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LetG = GL2(C), let σ be the standard representation ofG on C2, and let σk be the irreducible representation
of G on the space Vk = Sk(C2), which is of dimension k + 1. Thus σ = σ1. The representation σk is the dual

of that on polynomials of degree k on C2.

Let Sm
k be the corresponding representation on the space Sm(Vk) of symmetric tensors of degree m. It has

dimension

(

m + k

k

)

, since specifying a monomial of degree m in k + 1 variables amounts to choosing the

location of k separators in an array of length m + k. It is easy to verify that it is irreducible if and only if

m ≤ 1 or k ≤ 1. The following question, in various forms, was asked already in the nineteenth century:

What is the decomposition of Sm
k into irreducible components?

If k = 1 these representations are the σm. The answer for k = 2 is straightforward to come up with, as we

shall seemomentarily. In general, there are several answers, compatiblewith each other but eachwith its own
charm. First of all, there is a simple—I should say, deceptively simple—formula for the decomposition that

first appeared in [Cauchy:1843]. For him it amounted to an exercise in calculating the Taylor series of a certain

rational function that occurred naturally in the theory of partitions. This formula is excellent for computation
in any one case, but there is not much structure to it. In this paper, there will be several stages in laying

out other solutions. First I’ll recall results of [Sturmfels:1995] relevant to decomposing symmetric powers
of irreducible representations of arbitrary reductive groups. Next I’ll discuss how this applies to the group

GL2, including some examples. Then I’ll prove Cauchy’s formula and work out some of its consequences.

After that, I’ll recall some results due to the nineteeth century mathematicians Cayley and Sylvester in the
theory of denumerants, and conclude the main part of the paper with a statement and proof of the main

theorem and some of its consequences. I have added on an appendix describing the naive way to calculate

denumerants, just to demystify the topic somewhat.

My originalmotive in taking this topic up arose from some remarks in [Langlands:2013], inwhich he suggests

there might be some eventual applications to the theory of automorphic forms. Some information about this
can be found in [Casselman:2017], the last sections of which present an initial state of some material found

here. Ideally, this would lead to an interpretation of some of the more peculiar features of the decomposition

of the Sm
k in terms of modules over Hecke algebras. But I’ll not discuss this topic in this paper, because there

are still some important unanswered questions.

As far as I know, there is no comprehensive generalization of these formulas to reductive groups other than
GL2, although there is some evidence that one exists. Considering that much of what I’ll say in this paper

is classical and elementary, I can perhaps justify this note only by expressing my hope that it will lead to a

better understanding of the general case. Computer computations regarding this are suggestive, but I’ll say
nothing about that in this paper.

The decomposition of the representations Sm
3 , agreeing with Theorem 2.4 in this paper, is given in Theorem♥ [sigma3-delta]

1.3 of [Hahn et al.:2017]. There is also a partial result about Sm
4 in their Theorem 3.4. Their methods and even

their formulations are very different from mine.

I began writing this paper at an AIM workshop in December, 2015 at which some related questions were

raised. More stimulus came at a short workshop at the Institute in Princeton in September, 2016. I am grateful

to both institutions for their hospitality.
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1. Symmetric powers [GL2-symm.tex]

The decomposition of symmetric powers of representations is part of the theory of vector partitions. The
most relevant result in this subject can be found in [Sturmfels:1995], which I recall.

Suppose A to be a k × ℓ matrix with nonnegative integral entries. Let Ai be its ith column. It will do no
harm to assume that the lattice spanned by these columns is the same as Zk . Then A defines a map from

Nℓ to Nk, taking (xi) to Ax =
∑ℓ

i=1xiAi. I assume also A has no null columns. The associated partition

function on Nk is
ϕA(u) =

∣

∣

{

v ∈ Nℓ
∣

∣Av = u
}∣

∣ .

Under my assumptions, this will always be finite. The rational generating function of ϕA can be found easily,

and is well known:

1.1. Lemma. (Molien’s formula) We have[moliens]

1
∏ℓ

i=1(1 − qAi)
=
∑

Nk
ϕA(u)qu .

Here I use multiindices, so if u = (ui) then qu = qu1

1 . . . quk

k .

Example. Suppose

(1.2) A = [ 1 1 1 . . . 1 ] .[all-ones]

Then ϕA(m) is the number of lattice points in the simplex

{

(xi)
∣

∣

∣
xi ≥ 0,

∑

xi = m
}

.

This is the same as the number of monomials
∏ℓ

i=1u
mi

i of degree m, which is equal to

(

m + ℓ − 1

ℓ − 1

)

. The

generating function is
1

(1 − q)ℓ
(q = x1) .

Example. If

(1.3) A =

[

1 1 1 . . . 1
0 1 2 . . . k

]

[matA]

the generating function is

1

(1 − t)(1 − qt)(1 − q2t) . . . (1 − qkt)
(t = x1, q = x2) .

We’ll see this example again later on.

The matrix A determines a partition of the real cone CA spanned by its columns. A subset I of columns of
A is called non-degenerate if the real cone CI spanned by the columns in I has nonempty interior. Call a
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subset I of [1, ℓ] basic if it is nondegenerate and of minimal size k. In this case, CI is a simplicial cone. A
chamber in Rk is the closure of a connected component of the complement of the boundaries of the cones CI

for I basic. It is a real cone, and the intersection of all CI containing it.

For one example, if A is (1.2) then the only chamber is all of [0,∞). For another, if A is the matrix in (1.3)♥ [all-ones]♥ [matA]

then the chambers are the bands

Cj =
{

(m, i)
∣

∣mj ≤ i ≤ m(j + 1)
}

(0 ≤ j ≤ k − 1).

One naturally asks,

what sort of a function is ϕA?

Suppose f to be a function on a latticeL ⊂ Rk It is said to be a quasi-polynomial function if there existsN > 0
with the property that the restriction of f to every congruence class {λ + NL} is a polynomial function. A
function on L is periodic if it factors through some L/NL. If µN is the group of N th roots of unity and ζ
is in Hom(L, µN ) then the function λ 7→ ζλ is periodic, and Fourier analysis on L/NL tells us that every

function of period L/NL is a linear combination of these. This notation is motivated by the observation that
if L = Zk then Hom(L, µN ) is in bijection with (µN )k, and the corresponding map takes

(ni) 7−→
∏

ζni

i .

Any function ζλf(λ) with f a polynomial is quasipolynomial.

1.4. Lemma. Suppose f to be a function on the lattice L. The following are equivalent:[quasi-poly-ell]

(a) the function f is quasipolynomial;
(b) it is the sum of products of periodic functions and polynomials;
(c) it is the sum of functions ζλg(λ) in which g is a polynomial.

Proof. Proof left as exercise.

Also left as exercise:

1.5. Lemma. If f is quasipolynomial on L then:[qp-props]

(a) so is f(λ − µ) for any µ in L;
(b) so is the restriction of f to any subgroup of L;
(c) the function f can be expressed uniquely as

f(λ) = f1(λ) +
∑

ζ 6=1
ζλfζ(λ), ,

with each fµ a polynomial;
(d) the function f is completely determined by its restriction to the intersection of L with any open cone.

The function f1 in (c) is called the polynomial part of f , the complement the congruence part .

