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The structure of GL(n)

The structure of arbitrary reductive groups over a p­adic field k is an intricate subject. But for GLn,

although things are still not trivial, results can be verified directly. and another is to make available at
least one example One reason for doing this is to motivate the abstract definitions to come, for which the

theory is not trivial and for which the abstract theory is not necessary.

An important role in representation theory is played by the linear transformations which just permute

the basis elements of a vector space, and I therefore begin this essay by discussing these as well as
permutations in general.

Next, I’ll look at the groups GLn(F ) and SLn(F ) for an arbitrary coefficient field F . This is principally

because at some point later on we shall want to make calculations in the finite group GLn(Fq) as well
as the p­adic group GLn(k). But also because procedures to deal with p­adic matrices are very similar to

those for matrices over arbitrary fields.

Then, in the third part of this essay I’ll let F = k and look at the extra structures that arise in GLn(k)
and SLn(k). Much of this is encoded in the geometry of the buildings attached to them, which will be

dealt with elsewhere. This part of the essay is much different from an earlier version, in which I grossly

over­simplified things.

In any n­dimensional vector space over a field F , let εi be the i­th basis element in the standard basis ε
of Fn. Its i­th coordinate is 1 and all others are 0.
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Part I. The symmetric group

1. Permutations

A permutation of a finite set I is just an invertible map from I to itself. The permutations of I form a

group SI , which will be written as Sn if I = [1, n].

There are several ways to express a permutation σ. One is just by writing the permuted array (σ(ιi)).
Another is as a list of cycles. For example, the permutation whose array is (3, 4, 5, 2, 1) is expressed as

(1 | 3 | 5)(2 | 4).

If σ is a permutation of I then its

I(σ) = {(i, j) | i < j, σ(i) > σ(j)} .

Let ℓ(σ) = |I(σ)|.

A pair in this set is called an inversion of σ. They can be read off directly from the permutation array of
σ—one first lists all

(
σ(1), σ(i)

)
with 1 < i and σ(1) > σ(i), then all similar pairs

(
σ(2), σ(i)

)
, etc.

Remark. This method of counting inversions requires n(n − 1)/2 comparisons, and is essentially the

well known bubble sort., which rearranges any array in increasing order But recursive merge sorting

(as explained in S5.2.4 of [Knuth:1973]) can compute the number of inversions in time proportional to
n logn. To get a rough idea of how this works, suppose you want to count inversions of the array

[1, 2, 7, 0, 3, 4]. (1) You split it into two halves [1, 2, 7] and [0, 3, 4], and sort each of these, by recursion.
In this case, these are already sorted. (2) You merge the two sorted halves. This means looking in turn at

their first elements, then removing the least of the two from its half and adding it to a new array. Here,

you start off the new array with 0 because 0 < 1, chosen from the second array. Since the choice is from
the second array, 0 comes after 1, and there is at least one evident inversion. But at that point you know

not only that 0 < 1, but that 0 is less than every item in the first array, all of which are at least 1. So the

inversion count increments by 3, the length of the first array.

◦ ————­ ◦

A transposition (i | j) in Sn just interchanges i and j, and an elementary transposition sj = (j | j + 1)
interchanges two neighbouring items.

1.1. Proposition. (a) The only permutation with no inversions is the identity map;
(b) if σ is any permutation other than the trivial one, there exists i such that σ(i) > σ(i+ 1);
(c) an elementary transposition si inverts only the single pair (i, i+ 1);
(d) an elementary transposition si permutes all pairs j < k other than i < i+ 1;
(e) for all i, σ

si(I(σ) r (i, i+ 1)) = I(σsi)r (i, i+ 1) ;

(f) for every σ, I(σ−1) = σI(σ).

Proof. To prove (a), it suffices to prove (b), which is just a reformulation. Suppose σ(i) < σ(i+1) for all

i < n. If ki = σ(i + 1)− σ(i) then σ(n)− σ(1) =
∑n−1

1 ki, but since also 1 ≤ σ(1), σ(n) ≤ n we must
have all ki = 1.

For (c), (d), and (e) the pairs (j, k) with j < k can be partitioned into those with (i) neither j nor k equal

to i or i+1; (ii) j < i or j < i+1; (iii) i < k or i+1 < k; (iv) i < i+1. The transposition si inverts only

the last pair.

For (f), σ inverts (i, j) if and only if σ−1 inverts
(
σ(j), σ(i)

)
. So I(σ−1) = σI(σ).

Every simple cycle may be written as a product of transpositions:

(i1 | i2 | i3 | . . . | im−1 | im) = (i1 | i2)(i2 | i3) . . . (im−1 | im) .
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In particular, if j and k are neighbours—i.e. if k = j±1—then sjsk is a cycle of order three, but otherwise
sj and sk commute and the product has order two:

sisi+1 = (i | i+ 1)(i + 1 | i+ 2) = (i | i+ 1 | i+ 2)

sjsk = (j | j + 1)(k | k + 1)

= sksj .

1.2. Corollary. (a) For any σ in Sn, |I(σsi)| = |I(σ)|+ 1 if and only if (i, i+ 1) is not an inversion of σ,
and in this case

I(σsi) = siI(σ) ∪ {(i, i+ 1)} .

(b) Similarly, |I(σsi)| = |I(σ)| − 1 if and only if (i, i+ 1) is an inversion of σ.

Proof. From (e) of the Proposition.

Another formulation:

1.3. Corollary. For any σ in Sn

ℓ(σsi) =

{
ℓ(σ) + 1 if σ(i) < σ(i + 1)
ℓ(σ)− 1 if σ(i) > σ(i + 1).

Consequently:

1.4. Corollary. The map σ 7→ (−1)ℓ(σ) is a homomorphism from Sn to {±1}.

Since every cycle may be expressed as a product of transpositions and every permutation may expressed
as a product of cycles, every permutation may also be expressed as a product of transpositions. Better:

1.5. Proposition. Every permutation in Sn may be expressed as a product of |I(σ)| elementary transpo­
sitions.

Proof. The proof will describe an algorithm to find such a product.

By induction on ℓ(σ). There is nothing to prove if σ is the trivial permutation.

So now suppose σ to be other than trivial. According to (b) of Proposition 1.1 it must have at least one

inversion. Read along in the array
(
σ(i)

)
until you find i with σ(i) > σ(i + 1). Let τ = σ si. Then

(i, i + 1) is not an inversion for τ , so by (d) of Proposition 1.1 the number of inversions for τ is exactly
one less than for σ itself. We can keep on applying these swaps, at each point multiplying on the right by

an elementary transposition. The number of inversions decreases at every step, and hence it must stop,
which it does only when the permutation we are considering is trivial. So we get an equation

σsi1 . . . sin = I, σ = sin . . . si1 .

Let ℓ(σ) be the minimal length of an expression for the permutation σ as a product of elementary

transpositions.

1.6. Corollary. The minimal length ℓ(σ) is the same as |I(σ)|, the number of inversions.

Proof. The Proposition asserts that ℓ(σ) ≤ |I(σ)|. But Corollary 1.2 implies that |I(σ)| ≤ ℓ(σ).

1.7. Corollary. Two permutations σ and τ are equal if and only if I(σ) = I(τ).

For example, the permutation with array (n, n−1, . . . , 1) is the unique permutation that inverts all pairs.

In the next section I’ll exhibit a geometric explanation for the relationship between ℓ(σ) and I(σ).
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2. The geometry of permutations

For a moment, let k be an arbitrary field. The group Sn acts on the n­dimensional vector space kn by

permuting basis elements:
σ: εi 7−→ εσ(i) .

Its matrix wσ is that with the corresponding permutation of the columns of I . Thus

σ
(∑

xiεi

)
=

∑
xiεσ(i) =

∑
xσ−1(i)εi .

In other words, it permutes the coordinates of a vector. We thus have an embedding of Sn into GLn(k).
There is also a dual representation on the space of linear functions on V —by definition

〈σ̂(f), v〉 = 〈f, σ−1(v)〉 .

Among these linear functions are the coordinate functions xi, and then

〈σ̂(xi), v〉 = 〈xi, σ
−1(v)〉

so that σ̂(xi) = xσ(i) .

