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The purpose of this essay is to give an introduction to free Lie algebras and a few of their applications.

My principal references are [Serre:1965], [Reutenauer:1993], and [de Graaf:2000]. My interest in free Lie

algebras has been motivated by the well known conjecture that Kac­Moody algebras can be defined by
generators and relations analogous to those introduced by Serre for finite­dimensional semi­simple Lie

algebras. I have had this idea for a long time, but it was coming across the short note [de Graaf:1999] that

acted as catalyst for this (alas! so far unfinished) project.

Fix throughout this essay a commutative ring R. I recall that a Lie algebra over R is an R­module g together

with a Poisson bracket [x, y] such that

[x, x] = 0

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

Since [x + y, x + y] = [x, x] + [x, y] + [y, x] + [y, y], the first condition implies that [x, y] = −[y, x]. The
second condition is called the Jacobi identity .

In a later version of this essay, I’ll discuss the Baker­Campbell­Hausdorff Theorem (in the form due to
Dynkin).
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Throughout, let X be a finite set. Elements of X will be considered as letters in an alphabet.

1. Magmas

If R is a commutative ring, an R­algebra is a free module A over R with a product map

A ⊗R A −→ A .

There is no assumption on the product other than bilinearity. Given the finite set X , there is a universal
R­algebra generated by it, called a magma , described in terms of a basis made up of monomials .

A monomial is an expression involving X and a pair of brackets ⌊, ⌋ that are defined recursively: (1) every x
in X is a monomial; (2) if p and q are monomials then so is ⌊p, q⌋. The magmaMX is the set of all monomials.
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The expression ⌊p, q⌋ defines a non­associative product in MX . Every monomial other than an element of X
may be factored uniquely as ⌊p, q⌋.
These products are essentially trees . What this means is that every monomial can be represented by a rooted

tree in which leaf nodes are single letters and all other nodes have two monomials as descendants. Here is
the tree for ⌊⌊⌊x, ⌊x, y⌋⌋, y⌋, y⌋:

y

y

x

x y

The degree |m| of a monomial m is the number of leaf nodes in the tree, or equivalently the number of

elements of X in its expression. Inductively, |x| = 1 and
∣∣⌊p, q⌋

∣∣ = |p| + |q|. The number mn of monomials

of a given degree n is finite, and it is not difficult to evaluate it explicitly.

The monomials of degree one are just the elements of X , so m1 = |X |. There is a simple way to generate

inductively all monomials of degreen—each one of these can be expressed uniquely as ⌊p, q⌋with p of degree
i and q of degree n − i, for 1 ≤ i ≤ n − 1.

M
(n)
X =

⊔

1≤i≤n−1

{
⌊p, q⌋

∣∣ p ∈ M
(i)
X , q ∈ M

(n−i)
X

}
.

For example, here are the lists of M
(n)
X with X = {x, y} and n = 1, 2:

x, y

⌊x, x⌋, ⌊x, y⌋, ⌊y, x⌋, ⌊y, y⌋ .

Hence for n ≥ 2
mn =

∑

1≤i≤n−1

mimn−i

1.1. Proposition. If d = |X | and
M(t) = m1t + m2t

2 + · · ·
is the generating series for (mn), then

M(t) =
1 −

√
1 − 4dt

2
.

The expression
√

1 − 4dt here means the series one obtains from the binomial expansion for (1 + x)1/2 . In

calculation this gives an efficient inductive formula for computing mn = −cn/2 (for n ≥ 1) with

c0 = 1, cn = cn−1 ·d ·2(2n − 3)/n .

The first few mn are

m1 = d, m2 = d2, m3 = 2d3, m4 = 5d4, m5 = 14d5, m6 = 42d6 .



Free Lie algebras 3

Proof. The equation just before the proposition is equivalent to

M2 = M − m1t .

To every monomial is associated its word , that is to say the sequence of letters that occur in its leaves, and
in order of a left to right traversal. Thus the word of ⌊⌊x, y⌋, ⌊x, ⌊x, ⌊x, y⌋⌋⌋⌋ is xyxxxy. Many monomials

have the same word.

I’ll often label the nodes of a monomial by bit sequences. If h is a compound monomial, h0 and h1 will be its

left and right components, so that h = ⌊h0, h1⌋. This continues so that, for example, if h1 is compound then

h1 = ⌊h10, h11⌋ and h = ⌊h0, ⌊h10, h11⌋⌋.
The universal R­algebra AX,R generated by X is the space of linear combinations of monomials in X . This

is given the product (∑

m

amm
)
·
(∑

n

bnn
)

=
∑

m,n

ambn⌊m, n⌋ .

Any map from X to an R­algebra A extends to a unique homomorphism from AX,R to A. Usually R will be

implicit.

2. The free Lie algebra

For brevity of notation, for any x, y, z in AX let

((x, y, z)) = ⌊x, ⌊y, z⌋⌋+ ⌊y, ⌊z, x⌋⌋+ ⌊z, ⌊x, y⌋⌋ .

Let LX = LX,R be the quotient of AX = AX,R be the two­sided ideal I generated by terms ⌊p, p⌋, ⌊p, q⌋ +
⌊q, p⌋, and ((p, q, r)), in which p, q, r are monomials in MX . Since

⌊∑
cmm,

∑
cmm

⌋
=
∑

c2
m⌊m, m⌋ +

∑

m 6=n

cmcn(⌊m, n⌋ + ⌊n, m⌋)

and ((∑
cℓℓ,

∑
cmm,

∑
cnn
))

=
∑

ℓ,m,n

cℓcmcn((ℓ, m, n))

the analogous elements ofAX also belong to I . The image [x, y] of ⌊x, y⌋ inLX depends only on x, y modulo
I , and defines the structure of a Lie algebra.

2.1. Lemma. The ideal of relations is homogeneous and consequently LX is graded by degree.

Proof. Every x in AX can be expressed as a unique sum of homogenereous components xn. The claim is that

that x lies in I if and only if each xn lies in I . It suffices to verify that the homogeneous components of each

⌊x, x⌋ and each ⌊x, ⌊y, z⌋⌋ + ⌊y, ⌊z, x⌋⌋+ ⌊z, ⌊x, y⌋⌋ lies in I , which is immediate.

Each homogeneous component L(n)
X is finitely generated over R. We shall see eventually that it is also free

over R.

The Lie algebra LX has this characteristic property of universality, which is easy to define and verify:

2.2. Proposition. Any map from X to a Lie algebra g extends to a unique Lie algebra homomorphism from
LX to g.

2.3. Corollary. This property determines the Lie algebra LX up to isomorphism.

Let RX be the free R­module generated by X . The set X may be identified with a basis of RX .

If V is any free R­module, for each n ≥ 0 let
⊗n

V be the space of n­tensors of V , and let
⊗

•

V be the direct
sum of the

⊗n
V . If X is a basis, then the set of products x1 ⊗ . . .⊗ xn with each xi in X is a basis of

⊗
•

V .
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If M is any R­module then
∧

2M is the quotient of M ⊗ M by the submodule spanned by the elements
m ⊗ m. It has the universal property that any R­homomorphism from M ⊗ M to an R­module that takes

any m ⊗ m to 0 factors through the projection to
∧

2M .

2.4. Lemma. If X is assigned a linear order, the R­module
∧

2RX has as basis the images x ∧ y of x ⊗ y for
x < y in X .

Proof. The elements x ⊗ y form a basis of
⊗2

RX , so the x ∧ y certainly span
∧

2RX . The map taking x ⊗ y

to x⊗ y − y ⊗x defines a map from
⊗2RX to itself. It takes every m⊗m to 0, hence factors through

∧
2RX .