The following is a very weak version of the main result of [Sturmfels:1995], but it will suffice for my needs.

1.6. Theorem. (Sturmfels) The restriction of ϕA to every chamber C is quasipolynomial.[sturmfels]

The proof applies the algebraic geometry of toric varieties.

There is a simple geometric interpretation of the polynomial part of ϕA—it represents the volume of the

inverse images with respect to ϕA in CA. This is also related to the distribution of lattice points, as is
illustrated easily in the first example above, since

(

m + ℓ − 1

ℓ − 1

)

∼
mℓ−1

(ℓ − 1)!
,

which is the volume of a real simplex with ℓ vertices.
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For example, suppose

A =

[

1 1 1
0 1 2

]

.

The map takes

(x1, x2, x3) 7−→ (x1 + x2 + x3, x2 + 2x3) .

In this case there are two chambers in R2, one where 0 ≤ n ≤ m and the other where m ≤ n ≤ 2m. The

following figure shows the plane where x1 + x2 + x3 = m, and illustrates that the inverse image of (m, n) is
a line.

(m, 0, 0) (0,m, 0)

(0, 0,m)

n = 0

n = 2m

m = 10

gl2-images/new-slice-0.eps

It is easy enough to deduce that

ϕA(m, n) =

{

(n/2 + 1) − (n/2 − ⌊n/2⌋) if 0 ≤ n ≤ m
(m − n/2 + 1) − (n/2 − ⌊n/2⌋) m ≤ n ≤ 2m.

Here the polynomial and the congruence parts are indicated by grouping. Note that n/2 − ⌊n/2⌋ = 0 if n is

even, 1/2 if n is odd, in accordance with Theorem 1.6.♥ [sturmfels]
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What does this have to do with representation theory? From now on in this section, let

G = arbitrary complex reductive group

T = diagonal matrices

N = upper trianglar unipotent matrices

B = Borel subgroup

= TN

W = associated Weyl group.

Recall that X∗(T ) is the lattice of algebraic homomorphisms from Gm to T , X∗(T ) that of algebraic homo
morphisms from T to Gm. Let

L = Hom(X∗(T ), Z) .

There is a map from L to X∗(T ), taking λ to the multiplicative character eλ such that

eλ(µ∨(x)) = x〈λ,µ∨〉

for all µ∨ in X∗(T ). It is an isomorphism, and usually the two are identified, but I wish to use additive
notation for L and multiplicative for X∗(T ). Thus eλ+µ = eλeµ.

Let
∆ = simple roots in L

L∆ = lattice spanned by ∆

L+
∆ = cone spanned by ∆

Λ = dominant weights .

For λ in Λ, let π = πλ be the irreducible representation of G with highest weight λ, say of dimension d, and
let (ei) be a basis of weight vectors with respect to T , say with weight εi. Then εi will lie in λ− L+

∆ and also

in the convex hull of the W orbit of λ. So we may write εi = λ − λi, with λi in L+
∆. Normally, λi will be

expressed as a linear combination of the eα for α in ∆.

The weight vectors of the symmetric power Sm(π) are then the

em1

1 . . . emd

d

with
∑

mi = m. The corresponding weight will be

(1.7) mλ −
∑

i
miλi .[wt-sm]

The multiplicity of the weight mλ − µ in Sm(π) is therefore

ωλ(m, µ) =
∣

∣

∣

{

(mi) ∈ Nd
∣

∣

∣

∑

mi = m,
∑

miλi = µ
}∣

∣

∣

In other words, expressing each λi as a linear combination of α in ∆:

1.8. Lemma. If π = πλ and[sturmfels-wts]

A =

[

1 1 . . . 1
λ1 λ2 . . . λd

]

then ϕA(m, µ) is the multiplicity of mλ − µ in Sm(π).

Sturmfels’ theorem therefore says that the functions ωλ will be quasipolynomial on certain chambers. I have

not attempted to figure out what these are for arbitrary reductive groups, but as we shall see it is easy to
specify exactly what they are for GL2.
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In possible applications to the representation theory of padic reductive groups and automorphic forms, the
partitions of Sturmfels are presumably related to the geometry of certain monoids defined by Vinberg.

The function ωλ is intimately related to the irreducible decomposition of Sm
λ . I’ll express this in notation

convenient later on.

I define the weight polynomial of σ = Sm(π) to be

ωσ =
∑

mmλ−µeµ

if mν is the multiplicity of ν in Sm(π). It is of the form emλP where P is a polynomial in the variables eα for
α in ∆. This polynomial can be immediately derived from Sturmfels’ function ϕA(m, µ).

I define the decomposition polynomial to be

δσ =
∑

µ
cmλ−µeµ

if Sm(π) =
∑

cmλ−µπmλ−µ.

Let ρ be onehalf the sum of positive roots. Thus ρ − wρ is always a nonnegative sum of simple roots.

1.9. Lemma. In these circumstances, let[botts-mult]

δSm(π) =
(

∑

W

(−1)ℓ(w)eρ−wρ
)

ωSm(π) .

Then δSm(π) is the same as δSm(π) truncated outside Λ.

Proof. This is an immediate consequence of one of the standard forms of Weyl’s character formula.

Example. Let G = GL2. There is one simple multiplicative root α. If

g =

[

p 0

0 q

]

then its trace on σk is

pk + pk−1q + · · · + qk = pk
(

1 + (p/q)−1 + · · · + (p/q)−k
)

so the weight polynomial of σk is

1 + α−1 + · · · + α−k =
1 − α−(k+1)

1 − α−1
.

From now on G will always be GL2. What does Sturmfels’ result say in this case? Recall that Sm
k is

the representation on Sm(σk). We want to find a formula for the decomposition of Sm
k into irreducible

representations, following the path suggested by Theorem 1.6 and Lemma 1.9.♥ [sturmfels]♥ [botts-mult]

Fix the vectors

u =

[

1
0

]

, v =

[

0
1

]

,

and again let

g =

[

p 0

0 q

]

.

Thus
gu = pu, gv = qv .
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The eigenvectors of σk(g) are the symmetric tensors ek,i = uk−ivi with 0 ≤ i ≤ k, with eigenvalues pk−iqi.

1.10. Lemma. All irreducible constituents of Sm
k are of the form σkm−2i ·deti with 0 ≤ i ≤ km/2.[irredecomp]

Proof. This is an immediate consequence of an earlier remark about more general G. But the argument is
perhaps worth making explicit. The eigenvectors of Sm

k are the em
k = em0

k,0 . . . emk

k,k with (mi) in the region

Σk
m =

{

(mi) ∈ Nk+1
∣

∣

∣

∑

mi = m
}

.

This is the set of lattice points in the convex hull of its vertices (0, . . . , m, . . . , 0). The eigenvalue of em
k is

pkm−µqµ with

µ =
∑k

i=0
i ·mi .

These eigenvalues are all of the form paqb with (a, b) on the line segment from (km, 0) to (0, km), which
implies the Lemma.

In particular, the matrix

[

p 0

0 q

]

with p = q acts on Sm(σk) as scalar multiplication by pkm.

Let

γ =

[

1 0

0 q

]

.

Thus
γu = u, γv = qv .