A transposition (i | j) swaps coordinates xi and xj , hence has determinant −1.

2.1. Proposition. If σ can be represented as a product of m transpositions then det(wσ) = (−1)m;

This gives a second proof that the map σ 7→ (−1)ℓ(σ) is a homomorphism.

Proof. Because det(xy) = det(x) det(y).

ROOTS. Some of the basic facts about combinatorics in Sn and related groups are explained intuitively
by applying the ridiculously simple fact that if f is a linear function on a real vector space V then the

regions where f < 0 and f > 0 are separated by the hyperplane f = 0, which means that if f(P ) < 0
and f(Q) > 0 any line from P to Q will possess exactly one point where f vanishes.

So now let k = R and V = Rn. Assign to it the usual Euclidean inner product. Let λ = λi,j be the linear

function xi − xj on V . The functions λi,j are called the roots of the group Sn. The ones with i < j
are called positive roots. The roots αi = λi,i+1 for i = 0, . . . , n − 1 are called the simple roots. Every

positive root is an integral linear combination of simple roots, since for i < j

λi,j = αi + · · ·+ αj−1

The dominant root α̃ = λ1,n−1 is the sum of all simple roots. This terminology is motivated by a

relationship with the structure of the Lie algebra of GLn.

The group Sn permutes the roots: σ takes λi,j to λσ(i),σ(j) . The linear transformation sλi,j
determined

by the transposition (i | j) amounts to Euclidean reflection in the hyperplane xi = xj . It fixes all points
in this hyperplane and acts as scalar multiplication by −1 on the line perpendicular to it. There exists a

unique vector λ∨ on this line such that

sλ(v) = v − 〈λ, v〉λ∨ .

From a familiar formula in vector geometry

〈λ, v〉 = 2

(
λ∨ •v

λ∨ •λ∨

)
.

The coordinates of λ∨

i,j are all 0 except for xi = 1, xj = −1.

The coordinates of any vector may be permuted to a unique weakly decreasing array. In other words:
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2.2. Proposition. The region C in which x1 ≥ x2 ≥ . . . ≥ xn is a fundamental domain for the action of
Sn on Rn.

This is the same as the region where αi ≥ 0 for 0 ≤ i < n, and its walls are open subsets of the root

hyperplanes αi = 0. Its faces CΘ are parametrized by subsetsΘ ⊆ ∆ = {0, . . . n−1}—toΘ corresponds
the face where αi = 0 for i in Θ, otherwise αi > 0. The open cone itself is C∅.

Remark. There is a somewhat arbitrary choice involved here. Equally valid, and valuable in some

circumstances, is that of weakly increasing arrays as the fundamental domain. I’ll probably shift between
these two choices without explicit comment.

◦ ————­ ◦

Any vector in v is the permutation of a vector in a unique face of C. The vector space V is therefore
partitioned into transforms of these faces labeled by subsets of ∆. The transforms of C = C∅ are the

connected components of the complement of the root hyperplanes. They are called chambers of the
partition. Every face of a chamber is the transform by Sn of a unique face CΘ of C, and in particular

every wall is the transform of some unique Cαi
. A root γ is positive if and only if γ > 0 on C.

Every root γ corresponds to a hyperplane γ = 0, and conversely, every such root hyperplane is the zero
set of two roots, exactly one of which is positive. A root λ separates C and σ(C) if and only if λ(C) > 0
and λ

(
σ(C)

)
< 0, or equivalently if and only if λ > 0 and σ−1(λ) < 0.

2.3. Proposition. Suppose σ to be a permutation and i < j. The following are equivalent:

(a) the root σ(λi,j) is negative;
(b) the hyperplane λi,j = 0 separates C from σ(C);
(c) the pair (i, j) is an inversion for σ.

Proof. (a) and (b) are equivalent by definition. As for the remaining equivalence, the vector

ρ = (n, n− 1, . . . , 2, 1)

lies in C, so γ < 0 if and only if 〈γ, ρ〉 < 0. The i­th coordinate of ρ is n− i + 1. But then

〈σ(λi,j), ρ〉 = 〈λi,j , σ
−1(ρ)〉

= (n− σ(i) + 1)− (n− σ(j) + 1)

= σ(j)− σ(i)

so that σ(λi,j) < 0 if and only if σ(i) > σ(j).

In other words:

2.4. Theorem. The number of inversions of σ is exactly the same as the number of root hyperplanes
separating C from σ(C).

To understand more precisely how geometry explains that the length of σ is the cardinality of |I(σ)| we
must find a geometric interpretation for products of elementary transpositions.

This involves the notion of galleries. Two chambers are neighbours if they are distinct and share a wall.

The neighbours of C are the sC for s = si. If w is an arbitrary permutation, then wC and wsC are

neighbours, and all are of this kind. If s1, s2, etc. is a sequence of elementary transpositions, then C,
s1C, s1s2C, etc. is a chain of neighbouring chambers. A gallery is a chain of neighbouring chambers.

Elements of Sn transform one gallery into another. The wall separating wC and wsC is the w­transform
of αs = 0, hence the root hyperplane the γ = 0 where γ = wαs. If wC is its terminal chamber the gallery

corresponds to an expression for w as a product of elementary reflections.

2.5. Proposition. Reduced expressions correspond to galleries that cross any given root hyperplane at
most once.

Proof. Suppose we are given a gallery that crosses a hyperplane twice—say the first crossing is from

xC to xsC while the second is back again from xsyC to xsytC. Applying x−1 to this segment, we see
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that we have a gallery from C to sytC. The two galleries syC and sytC are neighbours, by assumption
separated by the same hyperplane, must therefor be the root hyperplane αs = 0. Reflection by s must

therefore interchange them, so syC and yt are the same chamber, hence sy = yt, syt = y, and the gallery
with intermediate segment from xC to xyC has the same terminal as the original, but has length 2 less.

So the original expression was not reduced.

On the other hand, any gallery from C to wC must cross every separating hyperplane, so the length is

at least the number of such hyperplanes.

3. Permutations in GL(n)

The matrix wσ of the linear transformation associated to σ is the permutation matrix with i­th column

equal to εσ(i). Thus

(wσ)i,j =
{
1 if i = σ(j)
0 otherwise.

If m = (mi,j) is an n × n matrix then multiplication on the left by the permutation matrix w permutes

its rows, and multiplication on the right permutes its columns. Explicitly:

(wσm)i,j = mσ−1(i),j

(mwτ )i,j = mi,τ(j)

and hence

3.1. Lemma. We have
(wσmw−1

τ )i,j = mσ−1(i),τ−1(j) .

Conjugation by a permutation matrix permutes the diagonal entries of a diagonal matrix. Conversely,

suppose that conjugation by x leaves stable the group of diagonal matrices. This means that xax−1 = b
is diagonal for all diagonal a. Thus xa = bx. In the 2× 2 case, for example, we would have

[
x1,1 x1,2

x2,1 x2,2

] [
a1 0
0 a2

]
=

[
a1x1,1 a2x1,2

a1x2,1 a2x2,2

]
=

[
b1 0
0 b2

] [
x1,1 x1,2

x2,1 x2,2

]
=

[
b1x1,1 b1x1,2

b2x2,1 b2x2,2

]
.

Then xi,jaj = bixi,j for all i, j. Since x is non­singular, in every row of x there exists at least one entry

xi,j(i) 6= 0. Thus for all i, j we have

ajxi,j = bixi,j

aj(i)xi,j(i) = bixi,j(i)

aj(i) = bi(
aj
aj(i)

)
xi,j = xi,j

We are free to choose the aj arbitrarily, so we see that xi,j = 0 for j 6= j(i). Therefore in each row only

one entry is non­zero. In short, x is the product of permutation and diagonal matrices. All in all:

3.2. Proposition. If A is the group of diagonal matrices in G = GLn then the permutation matrices
induce an isomorphism of Sn with NG(A)/A.