The image of the x ∧ y is x ⊗ y − y ⊗ x, so any linear relation among these wedge products leads to one of

basis elements in ⊗2RX , hence must be trivial.

2.5. Proposition. The canonical map from X to LX induces isomorphisms of RX ­modules RX
∼= L 1

X and∧
2RX

∼= L 2
X .

Proof. The free module RX is itself an abelian Lie algebra with nil bracket, hence there exists a canonical

map from LX to RX , which induces the identity on RX . This proves the claim about L1
X . The second claim

depends similarly on the Lie algebra which as an R­module is the direct sum RX ⊕∧2RX and with brackets

[x, y] = x ∧ y

[x, y ∧ z] = 0

[x ∧ y, z] = 0

[x ∧ y, z ∧ w] = 0 .

There is another—and remarkable—avatar of the free Lie algebra LX , which I’ll now explain.

BASE RING EXTENSION. Suppose S to be a commutative ring containing R. If U is any R­module and V
an S­module, there is a canonical map

(2.6) HomS(S ⊗R U, V ) −→ HomR(U, V ), f 7−→ {u 7→ f(1 ⊗ u)} .

2.7. Lemma. In these circumstances, this map is a bijection.

Proof. The characteristic property of the tensor product is that

HomR(S ⊗R U, V )

is the set of R­bilinear maps f from S × U to V . The subset of elements in HomS(S ⊗R U, V ) are those f
such that f(s · t, u) = s ·f(t, u) for all s, t in S, u in U . Suppose f in HomR(U, V ), and let F be the bilinear

map form S × U to V taking (s, u) to s ·f(u). The map f 7→ F defines an inverse to (2.6) .

2.8. Proposition. For R ⊆ S the canonical map

S ⊗R LX,R 7−→ LX,S

is an isomorphism.

Proof. The left hand side satisfies the universality property.

RELATIONS WITH THE TENSOR ALGEBRA. Let g be an arbitrary Lie algebra over the commutative ring
R. Assume that it is free as an R­module. The universal enveloping algebra U(g) of g is the quotient of the

tensor algebra
⊗

•

g by the two­sided ideal generated by the elements x ⊗ y − y ⊗ x − [x, y] for x, y in g. Let

ι: g 7−→ U(g) be the canonical map taking u to its image in the quotient.

The following will be proved in the next section.

2.9. Lemma. The canonical map ι from g to its enveloping algebra is an injection.
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It happens that the universal enveloping algebra ofLX has a relatively simple realization as a familiar object.
Let
⊗

•RX be the tensor algebra generated by RX . I identify RX with its copy inside this algebra.

The tensor algebra contains the Lie algebra LX , defined to be the smallest subspace of
⊗

•

RX containing RX

and closed under Poisson bracket [p, q] = p⊗ q − q ⊗ p. The copies of RX in LX and LX induce a surjective
homomorphism of Lie algebras from LX to LX , and hence a ring homomorphism from the enveloping

algebra U(LX) to
⊗

•

RX .

The next results will be proved in the next few sections:

2.10. Theorem. Each homogeneous component L(n)
X is a free R­module.

2.11. Theorem. The canonical map from LX to LX is an isomorphism.

2.12. Theorem. The canonical homomorphism from U(LX) to
⊗

•

RX is an isomorphism.

2.13. Theorem. The rank ℓX(n) of L(n)
X depends only on d = |X |. It is determined by the recursion

ℓX(1) = d

ℓX(n) =

(
1

n

)∑

m|n

µ(m)dn/m .

Here µ is the classical Möbius function (defined in §16.4 of [Hardy­Wright:1960]):

µ(n) =

{
1 if n = 1

(−1)k if n is the product of k distinct primes
0 otherwise.

The proofs of these results are intertwined, and will be given in the next few sections.

3. Poincar é-Birkhoff-Witt

In this section I digress slightly to include a very brief introduction to universal enveloping algebras. The

principal goal is a short account of the elegant proof of the Poincaré­Birkhoff­Witt theorem to be found in
[Bergman:1978]. I include this here for two reasons. The first is that it introduces a technique known as

‘confluence’ that we shall see again. The second is that the PBW theorem will play a crucial role in the

remainder of this essay. Bergman’s argument has a modern flavour, but is underneath not all that different
from the original one of [Birkhoff:1937].

Let g be a Lie algebra over R that is free as an R­module. Let X be a basis of g, and choose a linear order on
it. Define a reduced monomial x1 ⊗ . . . ⊗ xn in

⊗
•

g to be one with x1 ≥ . . . ≥ xn. These are part of a basis

of
⊗

•

g. An irreducible tensor is one all of whose monomials are reduced, and irreducible tensors make up

a free R­module
⊗

•

irr g. The universal enveloping algebra U(g) of g is by definition the quotient of
⊗

•

g by
the two­sided ideal I generated by x ⊗ y − y ⊗ x − [x, y] for x, y in g.

3.1. Theorem. (Poincaré­Birkhoff­Witt) The images of the reduced monomials form a basis of U(g).

In other words, ⊗
•

g =
⊗

•

irr g ⊕ I .

I should remark here that choosing ≥ rather than ≤ is somewhat arbitrary. There is, as far as I can tell, no

universally adopted convention. My choice has been made with later developments in mind.

Proof. It has to be proven that (a) every element of each
⊗

•

g is equivalent modulo I to a linear combination

of ordered monomials and (b) this linear combination is unique.

(a) Because the expression x⊗y−y⊗x− [x, y] is bilinear and because it changes sign if x and y are swapped:
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3.2. Lemma. The ideal I is the two­sided ideal generated by x ⊗ y − y ⊗ x − [x, y] for x < y in X .

For monomials A, B and x < y in X , define the operator σ = σA,x⊗y,B on
⊗

•

g to be that which takes

A ⊗ x ⊗ y ⊗ B 7−→ A ⊗ (x ⊗ y − [x, y]) ⊗ B

and fixes all other monomials. Thus σ(α) − α lies in I . If x < y the tensor A ⊗ (y ⊗ x + [x, y]) ⊗ B is called

a reduction of A ⊗ x ⊗ y ⊗ B, and such operators are also called reductions. A tensor is irreducible if and

only if it is fixed by all reductions.

Claim (a) means that by applying a finite number of reductions any tensor can be brought to an irreducible

one. The basic idea is straightforward. Start with a tensor α. As long as α possesses monomials that are
not reduced, replace one of them by the appropriate reduction. Every reduction in some sense simplifies

a monomial, so it is intuitively clear that the process must stop. The problem in this description is that

reduction triggers a cascade of others that is difficult to predict. Also, what exactly is simplification?

If A = x1 ⊗ . . . ⊗ xn, let |A| = n and let ℓ(A) be the number of ‘inversions’ xi < xj with i < j. The

monomials A with ℓ(X) = 0 are the reduced ones, so ℓ(A) is a measure of how far A is from being reduced.
If A and B are two monomials, then we say A ≺ B if either |A| < |B| or |A| = |B| but ℓ(A) < ℓ(B). If

|A| = k then ℓ(A) ≤ k(k − 1)/2, and from this it follows that if |A| = n the length of any chain

A = A1 ≻ A2 ≻ . . .

is at most n(n − 1)/2 + (n − 1)(n − 2)/2 + · · · = n(n2 − 1)/6.

If α is a tensor, defines its support supp(α) to be the set of monomials appearing with non­zero coefficients

in its expression. To each tensor a =
∑

cXX we can associate a graph. Its nodes will be defined recursively:

(a) the monomials in the support of α are nodes; (b) if X is in it, then the support of each reduction of X are
nodes. From each node X = A ⊗ x ⊗ y ⊗ B with x < y there is a directed edge from X to each node in the

reduction σA,x⊗y,B(X), labeled by (A, x ⊗ y, B). If any sequence of reduction operators is applied to α, the
support of the result is contained in the set of nodes of this graph (but may well be a proper subset, because
of possible cancellation).