Since
[

p 0

0 q

]

=

[

p 0
0 p

] [

1 0
0 q/p

]

,

a representation of GL2 on which scalars act by a single scalar multiplication is determined by the action of

γ. In particular, the irreducible representations of GL2 are of the form σk ·detℓ, and the representation of γ
in this is a direct sum of onedimensional eigenspaces on which γ acts by qℓ+i for 0 ≤ i ≤ k.

I have already defined the weight polynomial of any finitedimensional representation π of GL2(C), This is
the same as the trace of π(γ). For example, as we have already seen, the weight polynomial of σk is

1 + q + · · · + qk =
1 − qk+1

1 − q
,

and more generally that of σk ·detℓ is qℓ(1 − qk+1)/(1 − q).

Let

ωm
k = the weight polynomial of Sm

k .

Express

Sm
k =

∑⌊km/2⌋

i=0
µi σkm−2i

in accordance with Lemma 1.10. The decomposition polynomial δ
m

k may be identified with
∑

µiq
i, which♥ [irredecomp]

has degree at most ⌊km/2⌋. It might not be clear at first why this should be a polynomial in the same variable
as that in ωm

k . However, as Lemma 1.9 tells us, there is a very simple relationship between the two. For GL2,♥ [botts-mult]

this is simply expressed:

1.11. Lemma. The decomposition polynomial of Sm
k is the truncation of the polynomial δm

k = (1 − q)ωm
k at[gl2-decomp]

terms beyond those of degree ⌊km/2⌋.

If S =
∑

ciq
i then (1 − q)S =

∑

(ci − ci−1)q
i (taking c−1 = 0), so that in effect the sequence defining δ is

the first difference of that defining ω.
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Proof. If

Sm
k =

∑⌊km/2⌋

i=0
µi σkm−2i ,

then

ωm
k =

1

1 − q
·
∑⌊km/2⌋

i=0
µi(q

i − qkm+1−i) ,

and

(1 − q)ωm
k =

∑⌊km/2⌋

i=0
µiq

i −
∑⌊km/2⌋

i=0
µiq

km+1−i .

But if i ≤ km/2 then km + 1 − i ≥ km/2 + 1, so all the negative terms are of degree more then ⌊km/2⌋.

Therefore, computing the weight polynomial and the decomposition polynomial are practically equivalent.

All these things fit in nicely with Sturmfels’ result. Because of •, the function ωm
k may be identified with ϕA if♠ [sm-wts]

we take

(1.12) A =

[

1 1 1 . . . 1
0 1 2 . . . k

]

[matA-bis]

The chambers in this case are the bands

mi ≤ n ≤ m(i + 1) (0 ≤ i ≤ k − 1)

and in any one of these the function ωk(m, n) must be a quasipolynomial. The main theorem will give us

an explicit expression for this. It will involve denumerants , and this will give us in turn the polynomial part
in Sturmfels’ theorem.

2. Early explorations [GL2-symm.tex]

The first interesting case of our problem is k = 2. It is not difficult:

2.1. Proposition. If σ = σ2 then[sigma2]

Sm(σ) = σ2m + σ2m−4 ·det2 + · · · +

{

σ0 ·detn if m = 2n
σ2 ·detn if m = 2n + 1.

In other words, the weight polynomial of Sm(σ2) is

1 + q + 2q2 + 2q3 + 3q4 + · · · + 2q2m−2 + q2m−1 + q2m .

Proof. The vectors e0 = u2, e1 = uv, e2 = v2 span the space S2(C2), with

σ(γ)ei = qiei .

The eigenvectors of Sm
2 (γ)are then the em0

0 em1

1 em2

2 with

0 ≤ mi, m0 + m1 + m2 = m .

The corresponding eigenvalue is µ = m1 + 2m2. Sort these partitions according to m1. For a fixed m1 these
correspond to partitions of m − m1.
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On the other hand, the eigenvalues of σ2m−2i ·deti are the k + i for 0 ≤ k ≤ 2m − 2i. They may be picked
off easily from the list. For example, consider S3(σ). The sorted list with eigenvalues is:

(3, 0, 0) : 0 (2, 1, 0) : 1 (1, 2, 0) : 2 (0, 3, 0) : 3
(2, 0, 1) : 2 (1, 1, 1) : 3 (0, 2, 1) : 4
(1, 0, 2) : 4 (0, 1, 2) : 5
(0, 0, 3) : 6

From these we can extract first the segment (0, 1, 2, 3, 4, 5, 6) which are the eigenvalues of σ6, and then the
segment (2, 3, 4) which are the eigenvalues of σ2 ·det2.

This result can be interpreted geometrically in a way that should illuminate what happens in higher dimen
sions where a picture can be difficult if not impossible. The eigenvectors of Sm(σ2) are in bijection with the

set of lattice points

Σm =
{

(mi) ∈ N3
∣

∣

∣

∑

mi = m
}

on certain twodimensional slices of the positive octant. The eigenvalue of (mi) is µ = m1 +2m2, and points
of equal eigenvalue are hence subsets ofΣm on a line. Here is a typical picture, of the slice x0 +x1 +x2 = 10,
in which the lines are the level lines of m1 + 2m2 = µ for eigenvalues µ = 0 to 20:

(m, 0, 0) (0,m, 0)

(0, 0,m)

µ = 0

µ = 2m

m = 10

gl2-images/slice-10.eps

As the figure illustrates, and as I have already mentioned, the eigenvalues µ of γ on the slice
∑

mi = m fall
naturally into two ranges, [0, m] and [m, 2m]. On each, the multiplicity is approximately a linear function of

µ, in the sense that the difference between it and some linear function is bounded.

The decompositions of the Sm
k with k ≥ 3 is more interesting. I’ll begin by telling how to compute them.

Molien’s formula suggests a method to compute the weight multiplicities of the representations Sm(π) for
any representation π. In general, it comes down to computing the expansion of 1/P (t) for a polynomial

P (t), in which case it yields a recursive formula for the mth coefficient of the series. Let P (t) =
∑d

i=0 pit
i

with p0 = 1, and let 1/P (t) = S(t) =
∑

msmtm. Since P (t)S(t) = 1:

(2.2)

s0 = 1

s1 = −p1

s2 = −(p2 + p1s1)

. . .

sd = −(pd + pd−1s1 + · · · + p1sd−1)

sm= −(pdsm−d + pd−1sm−d+1 + · · · + p1sm−1) (m > d) .[srecurse]

For GL2 there is a special version of this. The denominator with A = σk(γ) is

det(I − σk(γ)t) = (1 − t)(1 − qt) . . . (1 − qkt) = det(I − σk−1(γ)t) · (1 − qkt) ,
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so we recover a product formula. If ωm
k = trace Sm

k (γ), then:

(

∑

m
ωm

k tm
)

(

1 − qkt
)

=
(

∑

m
ωm

k−1t
m
)

,

We have initial conditions ωm
0 = 1, ω 0

k = 1, and directly from the equation above ωm
k−1 = ωm

k − qkωm−1
k ,

leading to a recursion:

(2.3) ωm
k = ωm

k−1 + qkωm−1
k .[tau-recursion]

Both these methods work well when one wants, as we shall want, to compute a large initial sequence of the

decomposition polynomials δ
m

k .