The contents of this section elaborate in a special case what a later chapter will say about general root

systems. The group A acts by conjugation on the Lie algebra of GLn, which is the vector space of

matrices Mn. It acts trivially on the diagonal matrices, and the complement decomposes into a direct
sum of A­stable spaces Mi,j (i 6= j) spanned by the single matrix ei,j with a single non­zero entry in row



Structure of GL(n) 7

i, column j. The corresponding eigencharacter is ai/aj . Let X∗(A) be the lattice of characters of A, the
algebraic homomorphisms from A to the multiplicative group Gm. It has as basis the characters

εi: a 7−→ ai .

Multiplication of characters is written additively—the character a 7→ ai/aj is γi,j = εi − εj .

Assign V = X∗(A) ⊗ R the Euclidean norm in which the εi form an orthonormal basis. Let αi for
1 ≤ i < n be the root εi+1 − εi. Every root can be written as a unique integral combination of the αi.

The dominant root is
α̃ =

∑

1≤i<n

αi = (1, . . . , 1) .

The vector ρ lies in what is in these circumstances the positive chamber where all αi ≥ 0 or equivalently

x1 ≤ x2 ≤ . . . ≤ xn .

To each root γ = γp,q corresponds an embedding, which I express as γ∨ in spite of the obvious conflict,

of SL2 into GLn. The matrix

x =

[
a b
c d

]

has as image the matrix y with

yi,j = δi,j unless {i, j} = {p, q}

yp,p = a, yp,q = b, yq,p = c, yq,q = d .

The conflict of notation is that γ∨ now denotes an embedding of both the multiplicative group and of
SL2 into GLn. The two uses are at least weakly consistent, since the embedding of the multiplicative

group can be factored through SL2. At any rate, there will be no serious problem since the two maps γ∨

can be distinguished by what sort of things they are applied to. (This is called operator overloading in

programming.)

Part II. The Bruhat decomposition

4. Gauss elimination and Schubert cells

In this section, let
G = GLn(F )

B = the subgroup of upper triangular matrices

N = the upper triangular unipotent matrices

N = the lower triangular unipotent matrices

A = the diagonal matrices

W = Sn .

A rectangular matrix is said to be in permuted echelon form if it has the following two properties:
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• the last non­zero entry in each column is 1;
• all entries to the right of such an entry (which I call a pivot) vanish.

It may happen that there are no such entries in a column—i.e., that all its entries vanish.

For example, all such 2× 1 matrices are of the form

[
∗
1

]
,

[
1
◦

]
,

[
◦
◦

]
,

and the 2× 2 matrices are those of the form

[
∗ 1
1 ◦

]
,

[
∗ ◦
1 ◦

]
,

[
1 ◦
◦ 1

]
,

[
1 ◦
◦ ◦

]
,

[
◦ ∗
◦ 1

]
,

[
◦ 1
◦ ◦

]
,

[
◦ ◦
◦ ◦

]
.

In these, ∗ is arbitrary.

There is a simple recursive criterion for an r × c matrix to be in permuted echelon form: (a) Either the

first column vanishes identically, or the last non­zero entry in its first column is equal to 1. In the first
case, it is required that the matrix made up of the remaining columns, which is of smaller size than the

original, be in permuted echelon form.

In the second case, suppose this first non­zero entry to be in row i. (b) All entries in row i and subsequent

columns must vanish. (c) The matrix extracted from it by removing the first column and row i must be
in permuted echelon form.

This leads easily to an algorithm for generating all possible forms of such matrices of a given size—i.e.

lists of possibilities like those above—and in executing the main result of this section:

4.1. Theorem. If m is any matrix, then there exists a unique matrix in permuted echelon form that can
be obtained from it by multiplying on the right by an invertible upper triangular matrix.

Proof. I shall prove the existence here, but deal with uniqueness in a later section.

The proof given here, which amounts to an algorithm, is a straightforward variation of Gauss elimination.

Multiplying on the right by an invertible upper triangular matrix amounts to performing some combi­
nation of these two elementary column operations: (a) multiplying a column by a non­zero constant, or

(b) adding to (or, of course, subtracting from) one column a multiple of an earlier one. For example

[
a b
c d

] [
1 x
◦ 1

]
=

[
a ax+ b
c cx+ d

]
.

I now proceed by induction on the number of columns c. If c = 1, just multiply the column by the inverse
of the last non­zero entry. Otherwise, suppose m to have c > 1 columns. Locate the last non­zero entry

in the first column. If there is one, say in row i: (a) multiply the column by its inverse to make it 1; (b)
subtract suitable multiples of the first column from subsequent columns to make the last c− 1 entrie in

the i­th row vanish. Then apply induction to the matrix made upf those column.

Note that the rank of a matrix in permuted echelon form is the number of its non­vanishing columns.

We can proceed further. Suppose x to be an r × c matrix in permuted echelon form. For 1 ≤ i ≤ c, let
r = r(i) be the pivot row of column i. Thus xr,i = 1 and xm,i = 0 for m < r. (I take r(i) = r + 1 if

column i vanishes.)

Order the indices of the non­zero columns into a list (ik) such that r(ik) ≥ r(iℓ) if k ≤ ℓ. Dealing with
each column ik in turn, we can apply elementary row operations, multiplying x on the left by lower

triangular matrices, to arrange so that all entries in column ik except the pivot vanish. Doing this in the

specified order means that at no point do we undo what previous operations have done.
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For example, we might start with the matrix




∗ 1 ◦ ◦
1 ◦ ◦ ◦
◦ ◦ ∗ 1
◦ ◦ 1 ◦


 ,

for which the ordering is 3, 4, 1, 2, and get the sequence of operations:




∗ 1 ◦ ◦
1 ◦ ◦ ◦
◦ ◦ ∗ 1
◦ ◦ 1 ◦


 −→




∗ 1 ◦ ◦
1 ◦ ◦ ◦
◦ ◦ ◦ 1
◦ ◦ 1 ◦


 −→




◦ 1 ◦ ◦
1 ◦ ◦ ◦
◦ ◦ ◦ 1
◦ ◦ 1 ◦


 .

At the end, we are facing what I call a special kind of permuted echelon matrix, in which each column
and each row has at most one non­zero entry, which is equal to 1. I call one of these a partial permutation

matrix. I have proved:

4.2. Theorem. Given any matrixm, there exist an upper triangular matrix u, a lower triangular unipotent
matrix v, and a partial permutation matrix w such that m = uwv.

It will follow from results in the later discussion on flags that w is unique. In case m is invertible, we

shall also see uniqueness results for u and v.

Proof. Uniqueness follows from uniqueness proved in the next section, Theorem 4.1, but in one
circumstance—when the matrices are invertible—it can also be shown directly.

This amounts to showing that if u is upper triangular invertible and v is lower triangular, and σ and τ
permutations such that w−1

σ uwτ = v, then σ = τ . But from the hypothesis and Lemma 3.1,

vi,j = uσ(i),τ(j)

for all i, j. Since the diagonal entries vk,k do not vanish, uσ(i),τ(i) 6= 0 for all i. But u is upper triangular,

so uk,ℓ = 0 if ℓ < k. If σ 6= τ , then τ(i) < σ(i) for some i, a contradiction.

4.3. Corollary. Suppose m to be a matrix in Mn(F ) of rank r. Then there exist g1, g2 such that

m = g1

[
Ir ◦

◦ ◦

]
g2 .

Proof. Because if w is a partial permutation matrix there exist permutation matrices x, y such that

xwy =

[
Ir ◦

◦ ◦

]
.

Let G = GLn(F ). The product G × G acts on left and right on the set of matrices of a given rank.

preserving rank. The corollary asserts that this action is transitive.

4.4. Lemma. The matrices g1, g2 such that

g1

[
Ir ◦

◦ ◦

]
g−1
2 =

[
Ir ◦

◦ ◦

]

are those with

g1 =

[
A B
0 D

]
, g2 =

[
a 0
c d

]
,

where a = A.



Structure of GL(n) 10

We have exhibited a decomposition of the set of matrices into double cosets B\G/B, in which B is the
subgroup of upper triangular matrices. But if wℓ is the skew­symmetric permutation matrix swapping

ei with en+1−i, then B = wℓBwℓ is the subgroup of lower triangular matrices, and we have

G =
⊔

w

BwBwℓ =
⊔

w

Bwℓ ·wℓBwℓ =
⊔

w

BwB .

