cn;
PW(b) for all N > 0

∣∣F (s)
∣∣ ≪F,N

e2πR |IM(s)|

(1 + ‖s‖)N

Proof. Since all derivatives of f still satisfy the conditions of the Proposition, this is straightforward.

5.2. Proposition. Conversely, if F (s) satisfies the conditions PW of the previous proposition, then it is
the Fourier transform of a function in C∞

c (Rn) with support in BR.

Proof. Just to simplify things slightly, I’ll prove this only for n = 1. It must be shown that the inverse

transform of F is well defined, that it is smooth, and that it has support in [−R,R]. So suppose F to
satisfy conditions PW. I first claim that t 7→ F (σ + it) lies in S(R) for each σ. It has to be verified that
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its derivatives are rapidly decreasing as |t| → ∞. But this follows from the Cauchy integral formula
expressing F (n)(s) as a path integral around small circles surrounding s.

The inverse Fourier transform of F is the integral

f(x) =

∫ ∞

−∞

F (s)e2πisx ds .

The Fourier inversion theorem for Schwartz functions implies that this lies in S(R), and it must be shown

that f(x) = 0 if |x| > R. By assumption, there exists C2 > 0 such that

∣∣F (σ + it)
∣∣ ≤ C2 e

2πR|t|

1 + |t|2

for all real σ, t. We may shift the integration path for f(x) to get

f(x) =

∫ ∞+it

−∞+it

F (s)e2πixs ds .

But then
∣∣f(x)

∣∣ ≤ C2

∫ ∞+it

−∞+it

e2π(R−x)t

1 + |s|2 ds

∣∣f(x)
∣∣ ≤ C2e

2π(R−x)t

∫ ∞+it

−∞+it

1

1 + |s|2 ds

But if x > R then letting t→ ∞ we see that f(x) must be 0. If we let t→ −∞ we deduce that f(x) = 0
for x < −R.

6. Tempered distributions

On the vector space S(Rn) define the seminorms

‖f‖N,n = sup
x∈Rn

(
1 + ‖x‖

)N ∣∣f (n)(x)
∣∣ .

These make S(Rn) into a Fréchet space. A tempered distribution is a linear function

Φ: S(Rn) → C

that’s continuous in this topology. In other words, for Φ to be a tempered distribution we require that

∣∣〈Φ, f〉
∣∣ ≪N,n ‖f‖N,n

for some finite set ofN , n. For example, ifF (x) is a locally integrable function on Rn of moderate growth
in the sense that ∣∣F (x)

∣∣
(1 + ‖x‖)N ∈ L1(Rn)

for some N , then

f 7−→
∫

Rn

ϕ(x)f(x) dx

defines a tempered distribution.

In particular, if F is an integrable function on Rn, then integration against F defines a tempered distribu

tion. So we can construct lots of tempered distributions from functions with various growth conditions,
but as we shall see in the next section there are others of a more exotic kind.
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DERIVATIVES. One of the wonderful facts about distributions is that one can define the derivatives of an
arbitrary tempered distribution, and it will be is another tempered distribution. Thus every L1 function

has a derivative in this sense. O brave new world!

If f is in the Schwartz space and ϕ is a smooth function of moderate growth whose derivatives are of

moderate growth, then integration by parts gives us

〈ϕ, ∂f/∂xm〉 =
∫

Rn

ϕ(x)
∂f

∂xm
dx = −

∫

Rn

∂ϕ

∂xm
f(x) dx = −〈∂ϕ/∂xm, f〉 .

This suggests defining the partial derivative of any tempered distribution Φ by the formula

〈∂Φ/∂xm, f〉 = −〈Φ, ∂f/∂xm〉 .

This definition can be extended to any differential operator with constant coefficients.

FOURIER TRANSFORM. According to (d) of Lemma 2.2, if f and g are both in S(Rn) then 〈f, ĝ〉 = 〈f̂ , g〉,
so it is consistent to define the Fourier transform of an arbitrary tempered distribution by duality:

〈Φ̂, f〉 = 〈Φ, f̂〉 .

Since the Fourier transform is an isomorphism of S(Rn) with itself, it induces also an isomorphism of
the space of tempered distributions with itself.

We shall see examples in the next section, but we can verify now that in other cases this definition of

Fourier transform is consistent with the obvious one:

6.1. Proposition. If F lies in L1(Rn) then F̂ is the bounded continuous function

F̂ (y) =

∫

Rn

F (x)e−2πix•y dx

on Rn.