To get a rough idea of how things go, we can look at σ3. The results are best exhibited graphically. For small

values of m, things look a bit too random to be instructive, so I’ll look at a range involving larger m:

i = 0 10 20 30 40 50 60 70 80 90 100

Multiplicities of σ3m−i in S27(σ3) j = 0

new-python/delta-27.eps

i = 0 10 20 30 40 50 60 70 80 90 100

Multiplicities of σ3m−i in S28(σ3) j = 0

new-python/delta-28.eps

i = 0 10 20 30 40 50 60 70 80 90 100

Multiplicities of σ3m−i in S29(σ3) j = 0

new-python/delta-29.eps

i = 0 10 20 30 40 50 60 70 80 90 100

Multiplicities of σ3m−i in S30(σ3) j = 0

new-python/delta-30.eps

i = 0 10 20 30 40 50 60 70 80 90 100

Multiplicities of σ3m−i in S31(σ3) j = 0

new-python/delta-31.eps

i = 0 10 20 30 40 50 60 70 80 90 100

Multiplicities of σ3m−i in S32(σ3) j = 0

new-python/delta-32.eps
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For example, we can read off from this that for m ≫ 0

δm
3 = 1 + q2 + q3 + q4 + q5 + 2q6 + · · ·

which is to say that

Sm(σ3) = σ3m + σ3m−4 + σ3m−6 + · · ·

We shall see in a moment the significance of the dotted vertical line. Very roughly, it denotes where the
component is onedimensional.

As the figures show, with the help of shading, there is a definite pattern to the multiplicity of σ3m−2i in
Sm

3 . The simplest feature is what occurs in the range 0 ≤ i ≤ m (black shading). Here, the multiplicity is

approximately equal to i/6, and the discrepancy is periodic with period 6. Beyond i = m, things are slightly

more complicated. If j = ⌊3m/2⌋ − i, the multiplicity is approximately j/3. Both these approximations are
indicated in the figures by lighter shading. Roughly speaking, the multiplicities behave uniformly in bands

of length m. But the figures also suggest something precise. Define the arrays

A = [1, 0, 1, 1, 1, 1]

B = [0, 1, 1]

C = [1, 0, 1, 0, 1, 0]

D = [0, 1, 0, 1, 0, 1]

2.4. Theorem. Let µi be the multiplicity of σ3m−2i in Sm
3 . If i > m, let j = ⌊3m/2⌋ − i. Then[sigma3-delta]

µi =











⌊i/6⌋+ Ai mod 6 if i ≤ m
⌊j/3⌋+Bj mod 3 if i > m and m ≡ 1 (2)
⌊j/3⌋+ Cj mod 6 if i > m and m ≡ 0 (4)
⌊j/3⌋+ Dj mod 6 if i > m and m ≡ 2 (4)

There is one curious very curious feature that is worthwhile pointing out. We have two formulas, each valid

in a different range. It is a consequence of Sturmfels’ theory that both formulas are valid for the boundary
case i = m. The diagrams illustrate this by dual colouring. More remarkably, the two formulas agree at
i = m − 1. I am not aware of any theory that accounts for this, nor whether it is a general phenomenon.◦〈〈?〉〉

Basically, this formula is a consequence of some classical formulas due to the nineteenth century mathemati

cians Cauchy, Cayley, and Sylvester! I’ll explain this later on, when I’ll have much more to say about this

matter.

The piecewise approximate linearity might have been predicted for geometric reasons. The eigenvectors

of Sm
3 (γ) are the em0

0 em1

1 em2

2 em3

3 with mi ≥ 0,
∑

mi = m, and the corresponding eigenweight is µ =
m1 + 2m2 + 3m3. The range of eigenvalues is [0, 3m], and as with the case k = 2 this range breaks up

into pieces—here [0, m], [m, 2m], [2m, 3m]—on each of which things behave uniformly. The point is that the
inverse images of these ranges are the regions in between slices of the tetrahedron through its vertices, and

inside these regions the inverse images are shapes that are geometrically alike.

Pictures can be instructive. The region
∑3

i=0xi = m (xi ≥ 0) is a regular threedimensional tetrahedron
with 4 vertices. We want to know what the intersection of this tetrahedron with the hyperplane

∑

i xi = c
looks like. It will be a twodimensional polygon. For 0 < c ≤ m or 2m ≤ c < 3m it will be a triangle, and

all of these in one range will be similar. In the middle range m < c < 2m it will be a quadrilateral. These
quadrilaterals will not be similar, but they are are roughly alike in appearance.◦〈〈µ = ℓ/m?〉〉
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µ = 0.3 µ = 0.6 µ = 0.9

µ = 1.2 µ = 1.5 µ = 1.8

µ = 2.1 µ = 2.4 µ = 2.7

Inside each range the area Aµ of the slice is a quadratic function of the parameter µ. For m large, the number

of lattice points is approximately proportional to this area, so the coefficients of ωm
3 will also be approximately

quadratic, and those of δm
3 approximately linear.

There is in fact a simple formula for the area of each slice, and hence an approximate formula for the number

of lattice points in it. This formula can best be understood by looking more closely at the slices, which I’ll do
now, with a little decoration. In the following figures, triangles which look like they might be congruent are

in fact congruent.
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µ = 0.4 µ = 1.4 µ = 2.4

To interpret this figure, you should know that regions that look as though they might be congruent are in fact
congruent.

The conclusion is that the configuration at one value of µ is closely related to that for µ − 1. I’ll exhibit the
precise relationship in a moment, but first I have to explain a certain normalization. There is no obvious

canonical metric involved here, but I choose themeasure of volumes so that the volumeof the full tetrahedron
is 1, and the area Aµ in such a way that

∫ 3

0

Aµ dµ = 1 .

We are now led to the formula

(2.5) area of slice µ =



























µ2

2
if µ < 1

µ2

2
− 3

(µ − 1)2

2
if 1 ≤ µ < 2

µ2

2
− 3

(µ − 1)2

2
+ 3

(µ − 2)2

2
if 2 ≤ µ < 3.

[slice-area]

The formula for 0 ≤ µ ≤ 1 is a matter of elementary geometry, and fixes the normalization. From that, the
others are suggested by the figures above. The apparent connection with Pascal’s triangle is significant.

As we’ll see later, something similar occurs in higher dimensions.

3. The classical formula [GL2-symm.tex]

Molien’s formula may be applied to the weight polynomial, setting A = σk(γ). It tells us that

1

det(I − σk(γ)t)
=

1

(1 − t)(1 − qt) . . . (1 − qkt)
=
∑

m
ωm

k (q) · tm .

The recursive rule (2.3) is so simple that it should not be too surprising that there is a simple formula for ωm
k .♥ [tau-recursion]

For any n ≥ 0 define

[n]q = 1 + q + · · · + qn−1 =
qn − 1

q − 1
.
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If we set q = 1 then [n]q becomes n, and [n]q is known as the qanalogue of the function f(n) = n. As we
have seen, the weight polynomial of σk is [k + 1]q.

The qanalogue of the factorial function is now naturally defined to be

[n]!q = [1]q · [2]q . . . [n]q .