In many situations this is particularly useful.

One final remark: the algorithm laid out above shows that an invertible matrix g is in the largest double

coset BwℓB if and only if the square matrices extracted from the lower left of g are all invertible.

5. Flags

Fix a basis (ei) of E = Fn. In this section, I’ll prove the claim of uniqueness in Theorem 4.1.

A flag V in E is a weakly increasing sequence of subspaces

V1 ⊆ V2 ⊆ · · · ⊆ Vm .

I put no restriction on length or on repeats. The single space {0}, for example, is a flag. Even if repeated

a number of times.

Any ordered set of vectors v = (vi) determines the flag [[v]], in which [[v]]i is spanned by the vj with
j ≤ i. In particular, the basis (ei) determines the standard flag E . The flag T (m) associated to any

matrix m is that determined by the order of its columns, preceded for convenience by 0.

If F and G are two flags, of lengths f and g, the coincidence matrix of the pair is the f × g matrix h with

Ci,j = dimFi ∩ Gj .

If F is a single flag, its coincidence matrix is that of E and F .

The coincidence matrix of a flag F with respect to itself is the n×n matrix (min i, j). In any coincidence

matrix C the entries in each row and column are weakly increasing, and that Ci,j ≤ min i, j for all i, j.

If F is the flag associated to the reversed matrix




◦ ◦ ◦ 1
◦ ◦ 1 ◦
◦ 1 ◦ ◦
1 ◦ ◦ ◦




which is that defined by the array (0, e4, e3, e2, e1), its coincidence matrix is

(5.1)




◦ ◦ ◦ ◦ 1
◦ ◦ ◦ 1 2
◦ ◦ 1 2 3
◦ 1 2 3 4


 .

The point of introducing flags is that two matrices of the same size determine the same flag if and only

if one of them can be obtained from the other by multiplying it on the right by an invertible upper
triangular matrix. Therefore Theorem 4.1 can be reformulated:

5.2. Proposition. Every flag is represented by a unique matrix in permuted echelon form.

Or, equivalently:

5.3. Proposition. Suppose m to be any matrix. If c1 and c2 are matrices in permuted echelon form that
are obtained from m through multiplication on the right by upper triangular unipotent matrices, they
are equal.
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The proof will characterize certain properties of the matrix m by properties of the flag T (m). Let Γ be
the coincidence matrix of F , and then let

[∆Γ]i,j = Γi,j − Γi,j−1 (j ≥ 1) .

I call the matrix ∆Γ the profile of the flag F .

For example, let

m =




0 0 0 0 1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0


 .

The basic fact is that a vector
ei +

∑
j<i

cjej

is in Ck if and only if k ≥ i. Hence its coincidence matrix is

C =




0 0 0 0 1
1 1 1 1 2
1 1 2 2 3
1 1 2 3 4
1 2 3 4 5


 ,

and

∆C =




0 0 0 0 1
1 0 0 0 1
1 0 1 0 1
1 0 1 1 1
1 1 1 1 1


 .

Even better, a graph:

There is an obvious and simple relationship between the first and last matrices. This is a general fact.
Suppose c to be any matrix in permuted column form. Recall that r(j) is the row in which the pivot in

column j appears (equal to 0 if there is no pivot). Define the matrix γ = γc of the same size as c:

γi,j =
{
1 if i ≥ r(j)
0 otherwise.

The example above illustrates:

5.4. Lemma. If m is a matrix in permuted column form, then γm is equal to ∆ΓT (m).

I leave this as an exercise.

The pointis that the shape of the permuted echelon form of a matrix depends only on the flag associated

to it. As a consequence, any two matrices in permuted column form representing the same matrix have
the same pivots (icluding 0 columns). To conclude the proof, it remains to show that if c1 and c2 are two

matrices in permuted column form’with the same pivots, and c2 = c1u for some lower triangular matrix

u, then u = I and c2 = c1. This can be done by induction on the number of columns in the ci. I leave it
as an exercise.

In any case, this concludes the proof of uniqueness in Theorem 4.1.
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6. Unipotent groups

Suppose N to be a unipotent algebraic group N defined over a field F of characteristic 0. It possesses a

filtration

Nn = {1} ⊂ Nn−1 ⊂ . . . ⊂ N0 = N

by normal subgroups such that (a) there exists an isomorphism ei of Ni/Ni+1 with F ; (b) each quotient

Ni/Ni+1 is contained in the centre of N/Ni+1. An easy induction then shows every element can be
expressed as a product of elements ei(xi)

en−1(xn−1)en−2(xn−1) · · · e0(x0) .

expressed in decreasing order. I’ll call it the normal form associated to the filtration and the splittings.

Example. Take N to be the group of unipotent upper triangular matrices in GLn. There is a very

simple filtration with an interpretation in terms of matrices. For a pair (i, j) with 1 ≤ i < j ≤ n let

r = r(i, j) = j(j − 1)/2− i, let N[r] be the group made up of the matrices ei,j(x), and let

Nr =
∏

s≥r
N[s] .

Thus if n = 3

N[0] =







1 ∗ ◦
◦ 1 ◦
◦ ◦ 1





 , N[1] =







1 ◦ ◦
◦ 1 ∗
◦ ◦ 1





 , N[2] =







1 ◦ ∗
◦ 1 ◦
◦ ◦ 1





 , N[3] =







1 ◦ ◦
◦ 1 ◦
◦ ◦ 1





 .

Of course, given 0 ≤ r < n(n− 1)/2 there exist unique (i, j) such that r = j(j − 1)/2− i, so that N[r]

and Nr are well defined.

I leave it as an exerise to verify:

6.1. Lemma. If n is the unipotent upper triangular matrix with ni,j = xi,j then

n =
∏

i,j
ei,j(xi,j) ,

arranged in order of decreasing r(i, j).

For example:




1 x1,2 x1,3 x1,4

◦ 1 x2,3 x2,4

◦ ◦ 1 x3,4

◦ ◦ ◦ 1


 =




1 ◦ ◦ x1,4

◦ 1 ◦ x2,4

◦ ◦ 1 x3,4

◦ ◦ ◦ 1







1 ◦ x1,3 ◦
◦ 1 x2,3 ◦
◦ ◦ 1 ◦
◦ ◦ ◦ 1







1 x1,2 ◦ ◦
◦ 1 ◦ ◦
◦ ◦ 1 ◦
◦ ◦ ◦ 1


 ,

where 


1 ◦ ◦ x1,4

◦ 1 ◦ x2,4

◦ ◦ 1 x3,4

◦ ◦ ◦ 1


 =




1 ◦ ◦ x1,4

◦ 1 ◦ ◦
◦ ◦ 1 ◦
◦ ◦ ◦ 1







1 ◦ ◦ ◦
◦ 1 ◦ x2,4

◦ ◦ 1 ◦
◦ ◦ ◦ 1







1 ◦ ◦ ◦
◦ 1 ◦ ◦
◦ ◦ 1 x3,4

◦ ◦ ◦ 1







1 ◦ x1,3 ◦
◦ 1 x2,3 ◦
◦ ◦ 1 ◦
◦ ◦ ◦ 1


 =




1 ◦ x1,3 ◦
◦ 1 ◦ ◦
◦ ◦ 1 ◦
◦ ◦ ◦ 1







1 ◦ ◦ ◦
◦ 1 x2,3 ◦
◦ ◦ 1 ◦
◦ ◦ ◦ 1







1 x1,2 ◦ ◦
◦ 1 ◦ ◦
◦ ◦ 1 ◦
◦ ◦ ◦ 1


 =




1 x1,2 ◦ ◦
◦ 1 ◦ ◦
◦ ◦ 1 ◦
◦ ◦ ◦ 1


 .
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Revert to the case of a general unipotent group N . The following is well known, but a proof is hard to
find in the literature.