Let Γ = Γα be this graph, and let S be the set of all inverted pairs (A, x ⊗ y.B) with x < y. From each node
we have a set of directed edges indexed by a certain subset of S. Define for each s in S a map rs from subsets

of the nodes to other subsets of nodes, taking Θ to the union of the targets of edges labeled by s in Θ. Every
directed path in Γ has finite length. In particular, ther are no loops in Γ.

3.3. Lemma. In this situation, every infinite composition of maps rs is stationary.

Proof. Because if not there would exist an infinite directed path.

Therefore any sequence of reductions will eventually be stationary. If we follow the principle of applying a
reduction as long as some remainingmonomial is not treduced, the process will terminate with an irreducible

tensor. Thus we have proved claim (a). That’s the easy half of the Theorem.

(b) It remains to show uniqueness. The previous argument showed that there always exists a series of

reductions leading to an irreducible tensor. Call an element of
⊗

•

g uniquely reducible if every chain of

reductions that ends in an irreducible expression ends in the same expression. In order for the irreducible
tensors to be linearly independent, it is necessary and sufficient that all elements be uniquely reducible.

The following is a step towards proving this.

3.4. Lemma. (PBW Confluence) If A is a monomial with two simple reductions A → B1 and A → B2 then
there exist further reductions B1 → C and B2 → C.

The term ‘confluence’ seems to have its origin in [Newman:1942], where a similar question is discussed for

purely combinatorial (as opposed to algebraic) objects. In the cases discussed by Newman, this is called

the Diamond Lemma, and the following picture suggests straightforward consequences for composites of
reductions.
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A

B1B2

C

The complication in the case at hand is that successive reductions can cancel out terms from early ones. That
is exactly the problem that [Bergman:1978] is concerned with.

Proof. Suppose that A is a monomial with two simple reductions σ: A → B1 and τ : A → B2. We must find
further reductions B1 → C and B2 → C.

If the reductions are applied to non­overlapping pairs there is no problem. An overlap occurs for a term
A ⊗ x ⊗ y ⊗ z ⊗ B with x < y < z. It gives rise to a choice of reductions.

x ⊗ y ⊗ z −→ y ⊗ x ⊗ z + [x, y] ⊗ z

x ⊗ y ⊗ z −→ x ⊗ z ⊗ y + x ⊗ [y, z] .

But then

y ⊗ x ⊗ z + [x, y] ⊗ z −→ y ⊗ z ⊗ x + y ⊗ [x, z] + [x, y] ⊗ z

−→ z ⊗ y ⊗ x + [y, z] ⊗ x + y ⊗ [x, z] + [x, y] ⊗ z

x ⊗ z ⊗ y + x ⊗ [y, z] −→ z ⊗ x ⊗ y + [x, z] ⊗ y + x ⊗ [y, z]

−→ z ⊗ y ⊗ x + z ⊗ [x, y] + [x, z] ⊗ y + x ⊗ [y, z]

and the difference

([y, z] ⊗ x − x ⊗ [y, z]) + (y ⊗ [x, z] − [x, z] ⊗ y) + ([x, y] ⊗ z − z ⊗ [x, y])

= ([y, z] ⊗ x − x ⊗ [y, z]) + ([z, x] ⊗ y − y ⊗ [z, x]) + ([x, y] ⊗ z − z ⊗ [x, y])

between the right hand sides lies in I because of Jacobi’s identity.

We’ll see confluence again later on.

If u is any uniquely reducible element of
⊗

•

g, let irr(u) be the unique irreducible element it reduces to.

3.5. Lemma. If u and y are uniquely reducible, so is u + v, and irr(u + v) = irr(u) + irr(v).

Proof. Let τ be a composite of reductions such that τ(α + β) = γ is irreducible. Since α is uniquely

reducible, there exists some σ such that σ(τ(α) = irr(α). Since β is irreducible, there exists ρ such that
ρ(σ(τ(β))) = irr(β). Since all reductions fix irreducible tensors and reductions are linear

ρ(σ(τ(α + β))) = γ

= ρ(σ(τ(α) + ρ(σ(τ(β)))

= irr(α) + irr(β) .
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Now for the proof of the PBW Theorem. We want to show that every tensor is uniquely­irreducible. By this
Lemma it suffices to show that every monomial X is uniquely irreducible. We do this by induction on |X |.
For |X | ≤ 2 the claim is immediate.

Suppose |X | ≥ 3. Suppose we are given two chains of reductions, taking X to Z1 and Z2. let X → Y1 and
X → Y2 be the first steps in each. By Lemma 3.4 there exists further composite reductions Yi → W . By the

induction hypothesis on the Wi we know that irr(W ) = irr(Yi) = Zi for each i.

The notion of confluence used here is a tool of great power in finding normal forms for algebraic expressions.

It is part of the theory of term rewriting and critical pairs , and although it has been used informally for a very
long time, the complete theory seems to have originated in [Knuth­Bendix:1965]. It has been rediscovered

independently a number of times. A fairly complete bibliography as well as some discussion of the history

can be found in [Bergman:1977].

4. Free Lie algebras and tensor products

I now prove the propositions stated in the introduction. I follow the exposition in [Serre:1965] very closely.

4.1. Theorem. The canonical map from U(LX) to
⊗

•

RX is an isomorphism.

Proof. The map from RX to LX is an embedding, and by Poincaré­Birkhoff­Witt this in turn embeds into

U(LX) and therefore induces a ring homomorphism from
⊗

•

RX to U(LX). This is inverse to that from
U(LX) to

⊗
•RX .

It remains now to prove:

4.2. Theorem. If |X | = d, then

ℓX(n) =

(
1

n

)∑

m|n

µ(m)d(n/m) .

4.3. Theorem. The free Lie algebra LX is a free R­module, as are all its homogeneous components L(n)
X .

4.4. Theorem. The canonical map from LX to LX is an isomorphism.

Proof of all of these. I first point out that Theorem 4.4 follows from Theorem 4.3. The map from LX to LX is

certainly surjective, and it is injective by Theorem 4.1, since the Poincaré­Birkhoff­Witt theorem implies that

LX embeds into U(LX). In particular, Theorem 4.4 is true if R is a field.

But if LX is R­free, the formula for ℓd(n) is also easy to see. If d = |X |, then the dimension of Tn =
⊗n

RX

is dn, and we have the formula for the generating function

∞∑

0

(rank Tn) tn =

∞∑

0

dntn =
1

1 − dt
.

The identification of U(LX) with
⊗

•RX gives us another formula for the same function. Choose a basis λi

of LX and a linear ordering of it (or, effectively, its set of indices I). Let di = |λi|. The Poincaré­Birkhoff­Witt

theorem implies that a basis of U(LX) is made up of the ordered products

λe =
∏

i∈I

λei

i

with ei = 0 for all but a finite number of i. The degree of this product is
∑

eidi. We then also have

∞∑

0

(rank Tn) tn =
∞∏

1

1

(1 − tm)ℓd(m)
.
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Therefore
∞∏

1

1

(1 − tm)ℓd(m)
=

1

1 − dt

which implies that

dn =
∑

m|n

mℓd(m) ,

and by Möbius inversion (§16.4 of [Hardy­Wright:1960]) the formula in Theorem 4.2.

Now suppose R = Z. The case just dealt with shows that the dimension Z/p ⊗ L(n)
X is independent of p,

which in turn implies that L(n)
X is free over Z.