These are easy to compute inductively.

The qanalogue of the binomial coefficient is

[

n

m

]

q

=











[n]!q
[m]!q[n − m]!q

if 0 ≤ m ≤ n

0 otherwise.

This is also
[n]q . . . [n − m + 1]q

[m]!q
(0 ≤ m ≤ n) .

It is symmetric in m and n − m:
[

n

m

]

q

=

[

n

n − m

]

q

.

Special cases are
[

n

0

]

q

= 1 (n ≥ 0) and

[

n

1

]

q

= [n]q (n ≥ 1) .

These all fit into a qanalogue of Pascal’s triangle:

n m = 0 m = 1 m = 2 . . .
0 : 1
1 : 1 1
2 : 1 1 + q 1
3 : 1 1 + q + q2 1 + q + q2 1
4 : 1 1 + q + q2 + q3 1 + q + 2q2 + q3 + q4 . . . 1
5 : 1 1 + q + q2 + q3 + q4 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6 . . . . . . 1

. . .

This illustrates the following, which is easily verified:

3.1. Proposition. For n ≥ 1[qchoose]
[

n

m

]

q

=

[

n − 1

m − 1

]

q

+ qm

[

n − 1

m

]

q

.

Which is to say that, as in Pascal’s triangle, the expression at (n, m) is a simple linear combination of those

at (n − 1, m) and (n − 1, m− 1). This can be combined with the evaluation of the first row:

[

0

m

]

q

=

{

1 if m = 0
0 otherwise,

to recover by induction:

3.2. Corollary. The function

[

n

m

]

q

is a polynomial in q.
[cor1]
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This not at all immediately apparent from the definition, just as it is not immediately apparent that

(

n

m

)

is

an integer.

What’s the point? From now on, for 0 ≤ m ≤ n let

λm
n = the weight polynomial of

∧m
(σn−1) ,

and assuming the convention that λ0
n = 1 for all n ≥ 0. The first few are:

n m = 0 m = 1 m = 2 . . .
0 : 1
1 : 1 q
2 : 1 1 + q q
3 : 1 1 + q + q2 q + q2 + q3

4 : 1 1 + q + q2 + q3 q + q2 + 2q3 + q4 + q5 . . . 1

A comparison with the table of values of

[

n

m

]

q

suggests:

3.3. Proposition. For 0 ≤ m ≤ n,[exterior]

λm
n = qm(m−1)/2

[

n

m

]

q

.

This is consistent with the fact that since the dimension of σn−1 is n, the dimension of
∧m

(σn−1) is

(

n

m

)

.

Proof. This is clear for n = 0 and 1 by direct calculation, and it is trivally true for m = 0 and m = n. So
suppose n ≥ 2, 1 ≤ m ≤ n − 1.

Let the ei for 0 ≤ i ≤ n − 1 be an eigenbasis of σn−1 with respect to γ, and suppose the eigenvalue of ek to
be qk.

For an ordered subset I = {ij} of size |I| = p with 0 ≤ i1 < . . . < ip ≤ n − 1 let eI = ei1 ∧ . . . ∧ eip
. The

eigenvalue of eI is qi1+···+ip−1 . The eI with |I| = m form a basis of
∧m(σn−1).

The natural thing to do is partition these into the eI ∧ en−1 with I ⊆ [0, n− 2] of size m− 1 and the eI with
I ⊆ [0, n − 2], |I| = m. This causes some problems, however. Instead, partition these I into those with

i1 = 0 and the rest. This gives us, after some elementary shifts,

λm
n = qm−1λm−1

n−1 + qmλm
n−1 .

Temporarily, set

ℓm
n = qm(m−1)/2

[

n

m

]

q

.

If we multiply the earlier recursion formula Proposition 3.1 by qm(m−1)/2 we get♥ [qchoose]

ℓm
n = qm−1ℓm−1

n−1 + qmℓm
n−1 .

3.4. Theorem. The weight polynomial ωm
k of Sm

k is equal to[symmpk]

[

m + k

k

]

q

.
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This is consistent with the fact that the dimension of Sm(Ck+1) is

(

m + k

k

)

. It is perhaps well known,

although it seems to have been rediscovered often, and is sometimes formulated equivalently in terms of

Young diagrams. For example, it is Lemma 4.1.22 of [GoodmanWallach:2009], proved by an application of

Molien’s formula. It ought perhaps to be thought of as a generalization ofWeyl’s character formula, although
no generalization for other reductive groups seems to be known or even conjectured.

Proof. It suffices to prove that the polynomial λn
m is equal to the weight polynomial of Sm(σn−m) multiplied

by qm(m−1)/2.

There is a simple bijection of eigenvectors for γ in the two spaces
∧m

(σn−1) and Sm(σn−m). The ex
terior product ei1 ∧ . . . ∧ eim

with 0 ≤ i1 < i2 < . . . < im ≤ n − 1 maps to the symmetric product

ei1ei2−1 . . . eim−(m−1).

3.5. Corollary. The decomposition polynomial δ
m

k is the truncation of[decompsigmak]

δm
k =

(1 − qm+1)(1 − qm+2) . . . (1 − qm+k)

(1 − q2) . . . (1 − qk)

at terms of degree beyond ⌊km/2⌋.

Proof. From the Theorem and Lemma 1.11.♥ [gl2-decomp]

It is instructive to see what happens for Sm(σ2). Here

δm
2 =

(1 − qm+1)(1 − qm+2)

(1 − q2)
.

The denominator will divide one of the factors in the numerator, but which one it divides depends on the

parity of m. Taking this into account:

δm
2 =

{

(1 + q2 + · · · + q2n)(1 − qm+1) if m = 2n
(1 + q2 + · · · + q2n)(1 − qm+2) if m = 2n + 1

which agrees exactly with what we already know.

It should be apparent even from this simple case that the expansions of ωm
k and δm

k will generally depend

on congruence conditions, since the divisibility of terms in the numerator of

[

m + k

k

]

q

by terms in the

denominator will depend on them.

Let’s look now at Sm(σ3), and take up the proof of Theorem 2.4. I first recall the statement. Let µi be the♥ [sigma3-delta]

multiplicity of σ3m−2i in Sm
3 . If i > m, let j = ⌊3m/2⌋ − i. Then

µi =











⌊i/6⌋+ Ai mod 6 if i ≤ m
⌊j/3⌋+ Bj mod 3 if i > m and m ≡ 1 (2)
⌊j/3⌋+ Cj mod 6 if i > m and m ≡ 0 (4)
⌊j/3⌋+ Dj mod 6 if i > m and m ≡ 2 (4)

in which
A = [1, 0, 1, 1, 1, 1]

B = [0, 1, 1]

C = [1, 0, 1, 1, 2, 1]

D = [0, 1, 0, 2, 1, 2] .
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We know from Theorem 3.4 that◦♥ [symmpk]
〈〈why do denomi-

nators disappear?〉〉

δm
3 =

(1 − qm+1)(1 − qm+2)(1 − qm+3)

(1 − q2)(1 − q3)

=
1 − qm+1(1 + q + q2) + q2m+3(1 + q + q2) − q3m+6

(1 − q2)(1 − q3)

=
1

(1 − q2)(1 − q3)
− qm+1 ·

1 + q + q2

(1 − q2)(1 − q3)
+ q2m+3 ·

1 + q + q2

(1 − q2)(1 − q3)
− q3m+6 ·

1

(1 − q2)(1 − q3)

=
1

(1 − q2)(1 − q3)
− qm+1 ·

1 + q + q2

(1 − q2)(1 − q3)
+ O(q2m+3)

Luckily we are only interested in the range between 0 and ⌊3m/2⌋], so we can ignore the last term. But even

more luckily, we can write the first two terms as

1

(1 − q2)(1 − q3)
− qm+1 ·

(1 − q3)/(1 − q)

(1 − q2)(1 − q3)
=

1

(1 − q2)(1 − q3)
− qm+1 ·

1

(1 − q)(1 − q2)
.