6.2. Lemma. Any element in N may be expressed as a product of elements in the N[i] in any order.

Proof. The order is to be prescribed as a permutation σ of [0, n)—we want to write

ν = ν0ν1 . . . νn−1

where νi lies in N[σ(i)]. Conversely, an element in N[i] lies in the place σ−1(i). For example, if σ =
(3, 0, 2, 1) then we want an expression x3x0x2x1 with xi in N[i].

The proof is an algorithm. We start with ν in normal form ν =
∏

iνi, in decreasing order. As the

calculation proceeds, at the beginning of the m­th stage we shall have an expression

ν = κmλm

where κm lies in Nm, expressed in normal form, and λm is a product of elements in the N[i] with

i ≤ m− 1. Thus κmx−1
m lies in Nm+1 for some x in N[m] we can write

ν = κmλm = κmx−1
m ·xmλm .

I have said that λm is a product of yi in N[i], but in what order? In the order induced on [0,m) by σ—i.e.

so that the sequence σ−1(i) is decreasing.

The first step is trivial: we put ν in normal form κ1x0, setting λ1 = x0. Here κ1 will be in normal form,
so there exists x1 in N[1] such that µ2 = κ1x

−1
1 is in N2. We write

ν = µ2x1 ·x0 = µ2 ·x1x0 .

But what we do now depends on σ. There are two cases. Either 1 precedes 0 in σ or it doesn’t. If it does,
we leave x1x0 as it is, and set κ2 = µ2. If not, we write

x1x0 = x1x0x
−1
1 x−1

0 ·x0x1 .

The commutator x1x0x
−1
1 x−1

0 lies in N2, and we have

ν = µ2 ·x1x0x
−1
1 x−1

0 ·x0x1 = κ2 ·x0x1 .

Repeat as needed.

7. In GL(n)

In previous sections, we have seen that Mn is the union of double cosets BwN , in which w is a partial

permutation matrix, and is unique. In this section, I’ll assume that m is invertible, in which case w is in

fact a permutation matrix. This will allow us to say more about the right­hand factor N .

I’ll begin by demonstrating the problem. If w 6= I , as we shall see, the group Nw = w−1Nw ∩N is not

trivial, and if n is in it then wn = wnw−1 ·w, so the expression bwn in BwN is not unique. In other

words, the element n here is a priori only an element of the quotient Nw\N . However, we can find a
section of this quotient. Let Nw = w−1Nw ∩N .

7.1. Lemma. The product map
Nw ×Nw −→ N

is bijective.

This implies immediately:

7.2. Theorem. Every m in GLn possesses a unique factorization m = bwn with n in Nw .
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Proof. It will be convenient to use the language of root systems. Let a be the Lie algebra of the group A,
the vector space of diagonal matrices, and n be the Lie algebra of upper triangular unipotent matrices.

Let εi be the linear function on on a taking a to its i­th entry ai,i.

The group A acts by conjugation on the Lie algebra gln, the Lie algebra a by the adjoint action. The Lie
algebra gln is the direct sum of eigenspaces. One of these is a, and the rest have dimension 1. which is

then a direct sum of eigenspaces. Its Lie algebra a acts by the adjoint action, through the Lie bracket. For

each pair (i, j) with i 6= j let ei,j be the elementary matrix with entries vanishing except at i, j, where it
is 1. Then

[a, ei,j ] = (ai − aj) ei,j

for all a in a. In other words, ei,j is an eigenvector with eigencharacter λi,j = εi − εj . This character of
a is called a root. Those with i < j are positive, the others negative. The Lie algebra n is a sum of root

spaces for positive roots, its opposite n for negative.

Each root corresponds also to an embedding of F into gln:

eλ(x) = I + xeλ .

Let Nλ be its image.

Of course something similar holds for N and negative roots. The group W acts by conjugation on gln,

and permutes the roots: 〈wλ, a〉 = 〈λ,w−1aw〉, and

weλw
−1 = ewλ .

Acording to Lemma 6.2, then,

Nw =
∏

λ > 0
w−1λ > 0

Nλ .

I call the expression x = bwσn the Bruhat normal form of x.

8. Parabolic subgroups

The group GLn acts on flags in the obvious way. If a flag is represented by a matrix M , the matrix g takes

M to gM . Since GLn acts transitively on Fn−{0}, an induction argument shows that it acts transitively

on princial flags in Fn. The stabilizer of a flag is a parabolic subgroup. The stabilizer of the standard
principal flag is the Borel subgroup of lower triangular matrices.

8.1. Lemma. A parabolic subgroup is its own normalizer.

Proof. If P is the stabilizer of the flag F , then g in GLn, gPg−1 = P if and only if gF = F .

Ifni is the array of differences between the dimension ofFi and that ofFi−1, thenn = n1+n2+· · ·+nr—
i.e. the ni form a partition of n. For example, if the partition is n = 1+ (n− 1) we are looking at lines in

projective space. If the partition is n = 1 + · · ·+ 1 then the flag is principal.

For example, if we write 6 = 1 + 2 + 3 we get the parabolic subgroup of matrices



∗ ∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗ ∗

0 0 0 ∗ ∗ ∗

0 0 0 ∗ ∗ ∗

0 0 0 ∗ ∗ ∗




From the partition of n we obtain a direct sum decomposition

Fn = ⊕Fni
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and an associated embedding of the product
∏

GLni
(F ) into GLn(F ), via disjoint ni × ni blocks along

the diagonal. Another way to express the condition on matrices m in PΘ is to say that the non­zero

entries in m lie either above the diagonal, or in one of these blocks.

Mapping p in P to the sequence of its block diagonal matrices defines a homomorphism from PΘ to
MΘ =

∏
GLni

(k). The kernel consists of the subgroup NΘ of unipotent upper triangular matrices with

only ni × ni identity matrices along the diagonal. The group PΘ is the semi­direct product of MΘ and

NΘ.

8.2. Proposition. Every parabolic subgroup is conjugate to exactly one standard one.

8.3. Proposition. If F = k then every quotient P\G is compact.

Proof. If the partition is n = 1 + (n − 1) then the quotient P\G is isomorphic to projective space P(k).
We shall see in a moment that this is compact. It follows by induction that P\G is compact if P is the
group of upper triangular matrices, and from this in turn for an arbitrary P .

Why is P(k) compact? If (xi) is a non­zero vector then it is projectively equivalent to (xi/µ) where

µ = xm is the coordinate with maximum p­adic norm. But the set of all points (xi) with xm = 1 and
|xi| ≤ 1 is compact.

9. The Bruhat order

The double coset PwℓP is in almost any sense the largest of the double cosets. This can be made precise.
Let B = AN be the parabolic subgroup of lower triangular matrices, opposite to B. Then B = wℓBwℓ,

and BoppB = wℓBwℓB, the left translate of BwℓB by wℓ. For any n × n matrix let X(r) be the r × r
matrix made up from its first r rows and r columns.

9.1. Proposition. Suppose that x is an n× n matrix. It can be factored as x = νan with ν in N and u in
N if and only if every one of the n matrices X(r) has non­zero determinant.

Proof. This follows from a simple variation of the algorithm described above, applying induction. At

step k of Gauss reduction the first diagonal entry must be invertible. But by induction we have at this
step the factorization of the k × k sub­matrix, and the product of all the diagonal entries up to the k­th

is its determinant.

The matrices with an νau factorization are hence the complement in GLn of a finite union of zero sets of
polynomials. If the field k has a topology—for example, if it the p­adic field k—they form an open set.

Suppose that y is a permutation with the reduced expression y = s1 . . . xn. The element x is said to be

in the closure x of y, or x ≤ y, if x is a product of a subsequence of the si.

9.2. Proposition. The closure in G of the double coset C(y) is the disjoint union of the cosets C(x) with
x ≤ y.

Proof. By induction on the length of y. For y = 1 the assertion is trivial, and for y = s it follows from

what we have calculated for GL2, since Ps = C(s) is the parabolic subgroup which is a product of B
and a copy of GL2 embedded along the diagonal.

It suffices now, using induction and , to show that if ℓ(ws) = ℓ(w) + 1 then C(ws) = C(w)C(s), or

equivalently to show that C(w)C(s) is closed. Both G/P and G/B are compact. If C is closed in G and

CB = C, then the image of C in G/P is closed, and so is its inverse image in G, which is CP .