The case of arbitrary R is immediate, since LX,R = R ⊗ LX,Z. This concludes all pending proofs.

Here are the first few dimensions for d = 2:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
dn 2 1 2 3 6 9 18 30 56 99 186 335 630 1161 2182 4080

The proofs of these theorems are highly non­constructive. These problems now naturally arise:

• specify an explicit basis for all of LX ;
• find an algorithm to do explicit computations in terms of it;
• make a more explicit identification of U(LX) with

⊗
•

RX .

These problems will all be solved in terms of Hall sets.

5. Hall sets—motivation

Continue to letX be any finite set, V = RX the free R­module with basis X . Inside
⊗

•

V lies the Lie algebra
LX generated by V and the bracket operation [P, Q] = PQ − QP . This is spanned by the Lie polynomials
generated by elements of X . Recursively, we have these generating rules: (a) if x is in X then its image in⊗

•

V is a Lie polynomial and (b) if P and Q are Lie polynomials so is [P, Q].

If X = {x, y}, some of the first few Lie polynomials, in both bracket and tensor form, are

x

y

[x, y] = x ⊗ y − y ⊗ x

[x, [x, y]] = x ⊗ (x ⊗ y − y ⊗ x) − (x ⊗ y − y ⊗ x) ⊗ x

= x ⊗ x ⊗ y − 2x ⊗ y ⊗ x + y ⊗ x ⊗ x

[y, [x, y]] = y ⊗ (x ⊗ y − y ⊗ x) − (x ⊗ y − y ⊗ x) ⊗ y

= 2y ⊗ x ⊗ y − y ⊗ y ⊗ x − x ⊗ y ⊗ y .

A bracket expression involving elements of X , when expanded into tensors, always becomes a sum of tensor

monomials all of the same degree as the original expression.

The embedding of X into V determines a map from LX to LX , which we know to be an isomorphism. It

determines also a ring isomorphism of U(LX) with
⊗

•

V . Any monomial gives rise to a Lie polynomial in
the tensor algebra as well as an element of LX .

The isomorphism of U(LX) with
⊗

•

V is more than a little obscure. It is not at all easy to identify elements

ofLX when expressed in tensor form. This is a problem that we shall see in many guises. Here, I shall sketch
quickly one way to implement the Poincaré­Birkhoff­Witt Theorem for U(LX) inside

⊗
•

V . That is to say,
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I’ll show how to express any tensor as a linear combination of ordered monomials in certain elements of LX .
Temporarily, in order to simplify terminology, I’ll call such an expression a PBW polynomial.

The matter of ordering is easy to deal with. First of all order X . IfX = {x, y}, for example, I could set x < y.
Next, to each Lie polynomial is associated its word. For example, the word of [[x, [y, x]], x] is xyxx. I’ll put a
weak order on Lie monomials be saying p ≤ q is the word of p comes before q in a dictionary. For example,

[x, y] comes before [[x, [y, x]], x], which comes in turn before [[y, [y, x]], x]. This is not a strict ordering, since
several Lie polynomials might have the same word, but I’ll not pat attention to that problem.

The algorithm I am about to explain will find an expression for any element of
⊗

•

V as a PBW polynomial.
The ultimate output might not be so clear, but the algorithm nonetheless is quite precise. As for the output,

that should become clearer in time, but it should be clear that it has something to do with PBW.

This algorithmwill be linear, so in order to describe, I may it start with a tensor monomial, say x1⊗ . . . xn. At
any point in the process, we will be facing a linear combination of products p1 ⊗ . . .⊗ pn of Lie polynomials.

We scan this term by term from the left to find the first inversion. If p1 ≥ . . . ≥ pn, we leave this as it is.
Otherwise we shall have a product in which either (1) p1 ≤ p2 or (2) pk−1 ≥ pk < pk+1 for some k ≥ 2. We

replace these terms in the product by a sum

p2 ⊗ p1 + [p1, p2] or pk−1 ⊗ pk+1 ⊗ pk + pk−1 ⊗ [pk, pk+1] .

We keep doing this until all terms are products of weakly decreasing sequences of Lie polynomials. There

might well be some ambiguity in what the point is, but at least the process itself is unambiguous.

For example, here is a sample sequence:

x ⊗ x ⊗ y

x ⊗ y ⊗ x + x ⊗ [x, y]

y ⊗ x ⊗ x + [x, y] ⊗ x + x ⊗ [x , y ]

y ⊗ x ⊗ x + [x, y] ⊗ x + [x , y ]⊗ x + [x, [x, y]]

y ⊗ x ⊗ x + 2 ([x, y] ⊗ x) + [x, [x, y]] .

There are a several questions that arise immediately. First of all, inside a term there can be several inversions
pairs requiring to be swapped. I have specified which is to be dealt with first, but does it matter which we
choose? Second, can we characterize the Lie polynomials we get in the end? Third, to what extent is this
really implementing PBW? This is a legitimate question,because I have not specified, as one does in PBW, a
linear order on Lie polynomials.

We can get some idea of an answer to the second of these by examining again what happens when Lie

polynomials are created in the process. I recall that if we are facing

pk ⊗ pk+1 (pk < pk+1) ,

which changes to
pk+1 ⊗ pk + pk−1 ⊗ [pk, pk+1] .

So the first condition is that if [p, q] is a Lie polynomial created by this process, then p < q. A second that is

a bit more difficult to explain. How can a Lie polynomial [p, [q, r]] arise? Let’s look at one example where it

does. Suppose we encounter a product p ⊗ q ⊗ r with p ≥ q ≤ r. This has become p ⊗ (r ⊗ q) + p ⊗ [q, r].
But then to get the bracket [p, [q, r]] we must have p < [q, r]. In other words, p must be in a sandwich:

q ≤ p < [q, r] .

It turns out that we now have in hand exactly the necessary and sufficient conditions for a Lie polynomial
[p, q] to appear in the process we have described above: (a) p < q; (b) if q = [r, s] is compound, then r ≤ p.
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As we shall see, these conditiosn characterize a very important set of Lie polynomis. Among other things, it
will turn out that such polynomials are distinguished by their words, so the ambiguity in order does not in

fact matter. This process, in other words, has a certain magical quality—we seem to get more out of it than

we can reasonably expect.

The conditions (a) and (b) are those which, when applied recursively, characterize the basis elements of

LX called Hall monomials (with respect to dictionary order). And the process described above then does
implement PBW with respect to that basis and that order. In defining Hall monomials precisely in the

next section, we shall place ourselves in a somewhat more general situation. A number of pleasant things

will happen, though—not only shall we find explicit bases for LX , but we shall also find several practical
algorithms for dealing with them. One useful fact is that in the final reduction process, which is not very

different from the one described here, it will be admissible to invert any pair in decreasing order, not

necessarily just the first one occurring. The final expression will therefore be independent of exactly what
order inversions are done. This will be a second example of confluence, which we have seen before in the

proof of PBW.

6. Hall sets—definitions

A Hall set in MX is a set H of monomials in a magma together with a linear order on H satisfying certain

conditions. The first is on the order alone:

(1) for ⌊p, q⌋ in H , p < ⌊p, q⌋.
An order satisfying this condition is called a Hall order . The other conditions are recursive:

(2) the set X is contained in H ;

(3) the monomial ⌊p, q⌋ is in H if and only if both (a) p and q are both in H with p < q; and (b) either (i) q
lies in X or (ii) q = ⌊r, s⌋ and r ≤ p.