The RiemannLebesgue Lemma asserts that F̂ (y) → 0 as ‖y‖ → ∞, but I won’t prove or need that here.

Proof. The integral

G(y) =

∫

Rn

F (x)e−2πix•y dx

is a bounded function of y. It remains to show that integration against G defines the distribution F̂ .
Suppose f to lie in S(R). By definition

〈F̂ , f〉 = 〈F, f̂〉
and there are no obstacles to expressing this a double integral

〈F, f̂〉 =
∫

Rn

F (y)f̂(y) dy =

∫

Rn

∫

Rn

F (y)f(x)e−2πix•y dx dy = 〈G, f〉 .

BASIC OPERATIONS. Certain operations and formulas involving the Fourier transform of functions in

S(Rn) are valid also for tempered distributions. (a) If F (x) is a smooth function on R
n all of whose

derivatives are of moderate growth, and f lies in S(Rn), then F (x)f(x) is again in S(Rn). If Φ is a

tempered distribution on Rn then the product F ·Φ is defined by the formula

〈F ·Φ, f〉 = 〈Φ, F ·f〉 .

(b) If g is in GLn(R) then the transformation µgf of f by g is defined by

[µgf ](x) = f(g−1x) .
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If Φ is a tempered distribution then the scale of Φ by g is defined by

〈µgΦ, f〉 = 〈Φ, µg−1f〉 .

(c) The translation λvf of f by v in Rn is defined by

[λvf ](x) = f(x− v) .

The translation of Φ by v is defined by

〈λvΦ, f〉 = 〈Φ, λ−vf〉 .

In comparing these to the analogous properties of Schwartz functions, you must keep in mind that it is

not really a function f(x) that defines a distribution, but the measure f(x)dx.

How do these interact with the Fourier transformation?

6.2. Proposition. Suppose Φ to be a tempered distribution.

(a) The Fourier transformation of xk ·Φ is (−1/2πi) ∂Φ̂/∂yk;

(b) the Fourier transform of µgΦ is | det(g)|−1µtg−1Φ̂;

(c) the Fourier transform of λvΦ is e2πiv•yΦ̂;
(d) the Fourier transform of ∂Φ/∂xk is (2πiyk) · Φ̂.

I leave these as exercises. One interesting consequence of (b) is that the Fourier transform commutes
with the orthogonal group.

7. Examples

• The Dirac delta. The Dirac delta δ0 is defined by

〈δ0, f〉 = f(0) .

5 If Φ = δ0 then

〈Φ′, f〉 = 〈Φ,−f ′〉 = −f ′(0) ,

and continuing on one obtains

〈Φ(n), f〉 = (−1)nf (n)(0) .

What is its Fourier transform?

〈Φ̂, f〉 = 〈δ0, f̂〉 = f̂(0) =

∫ ∞

−∞

f(x) dx = 〈1, f〉

so Φ̂ is the constant function 1. And conversely, the Fourier transform of 1 is δ0.

There is a nice characterization of δ0:

7.1. Lemma. A distribution Φ satisfies xkΦ = 0 for all k if and only if it is a scalar multiple of δ0.

Proof. This follows directly from Lemma 3.4.

• The principal value of 1/x . The function log |x| is integrable near 0 and hence defines a tempered

distribution. What is its derivative? Its derivative in the naive sense is the function1/x. What relationship
does it have with the distributional derivative of log |x|?
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Let Φ be the distribution defined by integration against log |x|. Then

〈Φ′, f〉 = −〈Φ, f ′〉

= −
∫ ∞

−∞

f ′(x) log |x| dx

= − lim
ε→0

(∫ −ε

−∞

f ′(x) log |x| dx+

∫ ∞

ε

f ′(x) log x dx

)

= lim
ε→0

(
−
[
f(x) log |x|

]−ε

−∞
+

∫ −ε

−∞

f(x)

x
dx−

[
f(x) log |x|

]∞
ε

+

∫ ∞

ε

f(x)

x
dx

)

= lim
ε→0

(
f(ε)− f(−ε)

)
log ε+ lim

ε→0

(∫ −ε

−∞

f(x)

x
dx+

∫ ∞

ε

f(x)

x
dx

)

= lim
ε→0

(∫ −ε

−∞

f(x)

x
dx+

∫ ∞

ε

f(x)

x
dx

)
,

since f(ε)− f(−ε) ∼ 2εf ′(0) as ε→ 0.