We must now evaluate the series for the rational functions

1

(1 − q2)(1 − q3)
,

1

(1 − q)(1 − q2)
.

But this is simple. The recursion formulas (2.2) give us♥ [srecurse]

1

(1 − q2)(1 − q3)
=
∑

aiq
i
(

ai = ⌊i/6⌋+ Ai mod 6

)

,

and
1

(1 − q)(1 − q2)
=
∑

biq
i
(

bi = ⌊i/2⌋+ 1
)

.

I leave it as an exercise to verify that the formula we now have in hand agrees with that of Theorem 2.4.♥ [sigma3-delta]

This remarkable trick is actually generally valid, and leads to a very useful expansion of the formula for the

trace and decomposition polynomials. We know from Theorem 3.4 that♥ [symmpk]

ωm
k =

(1 − qm+1)(1 − qm+2) . . . (1 − qm+k)

(1 − q)(1 − q2) . . . (1 − qk)
.

Expanding the product in the numerator, we see by Proposition 3.3 that it becomes♥ [exterior]

1 − qm+1(1 + q + · · · + qk−1) + q2m+2
(

∑

0≤i<j≤k−1
qi+j

)

− · · ·

=
∑

i≤k
(−1)iqmi+iλi

k

=
∑

i≤k
(−1)iqmi+i(i+1)/2 ·

(1 − qk)(1 − qk−1) . . . (1 − qk−i+1)

(1 − q)(1 − q2) . . . (1 − qi)
.

This leads to a succinct formula for ωm
k :

3.6. Proposition. We have[tauelegant]

ωm
k =

1

(1 − q) . . . (1 − qk)
·

(

∑

i≤k
(−1)iqmi+i(i+1)/2 ·

[

k

i

]

q

)

.
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This is surprisingly elegant, but there are other useful ways to write it. For one thing, a great deal of
cancellation in the coefficient takes place—the basic fact is that the coefficient of qmi+i(i+1)/2 simplifies to

1

(1 − q)(1 − q2) . . . (1 − qi) · (1 − q)(1 − q2) . . . (1 − qk−i)
.

There is evident symmetry with respect to the interchange of i with k − i.

The most straightforward result is this:

3.7. Corollary. We have[taukm]

ωm
k =

∑

i≤k
(−1)iqmi+i(i+1)/2 ·Ck,i

with

Ck,i =



























































1

(1 − q) . . . (1 − qk)
if i = 0

1

(1 − q)2(1 − q2)2 . . . (1 − qi)2(1 − qi+1) . . . (1 − qk−i)
0 < i < k/2

1

(1 − q)2(1 − q2)2 . . . (1 − qi)2
i = k/2

1

(1 − q)2(1 − q2)2 . . . (1 − qk−i)2(1 − qk−i+1) . . . (1 − qi)
k/2 < i < k

1

(1 − q) . . . (1 − qk)
i = k.

I should point out right now that there is something peculiar about this formula. The qterm of highest

degree is qkm+k(k+1)/2 , whereas we know that ωm
k is a polynomial of degree km. We’ll see later several other

manifestations of a similar problem.

In any case, what we really want to know is, what are the qexpansions of these rational functions? This

problem, as I suggested in the opening paragraphs, is classical, with valuable solutions known already to
Cayley and Sylvester.

4. Denumerants [GL2-symm.tex]

Suppose a = (a0, a1, . . . , ak−1) to be a sequence of positive integers. For each nonnegative n, define

Da(n) =
{

(ni) ∈ Nk
∣

∣

∣

∑

niai = n
}

.

The function Da is called (I think first by James Joseph Sylvester) the denumerant function associated to a. It
is related to the problems we have seen, because of the following, which is easy to prove (and is also a special
case of Molien’s formula).

4.1. Lemma. For any a[denumerants-basic]

1

(1 − qa0) . . . (1 − qak−1)
=
∑

Da(n)qn .

Corollary 3.7 can now be formulated in terms of denumerants. Let ωm
k (n) be the coefficient of qn in the♥ [taukm]

expansion of ωm
k . For 0 ≤ i ≤ k define mi = mi + i(i + 1)/2, and let

(4.2) αi =



















(1, . . . , k) if i = 0
(1, 1, . . . , i, i, i + 1, . . . , k − i) 0 < i < k/2
(1, 1, . . . , i, i) i = k/2
(1, 1, . . . , k − i, k − i, k − i + 1, . . . , i) k/2 < i < k
(1, . . . , k) i = k[alphas]



Symmetric power decompositions for GL(2) (10:51 a.m. July 16, 2018) 19

Here Da(n) is taken to be 0 if n < 0. I recall that mi = mi + i(i + 1)/2. Then Corollary 3.7 asserts that♥ [taukm]

(4.3) ωm
k (n) =

i
∑

j=0

(−1)jDαj (n − mj) if mi ≤ n < mi+1 .
[taukmn]

This tells us that computing ωm
k (n) reduces to computing denumerants. What can we say about the function

Da(n) on N?

One simple observation is that in investigating a denumerantDa, one may as well assume that the ai have no
nontrivial common divisor, because if they have the common divisor d onemay consider insteadDa/d(n/d).
This might motivate the next discussion.

QUASI-POLYNOMIALS IN 1D. A function f on Z or N is a quasipolynomial if there exists N > 0 such that

its restriction to each congruence class k + (N) is a polynomial function. That is to say, for each k there is a
polynomial function fk(n) such that

f(k + n) = fk(n)

if n lies in the ideal (N).

Let ζN = e2πi/N .

4.4. Proposition. Suppose f to be a function on N. The following are equivalent:[qpiff]

(a) the function f is quasipolynomial;
(b) there exists a polynomial P (n) and a polynomial Q(q) of degree < N such that

∑

n=0

f(n)qn = Q(q)
∑

n=0

P (n)qnN ;

(c) there exists N > 0 and for each k in [0, N − 1] a unique polynomial function ϕk such that

f(n) =

N−1
∑

k=0

ζkn
N ϕk(n) .

In effect, the expression in (c) assigns a polynomial ϕω to every N th root of unity ω = ζk
N .

Proof. This a special case of Lemma 1.4, but I’ll prove it anyway. The equivalence of (a) and (b) is immediate.♥ [quasi-poly-ell]

The requirement on the degree of Q is necessary.