I. e. p is sandwiched in between r and q. With a given X and even a given order on X , there are many, many

different Hall sets, because there are many possibilities for Hall orders. The elements of a Hall set are often
called Hall monomials , but occasionally Hall trees to emphasize their structure as graphs. A Hall tree has

the recursive property that the descendants of any node of a Hall tree make up a Hall tree. By induction, the
conditions on Hall trees can be put more succinctly as the conditions

h∗0 < h∗1, h∗0 < h∗

for any compound node h∗ of h, and
h∗10 ≤ h∗0

when h∗1 is also compound.

In reading the literature, one should be aware that there are many variant definitions of Hall sets, mainly
corresponding to a reversal of orders. Instead of the condition (3) that p < ⌊p, q⌋, the original definition of

[Hall:1950] imposed on the order the stronger condition that if |p| < |q| then p < q. This is also the one

found in [Serre:1965]. The definition here is less restrictive than that of Hall, and is usefully more flexible.
For long time after Hall’s original paper there was some confusion as to exactly what properties of a Hall set

were necessary. Although different orders produce distinct Hall sets, all of them give rise to good bases of
LX . The situation was made much clearer when J. Michel and X. G. Viennot independently realized that the

condition p < ⌊p, q⌋was sufficient for all practical purposes, and [Viennot:1978] showed that in the presence

of (2) it was also necessary.

Much of my exposition is taken from [Reutenauer:1993], but my conventions a bit are different from his.

There are in fact several different valid conventions. At the end of Chapter 4 of Reutenauer’s book is an
illuminating short discussion of all of the ones in use, as well as a short account of the somewhat intricate

history. Incidentally, the paper first explicitly defining a Hall set is the one by Marshall Hall, but the idea

originated in [Hall:1934], which is by the English group theorist Philip Hall. His article is about commutators
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in p­groups and at first glance has nothing to do with Lie algebras. It was [Magnus:1937] who brought them
in. The book [Serre:1965] explains nicely the close connection between free Lie algebras and free groups.

The definition suggests how to construct Hall sets, at least as many Hall monomials as one wants. One

starts with the set X as well as an order on it, then proceeds from one degree to the next. To find all Hall
monomials of order n given those of smaller order one adds first all ⌊p, x⌋with p < x of order n− 1; then for

each compound q = ⌊r, s⌋ of order k < n one adds all the ⌊p, q⌋ with p of order n − k such that r ≤ p < q.
Finally, one inserts the newly generated monomials of degree n into an ordering, maintaining the condition

that p < ⌊p, q⌋. As we’ll see later, a rough estimate of |Hn| is dn/n if |X | = d, a number that grows rapidly.

The order is a non­trivial part of the definition. All that’s needed is a strict linear order on H itself. This is

often an order induced from an order, not necessarily strict, on all of MX . The order on MX is usually taken

also to be a Hall order. But it is possible to construct a Hall set and choose an order dynamically, as Serre’s
book does. In this process, assign an arbitrary order to the new monomials of degree n as they are found,

and then specify that p < q if |p| < |q| = n. This is conceptually simple if not very satisfying. Other ways

to proceed depend on results to be proven later on. The words composed of elements of X can be ordered
lexicographically , that is to say by dictionary order. If p and q are words then p < q if either (a) p is an initial

word of q or (b) the first letter of p different from the corresponding letter of q is less than it. Thus if x < y

x < xx < xxxy < xxy < y < yx .

We’ll see later that Hall monomials are uniquely determined by their words. This means that one possible

linear order on a Hall set is the lexicographic order on their words. With this choice, here is a list of all Hall

words for the set X = {x, y} up to order 5 (with x < y):

H1: x, y

H2: ⌊x, y⌋
H3: ⌊x, ⌊x, y⌋⌋, ⌊⌊x, y⌋, y⌋
H4: ⌊x, ⌊x, ⌊x, y⌋⌋⌋, ⌊⌊x, ⌊x, y⌋⌋, y⌋, ⌊⌊⌊x, y⌋, y⌋, y⌋,
H5: ⌊x, ⌊x, ⌊x, ⌊x, y⌋⌋⌋⌋, ⌊⌊x, ⌊x, ⌊x, y⌋⌋⌋, y⌋, ⌊⌊x, ⌊x, y⌋⌋, ⌊x, y⌋⌋

⌊⌊⌊x, ⌊x, y⌋⌋, y⌋, y⌋, ⌊⌊x, y⌋, ⌊⌊x, y⌋, y⌋⌋, ⌊⌊⌊⌊x, y⌋, y⌋, y⌋, y⌋

These can be pictured:

x y

x y

x

x y x y

y



Free Lie algebras 13

x

x

x y

y

x y

y

x

x y

y

x

x

x

x y

x y

x y

y x

x y

x y

y

y

x

x y

y

y

x y

y

y

x

x

yx

The principal result about Hall sets—and indeed their raison d’etre—is that the image of a Hall set inLX is a
basis. We’ll see eventually a constructive proof, as well as an algorithm for calculating Lie brackets in terms

of this basis.

7. Admissible sequences

The words associated to Hall monomials are called Hall words . Of course going from a tree to its word loses

a lot of structure, and it is therefore somewhat satisfying that, as we shall see shortly, the map from Hall

monomials to their words is injective. Is there a good way to tell if a givenword is a Hall word? How can one
reconstruct a Hall tree from its word? Answering these will involve a closer examination of the algorithm I

exhibited earlier for making PBW explicit.

That answer is in terms of admissible sequence and transformations of them called packing and unpacking .

An admissible sequence of Hall monomials is a sequence

h1, h2, . . . , hn (hi ∈ H)

with the property that for each k we have either (a) hk lies in X or (b) hk is compound and hk,0 ≤ hi for all
i < k.

The following is elementary:

7.1. Lemma. Any sequence of elements ofX is an admissible sequence, and any weakly decreasing sequence
of Hall monomials is admissible.
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Any segment of an admissible sequence is also admissible. Adding a tail of elements in X to an admissible
sequence always produces an admissible sequence.

7.2. Lemma. If we are given an admissible sequence with hi ≥ hk for i < k but hk < hk+1 then the sequence
we get from it by replacing the pair hk, hk+1 by the single monomial ⌊hk, hk+1⌋ is also admissible.

The proof is straightforward.

In general, if hi is an admissible sequence and replacing a pair hk, hk+1 by the new monomial ⌊hk, hk+1⌋ is
still an admissible sequence of Hall monomials, I say the new one is obtained from the old one by packing .

If σ is the original sequence and τ the new one, I write σ → τ . If τ is obtained from σ by zero or more such

replacements, I write σ
∗→ τ . According to the Lemma, the only admissible sequences that cannot be packed

are the weakly decreasing ones. As an example, here is how to pack xxyxy:

x ≥ x < y x y

x < ⌊x, y⌋ x y

⌊x, ⌊x, y⌋⌋ ≥ x < y

⌊x, ⌊x, y⌋⌋ < ⌊x, y⌋
⌊⌊x, ⌊x, y⌋⌋, ⌊x, y⌋⌋

packs the sequencexxyxy into a single Hall monomial. Packing does not require an initial weakly decreasing

segment, however, and there might be more than one way to pack an admissible sequence.

Unpacking is the reverse process, which replaces a monomial ⌊ha, hb⌋ by the pair ha, hb if the result is

admissible. The following Lemma asserts that this is always possible unless the sequence consists only of

elements of X .

7.3. Lemma. Suppose τ to be an admissible sequence of Hall monomials. If hk is the compound monomial
in the sequence furthest to its right, then the sequence σ we get by unpacking hk to hk,0, hk,1 is again
admissible.