The principal value distribution P(1/x) associated to the function 1/x is the limit that appears here:

〈P , f〉 = lim
ε→0

(∫ −ε

−∞

f(x)

x
dx+

∫ ∞

ε

f(x)

x
dx

)
.

If f(x) = xϕ(x) then

〈P(1/x), f〉 = lim
ε→0

∫

|x|≥ε

f(x)

x
dx =

∫

R

ϕ(x) dx .

In other words:

(7.2) xP(1/x) = 1 .

7.3. Proposition. For a 6= 0 µaP(1/x) = sgn(a)P(1/x).

Here

sgn(a) =
{

1 if a > 0
−1 if a < 0.

Proof. Let Φ = P(1/x). Let a = σ|a| with σ = ±1. We have

〈µaΦ, f〉 = 〈Φ, µ1/af〉

= lim
ε→0

(∫ −ε

−∞

f(ax)

x
dx+

∫ ∞

ε

f(ax)

x
dx

)

= lim
ε→0

(∫ −aε

−∞

f(σx)

x
dx +

∫ ∞

aε

f(σx)

x
dx

)

= lim
ε→0

(∫ −ε

−∞

f(σx)

x
dx+

∫ ∞

ε

f(σx)

x
dx

)

= σ · lim
ε→0

(∫ −ε

−∞

f(x)

x
dx+

∫ ∞

ε

f(x)

x
dx

)
.

The distribution P has odd parity. If f is decomposed into even and odd components f = f++ f−, then
〈P , f〉 = 〈P , f−〉. But f− is divisible by x, so there is a simple formula for this.
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The principal value distribution can be generalized to construct similar distributions behaving well
with respect to the multiplicative group—the parties finies first defined by Cauchy and elaborated by

Hadamard. The derivative of P isone of these, for example. They will be dealt with elsewhere.

The Fourier transform of P will be seen in a moment.

• The step function. Let

H(x) =

{
0 if x < 0
1 if x ≥ 0.

Thus

〈H, f〉 =
∫ ∞

0

f(x) dx

and
〈H ′, f〉 = −〈H, f ′〉

= −
∫ ∞

0

f ′(x) dx

= f(0) .

Thus H ′ = δ0. I’ll say something in the next section about an intuitive approach to this.

What is the Fourier transform of H? If Φ is any tempered distribution, then according to the Fourier

transform of Φ′ is (2πiy)Φ̂. Since H ′ = δ0 we have

2πiy ·Ĥ = 1 .

But yP is equal to 1, so y(P − (2πi)Ĥ) = 0. According to Lemma 7.1, this tells us that

2πiĤ = P + cδ0

for some constant c. What is c?

〈2πiĤ, e−πx2〉 = 〈P , e−πx2〉+ c〈δ0, eπx
2〉

= c

= (2πi)

∫ ∞

0

e−πx2

dx

= πi

which gives

Ĥ =
1

2πi
·P +

1

2
·δ0 .
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8. More about the Dirac delta

I attempt in this section to justify the physicists’ notion that δ0 is a function that vanishes everywhere

except x = 0, but has total area 1 underneath its graph—it is the limit of functions that come closer and

closer to that ideal.

The step function H(x) can be well approximated by smooth functions.

What happens to it derivative as this convergence takes place?

First of all, I recall an explicit construction of functions in C∞
c (R). All derivatives of e−1/x vanish at

x = 0,as do all of e1/(1−x) at x = 1. Therefore the function

f(x) =





0 for x < 0
e−1/xe−1/(1−x) 0 ≤ x ≤ 1

0 1 < x

is smooth on all of R. If we scale it and translate it, we can find a nonnegative function ϕ1(x) which

vanishes outside [−1/2, 1/2] and has total area 1 underneath its graph. Now if we define

ϕc(x) = (1/c)ϕ(x/c)

then the support of ϕc is contained in [−c/2, c/2] but retains area 1.

y = h(x)

y = h′(x)

y = h(x)

y = h′(x)

y = h(x)

y = h′(x)

As c→ 0, the function ϕc has limit δ0 in the sense that

〈ϕc, f〉 =
∫ c/2

−c/2

ϕc(x)f(x) dx → f(0) .
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and the function ∫ x

−∞

ϕc(t) dt ,

whose derivative is ϕc, has as limit the function H(x).