One consequence of this is that the closure of a permutation x does not depend on any particular reduced
expression for it. This can be shown also by purely combinatorial arguments.

9.3. Proposition. If σ and π are two permutations, π ≤ σ if σ is obtained from π by a sequence of
transpositions (i, j) with i < j and i occurring to the left of j in the array π(i).

Also, following Deodhar, for an array (σ(i)
)
, let 〈σi〉 be the array written in increasing order. I say one

array (ai) is less than or equal to (bi) if ai ≤ bi for all i. Then π ≤ σ if and only if the initial sequence of

π is less than or equal to that of σ.
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Part III. p­adic fields

10. Lattices

I now take up the special features of GLn(k) where

k = a p­adiv field

o = its ring of integers

̟ = a generator of p

Fq = o/p

|x| = q−m if x/̟m is in o×.

Just about everything I’ll say applies also to the quotient field of a Dedekind domain R, but with the ring

o of integers replaced by the localization of R at a prime ideal p. The simplest example would be Z(p),
the ring of all rational numbers a/b with b relatively prime to p. This is useful for playing around with

programs.

A vector (xi) in on is called primitive if one of the xi is a unit.

10.1. Lemma. A vector x = (x1, . . . , xn) in on is an element of an o­basis of on if and only if it is
primitive.

Proof. If xi is a unit, then the set of vectors obtained by substituting x for εi in the standard basis is again

a basis.

A lattice in kn is any finitely generated o­module in kn that spans kn. The standard lattice is L0 = on.

10.2. Proposition. (Principal divisors) If L is a lattice in kn then there exists a basis e1, e2, . . . , en of on

and integers
m1 ≤ m2 ≤ · · · ≤ mn

such that ̟m1e1, ̟m2e2, . . . , ̟mner form a basis of L. The integers m1, m2, . . . , mn are uniquely
determined.

Proof. The proof will be constructive.

The Proposition will follow by induction from a more general fact. Suppose ℓ1, ℓ2, . . . , ℓr to be any
finite set of elements of V . Choose a coordinate system, and let L be the matrix with columns ℓi. Then

there exist matrices k1, k2 in GLn(o) and GLk(o) such that D = k1Lk2 is semi­diagonal with entries
Di,i = ̟mi such that mi ≤ mi+1, and that D is unique.

Suppose r = 1,so that L is a column vector. We can express L = ̟mλ with λ a primitive vector in on.

Let m1 < ∞ be the greatest integer such that ̟m1 divides all the coordinates of the ℓi. Then there exists

at least one ℓi with coordinate ̟m1u, u a unit in o. By a suitable swap of columns and rows, we may
move this to upper left in the matrix. By suitable integral column and row operations, we may arrange

it so that all other entries in the first row and column vanish. These row and column operations amount

to multiplication on left and right by integral invertible matrices. Apply the induction to the lower right
(n− 1)× (r − 1) submatrix.

As for uniqueness, ̟m1 is the greatest common divisor of all the matrix entries, ̟m1+m2 is the greatest

common divisor of the 2 × 2 minor determinants, etc. Changing the basis of L amounts to multiplying
this matrix on the right by a matrix in GLn(o) and doesn’t change these characterizations.

10.3. Corollary. All lattices are free o­modules.

10.4. Corollary. The group GLn(k) acts transitively on the set of lattices.

10.5. Corollary. If L and M are any two lattices there exists a basis (ei) of L and an array (mi) of integers
with mi ≤ mi+1 such that (̟miei) is a basis of M .

The stabilizer of on is GLn(o).
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Let A be the group of diagonal matrices, A the subgroup of the

̟m = diag(̟mi)

whose diagonal entries are powers of ̟, A−− the subset of ̟m with mi ≤ mi+1.

10.6. Corollary. (Cartan decomposition) Every matrix g in GLn(k) can be expressed as

g = γ1aγ2

where γ1 and γ2 are in GLn(o) and a is in A−−. The element a is unique.

10.7. Proposition. The compact open subgroup GLn(o) acts transitively on the space of principal flags
in kn.

Proof. If we are given a principal flag (Vi) we can find in the line V1 ∩ on a primitive vector, which by
Lemma 10.1 is part of a basis, so we can find γ with γV1 = kε1. From now on we may assume that

V1 = kε1, and proceed by induction. Look next at V/V1, which is given the γ­transform of the original

flag modulo V1. Any element of GLn(o) which transforms this flag into the standard one can be lifted to
an element of GLn(o) leaving ε1 fixed.

10.8. Corollary. If K = GLn(o) then G = KP = PK for any parabolic subgroup P .

Since G/P is compact, so is K . But this follows from the more elementary fact that K is the projective

limit. of the finite groups GLm(o/pm).

11. Volumes

Let K = GLn(o) and choose a Haar measure on G such that the volume of KI is equal to 1. Suppose
a to be a diagonal matrix. What is the volume of the open set KaK in GLn? Equivalently, what is

|KaK/K|? The nature of the formula depends very definitely on a. For example, suppose n = 2. If t is

the identity matrix then KtK = K and its volume is that of K , but if

t =

[
1 0
0 ̟m

]

with m > 0 then the volume of KtK is equal to

(1 + q−1)qm

times the volume of K . This is because the map g 7→ gL induces a bijection of KtK/K with lines in
P1(o/pm). This difference in qualitative behaviour remains valid for all n, as we shall now see.

First comes a simpler question. The group GLn(o) maps canonically onto the finite group GLn(o/p
m).

How large is this group?

(1) Suppose m = 1. Then we are looking at G = GLn(Fq). Let τn be the number of elements in G. For
n = 1 this is F×

q . Thus τ1 = (q − 1), for example. For n > 1, the group G acts transitively on Fn − {0},

and the isotropy subgroup of (1, 0, . . . , 0) contains exactly those matrices m with m1,1 = 1 and mi,1 = 0
for i > 1. The elements m1,i are arbitrary, and the lower (n− 1)× (n− 1) matrix must be non­singular.
The order of the isotropy group is therefore order qn−1τn−1, and we have for τn the recursive formula

τn =

{
q − 1 if n = 1

(qn − 1)qn−1τn−1 otherwise

from which we calculate by induction

τn = (qn − 1) . . . (q − 1)qn(n−1)/2
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It is a polynomial in q of order qn
2

.

(2) The group GLn(o/p
m) fits into an exact sequence

1 → I + pMn−1(o/p
m) → GLn(o/p

m) → GLn(Fq) → 1

The order of GLn(o/p
m) is therefore the product of the qn

2(m−1) and the τn.

Now define a sort of normalized size

γ(GLn) =
τn
qn2

=
(
1− q−n

)(
1− q−(n−1)

)
. . .

(
1− q−1

)
.

11.1. Proposition. Suppose
m1 ≤ m2 ≤ . . . ≤ mn

and let
a = ̟m .

Suppose that the integersni are the lengths of constant runs in the sequence (mi), so thatn1+· · ·+nk = n
and

m1 = · · · = mn1
< mn1+1 = · · · = mn1+n2

< mn1+n2+1 = · · ·

Let
M = Ma = GLn1

×GLn2
× . . .×GLnk

and define
γ(M) =

∏
γ(GLni

) .

We embed M as diagonal blocks in GLn. Then

|KaK/K| =
γ(GLn)

γ(M)
δ∅(a) .

Here δ∅ is the character ∏

j<i

∣∣aj/ai
∣∣

of the group of diagonal matrices (ai).

Proof. The map k 7→ kaK/K induces a bijection of K/K∩aKa−1 withKaK/K . The groupK∩aKa−1

consists of all integral invertible matrices g with gi,j ≡ 0 mod ̟mi−mj . There is no condition when

mi ≤ mj , so this is in effect a restriction only when i > j. Fix m ≥ mn, so that m ≥ mi for all i.
Then the index of K ∩ aKa−1 in K is the same as that of the index of Km ∩ aKma−1 in Km where
Km = GLn(o/p

m).