Thus σ → τ . As a consequence, any admissible sequence of Hall monomials, and in particular any weakly
decreasing sequence, can be completely unpacked to a sequence of elements of X . If we pack a word and

then unpack it, we get the original word back again because it is theword corresponding to the concatenation

of the trees. What is not so obvious is that every complete chain of packing operations starting from the
same word always gives the same final result. In other words, what we know at the moment is that any

sequence of letters in X packs to a weakly decreasing sequence of Hall monomials, and conversely any

weakly decreasing sequence of Hall monomials unpacks to a sequence of letters. What we want to know
now is that the sequence of words determines the sequence of Hall monomials. This will follow from:

7.4. Lemma. (Packing confluence) If ρ
∗→ σ1 and ρ

∗→ σ2 then there exists τ with σ1
∗→ τ and σ2

∗→ τ .

Proof. As earlier, where I referred to the diamond diagram, this reduces to the simplest case where ρ → σ1

and ρ → σ2. Suppose the first packs hi, hi+1 and the second hj , hj+1. We may assume i < j. Then

necessarily i + 1 < j and we may pack both pairs simultaneously into an admissible sequence τ which both
σ1 and σ2 pack into.

Consequently:

7.5. Proposition. Every word in X can be expressed uniquely as a concatenation of Hall words associated to
a weakly decreasing sequence of Hall monomials.

This is very closely related to the PBW reduction process applied to U(LX). But it also leads to the following

important result, which is a special case where we start with the word of a Hall tree:

7.6. Corollary. Packing is a bijection between words of length n and weakly decreasing sequences of Hall
monomials of total degree n.
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It might be useful to have a list of the assignments for length 3:

xxx: xxx

xxy: [x, [x, y]]

xyx: [x, y]x

xyy: [[x, y], y]

yxx: yxx

yxy: y[x, y]

yyx: yyx

yyy: yyy

7.7. Corollary. The map from H to the set of words in X that takes h to ω(h) is injective.

8. Hall words for lexicographic order

One consequence of Corollary 7.7 is the claim made earlier, that lexicographic order defines a strict order

on Hall monomials. It certainly satisfies the condition that p < ⌊p, q⌋, and now we know that if p 6= q then
either p < q or q < p. A lexicographic Hall word is a word associated to a Hall monomial in a Hall set

defined with respect to lexicographic order. These are also called Lyndon words . Given any Hall set, the
packing algorithm described earlier will tell us whether a word is a Hall word associated to it. Lexicographic

Hall words possess a simple if surprising characterization in terms of the words alone. It is useful in manual

computations, and also of theoretical importance.

LetW be the set of all words w which are lexicographically less than their proper tails. Thus w is inW if and

only if w < v whenever w = uv is a factorization with u 6= ∅. In particular X ⊂ W .

8.1. Theorem. A string w is a lexicographic Hall word if and only if it lies inW .

It is a worthwhile exercise to check that the words associated to the Hall monomials of length at most 5,
which I have exhibited earlier, are all inW . For example, xxyxy is inW since

xxyxy < xyxy

< yxy

< xy

< y .

Proof. We need two lemmas. The first is straightforward.

8.2. Lemma. If u < v are two words with u less than v in lexicographic order, then wu < wv for all words w.
If u is not a prefix of v, then so is uw < vw.

8.3. Lemma. If x < y are inW , so is xy. Conversely, suppose w = uv lies inW , with v least among its proper
tails. Then both u and v are inW and u < v.

Proof. Let z = xy with both x, y in W , and suppose z = uv to be a proper factorization. It is to be shown

that z < v.

Suppose ℓ(u) < ℓ(x). Then there exists a proper factorization x = uu∗. Since z = uu∗y, we must have

v = u∗y. Since x is inW , x < u∗. Since x is not a prefix of u∗, we conclude that z = xy < u∗y = v.

Suppose ℓ(u) = ℓ(x). Then in fact u = x and v = y. By assumption, x < y. If x is not a prefix of y then

z = xy < y also, since x and y, hence also z and y, differ in the first character where they are not equal. If x
is a prefix of y, say y = xy∗. Since y is inW , y < y∗ and then also xy < xy∗.
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Finally, suppose ℓ(u) > ℓ(x). Then u = xu∗, y = u∗v are proper factorizations. But then y < v, and by the
previous case z < y, so z < v. This concludes the proof of the first half of the Lemma.

Now suppose that w lies inW . Let w = uv with v the least among the proper right factors of w. I must show

that u and v are both inW and that u < v. That v lies inW is an immediate consequence of its specification.

We now want to show that u is inW . Suppose u = u∗v∗, and suppose u > v∗. (a) If v∗ is not a prefix of u, it
follows that w = uv > v∗v, contradicting that w lies inW . (b) If v∗ is a prefix of u, say u = v∗u∗∗, then since
u is in W we have u = v∗u∗∗v < v∗v. This implies that u∗∗v < v, contradicting the choice of v. So u < v∗
and u lies inW .

Since uv < v and uv is not a prefix of v, there exists k ≤ |v| such that (uv)i = vi for i < k but (uv)k < vk. If

k > |u| then u is a prefix of v; otherwise (uv)k = uk < vk. In either case u < v. (This argument shows that

u < v for any factorization w = uv of w inW .)

Now for the proof of Theorem 8.1. It is nowan easy induction to see thatω(p) lies inW for all Hallmonomials.

If |p| = 1 this is trivial. If p = ⌊q, r⌋ then ω(p) = ω(q)ω(r) and ω(p) is inW by induction and Lemma 8.3.

So now suppose that w lies inW . I am going to explain how to find explicitly a Hall monomial whose word

is w.

Step 1. If |w| = 1, return w itself, an element of X .

Step 2. Otherwise, according to Lemma 8.3 there exists at least one proper factorization w = uv with u < v
and both u and v inW . Choose such a factorization with |v|minimal.

Step 3. By recursion, u = ω(p) and v = ω(q) for Hall monomials p, q. If |q| = 1 then ⌊p, q⌋ is a Hall
monomial, and its word isw. Otherwise q = ⌊q0, q1⌋with q0 < q1 both Hall monomials. If q0 ≤ p then ⌊p, q⌋
is a Hall monomial.

Step 4. Otherwise p < q0. In this case ω(p) and ω(q0) lie inW , so by Lemma 8.3 so is the product ω(p)ω(q0).
Since q1 is a Hall monomial, so is ω(q1) inW . Since w∗ is a prefix ofw, we know that w∗ < w. By assumption

w < ω(q1), so p∗ < q1. Since |q1| < |q| = |v|, this contradicts the choice of v as of minimal length.

For w inW , a factorization w = uv with u, v also inW is called a Lyndon factorization . Such factorizations

are not necessarily unique. For example, if ⌊p, q⌋ is a lexicographic Hall monomial for X = {x, y}, then
⌊⌊p, q⌋, z⌋ is one for {x, y, z}. But the Lyndon word ω(p)ω(q)z has Lyndon factorizations

(ω(p)ω(q)) z and ω(p)(ω(q) z) .

It is the first that gives originates from aHall monomial, in agreement with the argument just presented sincz
is shorter than ω(q) z.

8.4. Proposition. If u v and v w are non­empty lexicographic Hall words then so is u v w.

Proof. Since uv and vw are Hall words,

u < uv < v < vw < w .

From here, it is straightforward to see that uvw lies inW .

If we start with a Hall monomial f in
⊗

•RX and write out its full tensor expansion, we get a linera

combination of tensor monomials. All are of the same degree, equal to |f |. There is an obvious bijection

between tensor products and words.

8.5. Proposition. In the tensor expansion of a Hall monomial f , the least term is that associated to ω(f).

Proof. Follows from the reduction algorithm in
⊗

•RX that I carried out just after the proof of PBW.