To prove that (a) implies (c), let χk be the characteristic function of k + (N). If ζ = ζN then

χk(n) =
1

N

(

N−1
∑

a=0

ζa(n−k)
)

.

Then on the one hand

f(n) =

N−1
∑

k=0

χk(n)f(n)

but on the other χkf = χkfk, so that

f(n) =
1

N

N−1
∑

k=0

N−1
∑

ℓ=0

ζℓ(n−k)fk(n)

=
1

N

N−1
∑

ℓ=0

ζnℓ
N−1
∑

k=0

ζ−kℓfk(n)

=

N−1
∑

ℓ=0

ζnℓϕℓ(n) .
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in which

(4.5) . ϕℓ(n) =
1

N

N−1
∑

k=0

ζ−kℓfk(n)
[varphiqp]

Note that this may be solved easily to recover the polynomials fk.

To see that (c) implies (a), it needs to be shown that if f has an expression as in (c) its restriction to k + (N)
agrees with a polynomial. But

f(a + Nn) =

N−1
∑

k=0

ζkaϕk(a + Nn)

and for each fixed a this is a linear combination of the shifted polynomialsϕk(a+Nn), which are polynomial

functions of n.

DENUMERANTS. The basic results about denumerants originated in the nineteenth century, although they

seem to have been rediscovered often since then.

4.6. Theorem. (Cayley) Every denumerant function Da(n) is quasipolynomial. More precisely, let D be the[denumqp]

set of all d dividing some ai. For each d inD let nd be the number of ai divisible by d. Then for each primitive
dth root of unity ζ there exists a polynomial ϕζ of degree nd − 1 such that

Da(n) =
∑

k

ζknϕζ(n) .

Proof. One can find a partial fraction decomposition

Da =
∑

d∈D

∑

ζ

nd
∑

1

γζ,i

(1 − ζq)i
,

in which the inner sum is over all primitive roots of zd = 1, and the γζ,i are constants. It therefore suffices to

prove that the coefficients in the Taylor series of

1

(1 − ζq)k
,

in which ζd = 1, are determined by a quasipolynomial.

If we start with
1

1 − x
= 1 + x + x2 + x3 + · · ·

and differentiate successively, we see that

1

(1 − x)2
= 1 + 2x + 3x2 + 4x3 + · · ·

2

(1 − x)3
= 2 + (3.2)x + (4.3)x2 + (5.4)x3 + · · ·

3.2

(1 − x)4
= (3.2) + (4.3.2)x + (5.4.3)x2 + · · ·

. . .
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and in general:

(4.7)

1

(1 − x)n
=

1

(n − 1)!
·
∑

i=0

(i + 1) . . . (i + n − 1) ·xi

=
∑

i=0

(

n − 1 + i

n − 1

)

xi

=
∑

i=0

i[n−1]

(n − 1)!
·xi .

[pfm]

Here I write

x[ℓ] = (x + 1) . . . (x + ℓ) .

It is often convenient to write polynomials in what I call Newton form

∑n

ℓ=0
cℓ

x[ℓ]

ℓ!
.

One point is that any integralvalued polynomial can be expressed in this form with integral coefficients.

This is because
x[ℓ]

ℓ!
−

(x − 1)[ℓ]

ℓ!
=

x[ℓ−1]

(ℓ − 1)!
.

Such polynomials can be evaluated efficiently by Horner’s method, obtaining in succession constants Ci for
i = n to 0:

Cn = cn/n

Cn−1 = (Cn(x + n) + cn−1)/(n − 1)

Cn−2 = (Cn−1(x + n − 1) + cn−2)/(n − 2)

. . .

C0 = C1(x + 1) + c0 .

The drawback is that this involves rational arithmetic.

Conclude by setting x = ζq.

There is a large literature concerned with computing denumerants. The paper [Bell:1943] explains how to

calculate the restrictions to each congruence class without going through partial fractions. A more recent
example is [Baldoni et al.:2014]. It is not clear to me what the value of the sophisticated endeavours is. In

practice, only small values of k arise, and partial fraction decompositions seem to work well.

SYLVESTER’S FORMULA. There is one component of the expansion of a denumerant that is simply a

polynomial function, the part arising from the factor (1− q)n1 in the denominator. The procedure above will

find a formual for this polynomial, but will require a great deal of work to find it, and requiring cyclotomic
arithmetic. In fact there exists a remarkable formula for it, found originally by the nineteenth century

mathematician James Joseph Sylvester.

Recall that the Bernoulli numbers are defined by the Taylor series expansion

x

ex − 1
=
∑

i=0

Bi ·
xi

i!
.

4.8. Proposition. (Sylvester) The polynomial part ϕ1 is the polynomial[sylvesters]

Sa(n) =
1

a0 . . . ak−1
·
k−1
∑

i=0

(−1)ink−1−i

(k − 1 − i)!

(

∑

i0+···+ik−1=i

ai0
0 . . . a

ik−1

k−1

i0! . . . ik−1!
·Bi1 . . . Bik−1

)

.
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Note that the exponents of n are a decreasing sequence. An efficient derivation of this can be found in [Beck

et al.:2001]. [Bachmann:1910] also has a pleasant and leisurely treatment of this and other things relating

to denumerants. I am not aware that anyone has even conjectured a similar formula for the components
corresponding to nontrivial roots of unity, not even ζ = −1.

There is a geometric interpretation of the denumerant Da(n) as the number of lattice points in the simplex
in Nk spanned by the points (. . . , n/ai, . . .). A natural guess for a first estimate is hence the volume of that

simplex. This is in fact a consequence of Sylvester’s formula. for any a let

|a| = a0 . . . ak−1 .

4.9. Corollary. We have[dominant-term-syl]

Da(n) =
nk−1

(k − 1)! |a|
+ O(nk−2) .

5. The main theorem [GL2-symm.tex]

The expression (4.3) is promising, but it isn’t quite what we expect from Sturmfels’ theorem. It requires only♥ [taukmn]

modest modification, however.

5.1. Theorem. For mi ≤ n ≤ m(i + 1)[main-theorem]

ωm
k (n) =

∑i

j=0
(−1)jDαj

(

n − (mj + j(j + 1)/2)
)

.

Proof. From (4.3) and Lemma 1.5(d), in light of Sturmfels’ theorem.♥ [taukmn]♥ [qp-props]

As far as I can see, the most important consequence of this is an asymptotic estimate asm → ∞. By Corollary♥ [dominant-term-syl]

4.9, the dominant term of Dαj
(n) is

nk−1

(k − 1)!|αj |

and it is easy to see that
1

|αi|
=

(

k

i

)

·
1

|α0|
.

Now define

(5.2) Φk(x) =
1

(k − 1)!
·
∑j

i=0
(−1)i

(

k

i

)

(x − i)k−1 (j ≤ x < j + 1) .
[normvol]

Thus Φk has support in [0, k], Φ1 is the characteristic function of [0, 1], and Φ3 is what is exhibited in (2.5).♥ [slice-area]

5.3. Corollary. We have the asymptotic estimates[main-cor]

ωm
k (n)

mk−1/(k − 1)!
∼
∑

Φk(n/km)

δm
k (n)

mk−1/(k − 1)!
∼

1

km

∑

Φ′
k(n/km)

Proof. The first claim follows from the fact that a polynomial and one of its shifts share the same highest
degree terms. The claim about δm

k follows from Lemma 1.11.♥ [gl2-decomp]
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This has some intuitive significance. The function Φk(x) ought to be, and is, normalized volume of the slice
µ = x for σk . We have already seen this for k = 1, 2, 3. It is striking that there is another more familiar

interpretation of Φk.