LetP be the parabolic subgroup corresponding to the partition ofn. The cardinality ofKm is τn q
n2(m−1).

What is that of Km∩aKma−1? The image ofKm∩aKma−1 modulo p is the parabolic subgroupP (Fq)of

GLn(F), which has cardinality
∏

1≤i≤k τni

∏
1≤i<j≤k q

ninj . The kernel of the projection is the subgroup

of matrices in Km ∩ aKma−1 congruent to I modulo p. It has cardinality
∏

1≤i≤j≤k

qninj(m−1)
∏

1≤j<i≤k

qninj(m−(µi−µj)) =
∏

1≤i≤j≤k

q−ninj

∏

1≤i,j≤k

qninjm
∏

1≤j<i≤n

q−(mi−mj)

where µi is the common value of mj in the block of ni. The cardinality of Km ∩ aKma−1 is therefore
∏

1≤i≤k

τni

∏

1≤i<j≤k

qninj

∏

1≤i≤j≤k

q−ninj

∏

1≤i,j≤k

qninjm
∏

1≤j<i≤n

q−(mi−mj)

= qn
2m

∏

1≤i≤k

τni
q−n2

i

∏

1≤j<i≤n

q−(mi−mj)

and the cardinality of the quotient is therefore

τnq
n2(m−1)

qn2m
∏

1≤i≤k τni
q−n2

i

∏
1≤j<i≤n q−(mi−mj)

=
γ(GLn)

γ(M)

∏

1≤j<i≤n

qmi−mj .
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12. The affine permutation group

As preliminary material for the next section, I’ll introduce now the analogue of the symmetric group Sn

relevant to the structure of the p­adic group G = GLn(k).

THE GROUPS IN PLAY. The p­adic analogue of the group A of diagonal matrices is the compact group
A(o). I recall that There are two analogues of the Weyl group. One is

W = NG(A(o))/A(o) = NG(A)/A(o) .

It contains the quotient A = A/A(o), which is isomorphic to Zn. It also contains Sn, and in fact it is the
semi­direct product A⋊Sn.

It possesses a well defined homomorphism onto Z, taking

m× σ 7−→
∑

mi .

The second group S̃n is its kernel. It generated by Sn and the subgroup A0 of m in Zn with
∑

mi = 0,

and it is the semi­direct product of A0 and Sn.

This second group is the affine Weyl group associated to the root system of GLn. The affine roots in this

case are the affine functions λ+ k, in which λ is a root for GLn—one of the functions xi − xj . The affine

Weyl group is that generated by the orthogonal reflections in the lines λ+ k = 0.

The following figure demonstrates that at least such reflections are in the group S̃n, since reflection in

the hyperplane λ = 1 is the same as the reflection sλ in the hyperplane λ = 0 followed by translation by
λ∨.

sλ

λ̃∨

λ̃ = 1

Let C be the region where xi ≤ xi+1 , xn − x1 ≤ 1 in V0.

Draw somewhere the lines of intersection of xi = 0 with V0.

12.1. Lemma. Given any point x in V , there exists a product w of reflections si such that w(x) lies in C.
The affine Weyl group is generated by the reflections si together with the reflection s0 in the hyperplane
α̃ = 1.

I recall that

α̃ = α1 + · · ·+ αn−1 = ε1 − εn

is the dominant root.

Proof. The region C contains the point ρ = (1/n, 2/n, . . . , n/n). If w lies in S̃n, then

Affine reflection:

v 7−→ v − (〈λ, v〉 − k)λ∨

In the figure below, the partition of the plane into translations of a fundamental domain for n = 3 is

shown.
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α1

α2

−α̃

The analogue of roots in for this situation case are the A root is positive if it is non­negative on the chosen

fundamental domain.

Every element of W can be factored as a product of elements of Sn and A. But there is a more interest
factorization possible. For arbitrary n, let ω be the n × n matrix with ̟ at lower left, and 1 along the

superdiagonal. If n = 3, for example

ω =




0 1 0
0 0 1
̟ 0 0


 .

Its determinant is (−1)n−1̟.

12.2. Proposition. Every element x of W can be factored as x = ωnw, with w in S̃.

GEOMETRY. The group W acts naturally on Rn. The group A acts by translations, and S by per­

mutations. The group S̃ acts on the subspace with
∑

xi = 0. These groups act discretely as affine

transformations. It is natural to ask, what is a fundamental domain?

A fundamental domain for Zn is the unit cube 0 ≤ xi ≤ 1. The group Sn acts on this, so a fundamental
domain for the action of Sn on this cube is also a fundamental domain for W acting on Rn. I’ll choose

this to be the intersection C of the unit cube with the fundamental domain for Sn in Rn, where xi ≤ xi+1

for 1 ≤ i < n. The figure on the left below illustrates the case of GL2. The group S2 contains the single
reflection in the line y = x. My choice of fundamental domain is shaded.

y
=

x
x
+

y
=

0

1

ρ

σ

σρ

ω
ω2
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The transforms of C are called alcoves. Each alcove is in fact the transform of C by a unique element of
W, and this is how some of the alcoves in the figure are labeled.

In the figure, the transformationρ is inSn , and amounts to reflection in the line y = x. The transformation

σ is reflection in y = x+1, and the composite σρ is the same as translation by (−1, 1). The transformation
ω is a kind of Euclidean motion known as a twisted translation, and ω2 is indeed translation by (1, 1).

I repeat, the fundamental domain C I have chosen is where 0 ≤ xi ≤ 1 for all i, and xi ≤ xi+1 for

1 ≤ i < n. The figure on the right above attempts to show something of what happens for GL3. In
general:

12.3. Proposition. The fundamental domain C is the convex hull of the points

δ0 = (0, . . . , 0, 0, 0)

δ1 = (0, . . . , 0, 0, 1)

δ2 = (0, . . . , 0, 1, 1)

. . .

δn = (1, . . . , 1, 1, 1) .

That is to say, the last i coordinates of δi are 1 and the rest 0. In particular, the domain is a simplex of
dimension n.

Proof. Because if x = (xi) lies in C then

εi = δn−i+1 − δn−i

and hence

x = x1ε1 + · · ·+ xnεn

= x1(δn − δn−1) + x2(δn−1 − δn−2) + · · ·+ xn(δ1 − δ0)

= x1δn + (x2 − x1)δn−1 + · · ·+ (xn − xn−1)δ1 .

The length of ωnσ with σ in Sn is by definition ℓ(w). This is adequately justified by:

12.4. Proposition. The length ofσ is the same as the number of root hyperplanes between the fundamental
domain C and σ(C).

13. Iwahori subgroups

This section is concerned with a generalization of the Cartan decomposition Corollary 10.6. Let K =
GLn(o), W = Sn, B the Borel subgroup of upper triangular matrices. Recall that ̟ is a generator of p.

IWAHORI FACTORIZATIONS. Let I be the inverse image in GLn(o) of the group of upper triangular
matrices in GLn(Fq), those for which all entries gi,j with i > j lie in p. An Iwahori subgroup of GLn(k)
is any conjugate of I .

If P is a parabolic subgroup of G, P opposite to P , and K a compact open subgroup of G, define

M = P ∩ P

KN = K ∩N

KM = K ∩M

KN = K ∩N
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The group K is said to possess an Iwahori factorization with respect to (P, P opp) if the product map

KN ×KM ×KN → K

is a bijection.

I recall that the standard parabolic subgroups of GLn(k) are those stabilizing the standard flags

0 ⊂ kn1 ⊂ kn1+n2 ⊂ . . . ⊂ kn

They are those parabolic subgroups containing the Borel group of upper triangular matrices, and their

opposites are their transposes.

13.1. Proposition. Every element g of the Iwahori group I has a unique factorization with respect to any
standard parabolic subgroup.

Proof. It suffices to show this for the Borel subgroup. In this case it follows from Proposition 9.1, since

the determinant of an element of an Iwahori subgroup is a unit in o.

13.2. Proposition. For any pair (P, P ) there exists a sequence of compact open subgroups K forming a
basis of neighbourhoods of the identity, each possessing an Iwahori factorization with respect to P .