Thus
[x, [x, y]] = x ⊗ x ⊗ y − 2x ⊗ y ⊗ x + y ⊗ x ⊗ x

[[x, y], y] = x ⊗ y ⊗ y − 2y ⊗ x ⊗ y + y ⊗ y ⊗ x .
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9. Bracket computations

Let H be the image of H in LX . We are on our way to proving that H is a basis of LX . One important

step is to show that the Z­linear combinations of elements of H are closed under the bracket operation, or
equivalently that if p and q are in H then [p, q] is a Z­linear combination of elements in H. We shall in fact

prove a stronger version of this claim suitable for a recursive proof.

9.1. Proposition. If p and q are in H then [p, q] is a Z­linear combination of terms [r, s] inH with |r| + |s| =
|p| + |q| and r ≥ inf(p, q).

The monomials in the sum are necessarily compound, since |p| + |q| > 1. The proof will be the basis of an
explicit and practical algorithm.

Proof. By recursion on the set Σ of pairs (p, q) with p and q in H . This set Σ will be assigned a weak order:

(r, s) ≺ (p, q) means that either (a) |r|+ |s| < |p|+ |q| or (b) |r|+ |s| = |p|+ |q| but inf(r, s) > inf(p, q).

Induction on (Σ,≺) is permissible, since the number of pairs less than a given one is finite.

Step 1. The minimal pairs in Σ are the (x, y) with x, y in X . If x < y the monomial ⌊x, y⌋ is in H ; for (x, x)
the bracket [x, x] = 0; and for x > y we have [x, y] = −[y, x] with yx in H . So for these minimal elements of

Σ the Proposition is true.

Step 2. Suppose now given (p, q) with |p| + |q| > 2. If p > q we may replace it by −[q, p]. If p = q then

[p, q] = 0. So we may assume p < q, hence

inf(p, q) = p .

Step 3. If q is in X , then ⌊p, q⌋ is in H . Since p ≥ p we are done.

Step 4. So we are reduced to the case q is compound, say q = ⌊q0, q1⌋. If q0 ≤ p then ⌊p, q⌋ itself is in H , and

we are again done.

Step 5. Otherwise, we find ourselves with
p < q0 < q1 ,

with all three in H . This is the interesting situation. By Jacobi’s identity

[p, [q0, q1]] = [[p, q0], q1] + [q0, [p, q1]] .

By recursion, since |p| + |q0| < |p| + |q|, we can write

[p, q0] =
∑

nr,s[r, s], r ≥ p = inf(p, q0), |r| + |s| = |p| + |q0| .

Each term in the sum is necessarily of degree > 1, hence compound. But then

[[p, q0], q1] =
∑

nr,s[[r, s], q1] .

Here |[r, s]| + |q1| = |p| + |q| but—because of the Michel­Viennot condition—

⌊r, s⌋ > r ≥ p, q1 > p

so that
inf(⌊r, s⌋, q1) > inf(p, q) = p

and we can again apply induction to get

[[r, s], q1] =
∑

nr∗,s∗
[r∗, s∗], r∗ ≥ inf(⌊r, s⌋, q1) > p
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so we’re done with the term [[p, q0], q1].

Dealing with [q0, [p, q1]] is similar.

This proof is almost identical to the one in [Serre:1965], but he imposes, as I have already mentioned, a
stronger condition on the ordering of Hall sets.

Sample calculation. Impose lexicographic order on Hall monomials. The monomial Y = [[x, y], [[x, y], y]] is
a Hall monomial. How can we express

[x, Y ] = [x, [[x, y], [[x, y], y]]] ?

as a sum of Hall monomials? This bracket is not itself a Hall monomial. So we apply the Jacobi identity to

get

[x, [[x, y], [[x, y], y]]] = (a) [[x, [x, y]], [[x, y], y]] + (b) [[x, y], (c) [x, [[x, y], y]]]

(a) [[x, [x, y]], [[x, y], y]] = [[[x, [x, y]], [x, y]], y] + [[x, y], [[x, [x, y]], y]]

= [[[x, [x, y]], [x, y]], y] − [[[x, [x, y]], y], [x, y]]

(c) [x, [[x, y], y]] = [[x, [x, y]], y] + [[x, y], [x, y]]

= [[x, [x, y]], y]

(b) [[x, y], [x, [[x, y], y]]] = [[x, y], [[x, [x, y]], y]]

= −[[x, [[x, y], y]], [x, y]]

[x, [[x, y], [[x, y], y]]] = [[[x, [x, y]], [x, y]], y] − 2 [[[x, [x, y]], y], [x, y]] .

We can now finally prove

9.2. Theorem. A Hall set is a basis of U(LX).

Proof. The previous result shows that a Hall set contains X and linear combinations are closed under
bracket operations. So it spans LX . But Corollary 7.6 shows that the elements of a Hall set remain linearly

independent when embedded in
⊗

•

RX , hence certainly in LX .

We know that
⊗

•RX is U(LX) and we now know that H is a basis of LX . We therefore also know by PBW

that every element of
⊗

•

RX may be expressed as a linear combination of a product of weakly decreasing

product of elements of Hall monomials. I have explained very briefly how to find such an expression in a
special case, but let me recapitulate.

We start with x1⊗ . . .⊗xn. At any step in this computationwe are considering a tensor product p1⊗ . . .⊗pm

of Hall monomials. We scan from left to right, If p1 ≥ . . . ≥ pm then there is nothing to be done. Otherwise,

we shall have p1 ≥ . . . ≥ pk < pk+1 for some k. We replace this by

p1 ⊗ . . . ⊗ pk+1 ⊗ pk ⊗ . . . ⊗ pm + p1 ⊗ . . . ⊗ [pk, pk+1] ⊗ . . . ⊗ pm

According to Lemma 7.2, the sequence of monomials in each term is admissible, and in particular each one
of the pi is a Hall monomial.
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10. Dynkin, Friedrichs, Specht, and Wever

Howdo we tell whether a given element of
⊗

•

V is a Lie polynomial? There are two useful characterizations

of the subspace LX embedded in
⊗

•

RX .

FIRST CHARACTERIZATION. This is due to [Friedrichs:1953].

Assume here that g is an arbitrary Lie algebra. The direct sum of two Lie algebras is defined so that the two
summands commute. It is therefore easy to see:

10.1. Proposition. If g = h ⊕ k then the map x ⊕ y 7→ x ⊗ 1 + 1 ⊗ y induces an isomorphism

U(g) ∼= U(h) ⊗ U(k) .

The diagonal map ∆: g → g ⊕ g induces a ring homomorphism

∆: U(g) −→ U(g) ⊗ U(g) .

A primitive element of U(g) is an x such that

∆(x) = x ⊗ 1 + 1 ⊗ x .

10.2. Proposition. The image of g in U(g) is exactly the set of primitive elements.

Proof. It is clear that ∆x = x ⊗ 1 + 1 ⊗ x for x in g.

For the converse, suppose at first that g is abelian, say of dimension r. The universal enveloping algebra
U may be identified with the polynomial algebra in r variables xi, the algebra U ⊗ U with the polynomial

algebra in 2r variables xi, yi. The diagonal embedding takes xi to xi + yi and P (xi) to P (xi + yi). Thus

P (x) ⊗ 1 may be identified with P (xi) and 1 ⊗ P (x) may be identified with P (yi) and a primitive element
is a polynomial P with P (xi + yi) = P (xi) + P (yi). So the following Lemma concludes this case:

10.3. Lemma. Suppose P is a polynomial such that P (x + y) = P (x) + P (y) identically. Then P (x) = ax
for some constant a.