9. Poisson summation

Suppose f(x) to be in S(Rn). Then

Θf(x) =
∑

n

f(x+ n)

converges absolutely to a smooth function of period 1 on Rn. It may therefore be expanded in a Fourier

series

Θf(x) =
∑

m

Θme
2πimx

where

Θm =

∫ 1

0

Θf (x)e
−2πimx dx

=

∫ 1

0

∑

n

f(x+ n)e−2πimx dx

=
∑

n

∫ 1

0

f(x+ n)e−2πim(x+n) dx

=

∫ ∞

−∞

f(x)e−2πimx dx

= f̂(m) .

9.1. Proposition. (Poisson summation formula) For f in S(Rn)

∑

n

f(x+ n) =
∑

m

f̂(m)e2πimx .

Suppose we apply this to f(x) = e−πtx2

. It follows from Proposition 2.1 and (e) of Lemma 2.2 that its

Fourier transform is (1/
√
t)e−πx2/t. Poisson summation tells us that if

ϑ(t) =
∑

n

e−πn2t

then

ϑt =
1√
t
ϑ1/t

This functional equation for ϑ will be the justification for the functional equation of Riemann’s zeta

function.
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10. An application: Riemann’s functional equation

Riemann’s zeta function is defined to be

ζ(s) =
∑

n>0

1

ns
.

The series converges for RE(s) > 1, while for s = 1 we have the series

∑

n>0

1

n

which is well known not to converge. For reasons that will become clear in a moment, the more

convenient function is

ξ(s) = π
−

s
2Γ

(s
2

)
ζ(s)

The importance of these functions is that unique factorization of the positive integers allows us to deduce

that ζ(s) may be expanded in the Euler product

ζ(s) =
∏

p

(
1 +

1

ps
+

1

p2s
+ · · ·

)
=

∏

p

(
1− 1

ps

)−1

.

This suggests that analytic properties of ζ(s) might imply properties of the prime numbers. As a

simple example, that ζ(1) sums to ∞ implies that there are an infinite number of primes, and even says
something, albeit rather weak, about their distribution.

10.1. Theorem. The function ξ(s) extends meromorphically to all ofC, is holomorphic everywhere except
for two simple poles at s = 0 and s = 1, and satisfies the functional equation

ξ(s) = ξ(1 − s) .

Proof. It all comes down to the consequences of Poisson summation for the function

ϑ(t) =
∑

n>0

e−πn2t .

Poisson summation tells us that

1 + 2ϑ(t) =
1√
t

(
1 + 2ϑ(1/t)

)
.

The function ϑ(t) decreases exponentially at ∞. As t → 0 it goes off to ∞, and this equation tells us
exactly how:

ϑ(t) =
1√
t

1 + 2ϑ(1/t)−
√
t

2
∼ 1

2
√
t
.

I recall that the Gamma function is defined to be

Γ(s) =

∫ ∞

0

e−tts
dt

t
.

for RE(s) > 0. By a change of variable t = πn2x this becomes

π
−

s
2Γ

(s
2

) 1

ns
=

∫ ∞

0

e−πn2xxs/2
dx

x
.
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This and the asymptotic behaviour of ϑ at 0 and ∞ tell us that for RE(s) > 1

ξ(s) =

∫ ∞

0

(∑

n>0

e−πn2x
)
xs/2

dx

x
=

∫ ∞

0

ϑ(x)xs/2
dx

x
.

We can now write (still for RE(s) > 1)

ξ(s) =

∫ ∞

0

ϑ(x)xs/2
dx

x

=

∫ 1

0

ϑ(x)xs/2
dx

x
+

∫ ∞

1

ϑ(x)xs/2
dx

x

=

∫ ∞

1

ϑ(1/x)x−s/2 dx

x
+

∫ ∞

1

ϑ(x)xs/2
dx

x

=

∫ ∞

1

(√
xϑ(x) +

√
x

2
− 1

2

)
x−s/2 dx

x
+

∫ ∞

1

ϑ(x)xs/2
dx

x

=

∫ ∞

1

ϑ(x)x(1−s)/2 dx

x
+

∫ ∞

1

ϑ(x)xs/2
dx

x
+

1

2

∫ ∞

1

(
x−(s−1)/2 − x−s/2

) dx
x

=

∫ ∞

1

ϑ(x)x(1−s)/2 dx

x
+

∫ ∞

1

ϑ(x)xs/2
dx

x
− 1

s(1− s)
.

Since ϑ(x) decreases exponentially fast, the integrals converge for all s. Since the expression is invariant
if s and 1− s are swapped, we are through.

Furthermore, the pole of ξ(s) at s = 1 is simple, with residue 1.
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