5.4. Lemma. The function Φk is the same as the kfold convolution of Φ1.[normvolconv]

That is to say,Φk+1 = Φ1∗Φk. TheΦk are thsu the probability distributions for sums of uniformly distributed

random variables.

Proof. Define for the moment

[x] =

{

0 if x < 0
x if x ≥ 0.

Thus [x]0 is the Heaviside step function. In this notation, the function in (5.2) is♥ [normvol]

∑

i=0

(−1)i

(

k

i

)

·
[x − i]k−1

(k − 1)!
.

If k = 1, the Lemma is asserts that Φ1 = [x]0 − [x − 1]0. which is clearly true everywhere in R.

Now apply induction and the convenient equation

[x]0 ∗
[x − c]ℓ

ℓ!
=

[x − c]ℓ+1

(ℓ + 1)!
.

This implies at least that the integral of (5.2) is 1.♥ [normvol]

Convolutions seem to be ubiquitous in this theory, even for groups other than GL2. But that is a different

story.

6. Appendix. Computing denumerants [GL2-symm.tex]

In this section I’ll explain in detail an algorithm to find explicit formulas for the terms in the qseries of

(6.1) Da(q) =
1

(1 − qa0) . . . (1 − qak−1)[denumerant]

without doing cyclotomic arithmetic. The output will be a number of series

∑

j=0

Pd,s(j)q
dj+s

one for each divisor d of some ai and s in [0, d). The polynomial Pd,s will be expressed in Newton form. It

is the same as the sum of terms corresponding to the primitive droots of unity in the previous argument.

Step 1. The first step is to factor each (1 − qa) into a product of cyclotomic polynomials. There is one for

each divisor d of a. The cyclotomic polynomial Pd is the product
∏

(ζ − q) over all primitive roots ζ of order
d, and is of degree φ(d), the number of units in Z/d. It is irreducible in Q[q]. To compute it, for each d set

Πd =
∏

e|d
e6=d

Pe(q)

and apply the recursive formula

Pd(q) =

{

1 − q if d = 1
1 − qd

Πd
otherwise.
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I am not aware of a markedly better way to calculate Πd other than by traversing all divisors of d. In order
to do this, we need to produce for each divisor of a a list of its divisors, ordered compatibly with divisibility.

This is easy, given a prime factorization, because if n =
∏

pmi

i we can proceed through divisors of n in

lexicographic order. Thus the divisors of 12 = 22 ·3 would be listed as

1 : (0, 0)

2 = 21 : (1, 0)

4 = 22 : (2, 0)

3 = 31 : (0, 1)

6 = 2 ·3 : (1, 1)

12 = 22 ·3 : (2, 1) .

Thus, we can compute all the Pd and Πd for d|a, given a prime factorization of a, which gives us a list of
divisors of a along with a prime factorization of each of them.

My program uses a ‘divisor iterator’ for this.

Step 2. Let D be the set of all those d dividing some ai. It is probably best to use one dictionary of

factorizations for all the d in D, storing for each the polynomials Pd and Πd. The denominator of (6.1) may♥ [denumerant]

now be factored as
∏

d∈D

P nd

d with nd =
∣

∣

{

k
∣

∣ d | ak

}
∣

∣ .

Thus nd is the number of i such that Pd divides 1 − ai. In particular, n1 = k is the largest exponent. Store

the nd in a dictionary.

Step 3. Now set

Qd =
∏

e∈D
e6=d

Pne

e =

∏

(1 − qai)

Pnd

d

.

for each d in D.

These Qd have no common nonscalar divisor, so one can find polynomials Ad such that

∑

AdQd = 1 .

Dividing this by the denominator of (6.1), we deduce the partial fraction decomposition♥ [denumerant]

1

(1 − qa0) · · · (1 − qak−1)
=
∑

d

Ad

Pnd

d

.

The Ad are not unique, and the degree ofAd might well be larger than the degree nd φ(d) of the denominator,
but since the rational function vanishes as q → ∞ polynomial parts will cancel, and we may assume that in

fact the degree of Ad is less than nd φ(d). This can be done if necessary by replacing each Ad by its remainder
upon division by Pnd

d .

Step 4. One may then multiply both top and bottom of the term Ad/Pnd

d by Πnd

d to get it in the form

Bd(q)

(1 − qd)nd

with the degree of Bd less than that of the denominator.

Step 5. We are now reduced to several rational functions, one for each d in D, of the form

B(q)

(1 − qd)n
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in which the degree of B is less than nd. One may now successively divide by (1 − qd) to express

B =
∑n−1

i=0
Bi(1 − qd)i ,

with the degree of each Bi less than d, and express (6.1) as a sum of terms♥ [denumerant]

(6.2)
n−1
∑

i=0

Bi(q)

(1 − qd)n−i
.

[B-sum]

Step 6. Continue working with these terms one by one. We want to find an expression for (6.2) as a series in♥ [B-sum]

q. This will be a sum over congruence classes modulo d, and on each congruence class a polynomial function.

Write

Bi =
∑d−1

s=0
Bi,sq

s .

It suffices now to work with a single congruence class, so I may assume

Bi = Bi,sq
s .

Thus we are looking at
∑n−1

i=0

Bi,sq
s

(1 − qd)n−i
.

Apply (4.7):♥ [pfm]

1

(1 − qd)ℓ
=
∑

j=0

j[ℓ−1]

(ℓ − 1)!
·qdj

In the end, we get an expression in Newton form:

∑

j=0

(

∑n

i=1
Bn−i,s ·

j[i−1]

(i − 1)!

)

qdj+s .

The polynomial can also be written

Pd,s(j) =
∑n−1

i=0
Bi,s ·

j[n−1−i]

(n − 1 − i)!
.

The final series for Da is the sum of these, one for each divisor d and each congruence class s modulo d. The
coefficient of qm is

∑

d

Pd,sd
((m − sd)/d)

if m ≡ sd modulo d.

Example. Let a = (1, 2). Then

1

(1 − q)(1 − q2)
=

(3 − q)/4

(1 − q)2
+

1/4

1 + q

=
1/2

(1 − q)2
+

1/4

1 − q
+

1/4

1 + q

=
1

4
·

2

(1 − q)2
+

1

1 − q
+

1

1 + q

=
1

4
·
(

(2 + 4q + 6q2 + 8q3 + · · ·) + (1 + q + q2 + q3 + · · ·) + (1 − q + q2 − q3 + · · ·)
)

.



Symmetric power decompositions for GL(2) (10:51 a.m. July 16, 2018) 26

7. References [GL2-symm.tex]

1. Paul Bachmann, Niedere Zahlentheorie II. Additive Zahlentheorie , Teubner, 1910.

2. Velleda Baldoni, Nicole Berline, Brandon Dutra, Matthias Köppe, Michelle Vergne, and Jesus De Loera,
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