Proof. This is elementary, but I’ll still give details. If P is any polynomial, recall the difference functions
[∆kP ](n) defined by recursion

∆0P = P, [∆kP ](n) = [∆k−1P ](n + 1) − [∆k−1P ](n) .

The degree of ∆kP is k less than that of P , and if P =
∑

pix
i has degree n then ∆nP = n!cn. In our case,

P (n) = nP (1), so ∆kP = 0 for k > 1. This implies that P must have degree at most one. Since P (0) = 0 it
is linear.

The general case reduces to the abelian case by looking at the graded enveloping algebras.

SECOND CHARACTERIZATION. This is due independently and almost simultaneously to [Dynkin:1947],

[Specht:1948], and [Wever:1947].

It amounts to an extremely explicit idempotent projection Ω from
⊗

•

RX to Q ⊗ LX . Define it inductively

by the specifications

Ω(1) = 0

Ω(x) = x

Ω(x ⊗ p) = [x, Ω(p)] .
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For example, Ω takes

x1 7−→ x1

x1 ⊗ x2 7−→ [x1, x2]

x1 ⊗ x2 ⊗ x3 7−→ [x1, [x2, x3]]

x1 ⊗ x2 ⊗ x3 ⊗ x4 7−→ [x1, [x2, [x3, x4]]]

. . .

I’ll call an element of LX in the same form as one of these a right-normal element. The formal definition is
by induction: (a) x is right­normal if x is in X ; (b) [x, p] is right­normal if p is.

10.4. Lemma. The space LX is spanned by right­normal elements.

In other words, the map Ω is surjective.

Proof. It must be shown that if p, q are monomials in LX then [p, q] can be expressed as a linear combination
of right­normal elements. The proof goes by induction on the degree of p.

• If p = x has degree one, then [x, y] is right­normal, and if q is right­normal then so is [x, q]. So one may

apply induction on the degree of q.

The induction assumption now is that [p, q] is a sum of right­normal elements if p and q are Lie polynomials,

with the degree of p less than n.

• Say p has degree n. We may assume p = [p1, p2] in which the degree of each pi is less than n. But by

Jacobi’s identity
[p, q] = [[p1, p2], q] = −[[p2, q], p1] − [[q, p1], p2] .

To which we may apply induction.

Because
⊗

•

RX may be identified with U(LX), the map x 7→ adx may be extended uniquely to a ring

homomorphism θ from
⊗

•

RX to End(LX):

x1 ⊗ . . . ⊗ xn 7−→ adx1
. . . adxn

.

The following is the characteristic property of Ω:

10.5. Lemma. For x in
⊗

•RX and y in LX

Ω(x ⊗ y) = θ(x)Ω(y) .

Proof. This may be proved by induction on the degree of x, but for y in right­normal form it is an immediate

consequence of the definition of Ω. Apply the Lemma.

10.6. Theorem. Suppose p to be an element of
⊗n RX . Then it is a Lie polynomial if and only if Ω(p) = np.

Proof. There are many proofs in the literature, of varying illumination. I follow the treatment in §4.8 of
[Serre:1965].

Proof of Theorem 10.6. If Ω(x) = nx, then nx lies in LX since all of the image lies in LX . But LX is free in⊗
•RX , so x also lie in LX .

Now to show that if x lies in L
(n)
X then Ω(x) = nx. We may assume that x = [p, q] with degrees of p, q equal

to m, n − m less than n. But then by the Lemma, since θ(x) extends adx:

Ω([p, q]) = Ω(pq − qp) = θ(p)Ω(q) − θ(q)Ω(p)

= mθ(p)q − (n − m)θ(q)p

= m[p, q] − (n − m)[q, p] = n[p, q] .
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11. Baker, Campbell, Hausdorff, and Dynkin

We can extend LX (the copy of LX in the tensor algebra) to a formal power series ring, by completing the

tensor algebra with respect to terms of degree greater than 0. Let m be the ideal of such terms, and m̂ be its

completion . In this context, an infinite series makes sense. For example, if x lies in m then the inverse of
1 +x is 1−x + x2 − x3 + x4 − · · ·. We are dealing here with associative but non­commutative formal power

series.

We can define series exp and log in the natural way:

exp(x) = 1 + x +
x2

2!
+ · · ·

log(1 + x) = x − x2

2
+

x3

3
− · · ·

for x in m. They are inverse to each other as formal series, so are inverse here, too, and induce isomorphisms:

m̂ ∼= 1 + m̂ .

Formal multiplication of series makes a group out of the right and side:

(1+a1+a2+a3+ · · · )(1+b1+b2+b3+ · · · ) =
(
1+(a1+b1)+(a2+a1b1+b2)+(a3+a2b1+a1b2)+b3) · · ·

)

since the k­term lies in m̂k. The rough idea of the next result is that the structure of this group depends in a

natural way entirely on the structure of the Lie algebra LX
∼= LX . When R = R the formal series defined

here correspond to convergent series, and this result has as consequence that the local structure of a Lie group
depends only on the structure of its Lie algebra.

Let X = {x, y}. Define z in the tensor product algebra
⊗

•

RX of RX by the formula

z = log
(
exey

)
.

Explicitly, we have

exey =

(
1 + x +

x2

2
+

x3

3!
+ · · ·

)(
1 + y +

y2

2
+

y3

3!
+ · · ·

)
=

∞∑

p,q=0

xpyq

p! q!
.

and then

log
(
exey

)
=
∑

r=1

(−1)r+1

r

(
∞∑

p+q≥1

xpyq

p! q!

)r

=
∑

m

∑

p+q≥1

(−1)m+1

m

xp1yq1 . . . xpmyqm

p1! q1! . . . pm! qm!
.

The first few terms in the expansion of z can be found without too much trouble:

x + y

1

2
[x, y]

1

12

(
[x, [x, y]] + [y, [y, x]]

)

This suggests:

11.1. Proposition. The series z = log
(
exp(x) exp(y)

)
lies in the Lie algebra L̂X .
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That is to say, its homogeneous terms are Lie polynomials.

Proof. We apply Proposition 10.2, after first proving:

11.2. Lemma. The exponential map is an isomorphism of primitive z in m̂ with z in 1 + m̂ such that
∆(z) = ∆(z) ⊗ ∆(z).

It has to be shown only that z is primitive in the tensor algebra. But we can see easily that

∆(ez) = e∆(z) = ez⊗1+1⊗z = ez ⊗ ez .

It would be nice to have an algorithmic proof of Proposition 11.1, one that at least outlined an algorithm to

show explicitly the chain of steps implicitly involved in the theorem. The proof in [Knapp:2002] comes close.

There is an explicit expression for z, first found rather late in the history of the subject—in [Dynkin:1947]—

although it is implicit in earlier work of Baker. It is on the one hand not as important as Lemma 11.2, but on
the other it is not so difficult to prove once the first half is known, and rather satisfying.

11.3. Theorem. For x and y in g set

log(exey) =
∑

Hn

where Hn is the term of homogeneous degree n. Then

Hn =
1

n

∑

p+q=n

(
H(1)

p,q + H(2)
p,q

)

where

H(1)
p,q =

∑ (−1)m+1

m

adp1

x . . . adpm

x (y)

p1!q1! . . . pm!
with the sum over p1 + · · · pm = p

q1 + · · · + qm−1 = q − 1

pi + qi ≥ 1
pm ≥ 1

H(2)
p,q =

∑ (−1)m+1

m

adp1

x . . . adqm−1

x (x)

p1!q1! . . . qm−1!
with the sum over p1 + · · · pm−1 = p − 1

q1 + · · · + qm−1 = q

pi + qi ≥ 1

(, , pi + qi ≥ 1)

Proof. Show that each term is the projection under Ω of the term in the explicit series.
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