Proof. For GLn(k) we choose the sequence GLn(p
m). The Iwahori factorization follows from .

THE IWAHORI DECOMPOSITION. The group A(o) plays a role in the p­adic group analogous to that of
A in the algebraic group. The normalizer NG

(
A(o)

)
of A(o) in G is the same as the normalizer of A, the

semi­direct product of A and the Weyl group W . The quotient A = A/A(o), may be identified with the

group of diagonal matrices whose entries are powers of ̟. It is isomorphic to Zn. The quotient

W = NG

(
A(o)

)
/A(o)

contains A as a normal subgroup, and is in fact the semidirect product A ⋊W . It is the p­adic analogue

of W .

I shall call an n×n matrix X with r ≤ n, of rank r, Iwahori­reduced if it has this property: every column

and every row has exactly one non­zero entry, and that of the form ̟n. Elements of the group W̃ may

thus be identified with Iwahori­reduced n× n matrices. The group W̃ acts as affine transformations on

Zn, and is called the affine permutation group.

For GL2(k), for example, the Iwahori­reduced matrices are these:

[
̟k 0
0 ̟ℓ

]
,

[
0 ̟k

̟ℓ 0

]
.

I begin with some results useful in a moment:

13.3. Proposition. We have the factorizations K = IWP (o) and G = IWP .

Proof. The Bruhat factorization for GLn(Fq) tells us that K = IWP (o). Apply Corollary 10.8.

Here is a p­adic version of the Bruhat decomposition:

13.4. Proposition. Every element g of GLn(k) factors uniquely as g = ι1ω ι2 where each ιi is in I and ω
is in W.

The proof will be constructive. To replace the elementary row and column operations of the Bruhat
factorization, we require here certain elementary Iwahori operations on columns:

• add to a column d a multiple xc of a previous column c by some x in o;

• add to a column c a multiple xd of a subsequent column by x in p;
• multiply a column by a unit in o;

and also on rows:
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• add to a row c a multiple xd of a subsequent row d with x in o;
• add to a row d a multiple xc of a previous row with x in p;

• multiply a row by a unit in o;

Each of these column (row) operations amounts to right (resp. left) multiplication by what I’ll call an
Iwahori matrix .

Here are some examples: [
1 x
0 1

] [
u
v

]
=

[
u+ xv

v

]

[
1 0

̟x 1

] [
u
v

]
=

[
u

̟xu + v

]

[u v ]

[
1 x
0 1

]
= [u xu+ v ]

[u v ]

[
1 0

̟x 1

]
= [u+̟xv v ] .

The proof will now proceed by explaining exactly what elementary Iwahori operations will carry out the

reduction we want. This will take several steps.

Step 1. Thje starting point is the Cartan factorization of an element of GLn(k), say g = k1ak2, with a in

A++, which we do know how how to compute explicitly.

Step 2. We also know how to apply Proposition 13.3 to k1 and k2, to get

g = ι1w1b1ab2w2ι2 .

We may ignore the outer factors, and must now embed w1b1ab2w2 into some IawI .

Step 3. We can write the inner product in the form

w1a ·a
−1b1ab2w2 .

Since a is in A++, a−1
0 p1a lies in B(o). We can express this in the form

w1abw2 .

I switch to get the form

aw1bw2 .

Step 4. In order to apply induction, it will be best to formulate a slight generalization of the problem we
are facing. Suppose a in A, x and y in W , ι in I . How can we embed axιy in some IωI with ω in W?

Step 5. We can factor ι = nb with b in B. Then by = y ·y−1by and y−1by is in I . So we are back to the

case axny with n in N(o).

Step 6. We go by induction on m = ℓ(y). If y = 1, there is no problem, since awn lies in WI .

Otherwise, y can be expressed as sz with ℓ(z) = m − 1 and s equal to some si. We now rewrite in the

form

aws ·s−1ns ·z .

Denoting ws by w, we are next going to embed aw · s−1ns in some IωI . I switch this to the form

wa ·s−1ns, and we can apply the induction hypothesis.

Step 7. We can factor n as uv, with u in the same copy of GL2 as s, and s−1vs in I . So we are reduced

to the case wan with n in that copy of GL2.

Step 8. The element a can be factored as a1a2, in which a1 ∈ A lies in the copy of GL2 in which s
lies, and a1 commutes with this copy. We can also write w = w1w2, with w2 in that copy of GL2 and
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ℓ(w) ≥ ℓ(w1). We are now considering w1a1 ·w2w2 ·n, in which the last three terms lie in the copy of
GL2, a1 commutes with that copy, and w1α > 0. Suppose we can factor w2a2n as ι1ωι2 in GL2. Then

w1a1ι1ωι2 = w1ι1a1ωι2 = w1ι1w
−1
12 ·w1a1ωι2 ,

and we are essentially finished (ready to apply induction, as I mentioned).

This concludes the first half of the claim.

I’ll deal with uniqueness in the next section.

14. The affine Bruhat decomposition

Remark. What is special about the group GLn is that there is a very efficient way to find the Cartan

decomposition. For arbitrary reductive groups there is a very general way to carry out Iwahori factor­

izations that involves finding reduced factorizations of elements in the analogue of W. Here we are only
required to factorize elements of W , which is in general far less work. For all split groups, the problem

is reduced to a computation in GL2, as it is here.

Very generally, express IsI ·ItI for s, t simple reflections in S̃.

◦ ————­ ◦

As we shall see, the Iwahori factorization is a basic tool in the representation theory of reductive p­adic

groups.

15. The building

LATTICE FLAGS. A principal lattice flag will be a sequence of lattices

L0 ⊂ L1 ⊂ . . . ⊂ Ln

which reduces to aprincipal flag in Ln/̟Ln. That is to say (a) each Li/Li−1 is isomorphic to F = o/p
and (b) L0 = ̟Ln. Hence:

15.1. Lemma. The group GLn(k) acts transitively on the set of principal lattice flags. The stabilizers of
principal lattice flags are Iwahori subgroups.

Reformulation of Proposition 13.4. Given two lattice flags . . .

For 0 ≤ i ≤ n set

µi = (0, . . . , 0, 1, . . .1)

so that the j­th cooordinate of mui is 0 for j < i, and 1 for j ≥ i. The convex hull is a fundamental

domain for Sn on the unit cube, since we can permute to where xi ≤ xi+1.

Given a basis e = (ei), the lattice flag LFe = (L• determined by it is that for which Li is the span of

̟µie = {e1, . . . , ei, ̟ei+1, . . . , ̟en} .

The basis e is said to be adapted to L•. Such a basis is unique up to multiplication on the right by a

matrix in the Iwahori subgroup—upper triangular modulo p.

Now to prove uniqueness in Proposition 13.4. We follow roughly an argument similar that for uniqueness
in the Bruhat decomposition can be used. This version uses the volume of Li∩Lj to construct the profile,

where Lj is the standard lattice flag.

Alcoves for GLn correspond to lattice flags (not obvious). Projection from GLn to PGLn. What is my
goal? I want to give a second way to explain G = IWI . I need a good description of I/I ∩ wIw−1.

Somewhere, point out the complex is that of lattice flags stable under diagonal matrices. Associate

some GL2 to each root, even affine.

Later: length and sizes of quotients of Iwahori groups.

NORMS. Suppose V to be a vector space of dimension n over k. A norm on V is a function ‖v‖ from V
to R≥0 with the following properties:
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(a) for all c in k, v in V ,
‖cv‖ = |c|‖v‖ ;

(b) for all u, v
‖u+ v‖ ≤ sup ‖u‖, ‖v‖ ;

(c) ‖v‖ = 0 if and only if v = 0.

Supose L to be a lattice. Define

‖v‖L = sup
v/c∈L

|c| .

15.2. Lemma. The function ‖v‖L is a norm on V .

For example, fix the standard basis ei of kn. Then for the lattice ̟mon with basis (̟miei) we have

‖v‖ = supi|vi/̟
mi | = sup |vi|q

mi .

It is often convenient to use instead the additive norm ord(x) = logq |x|, so that this becomes

ordm(v) = infi(ord(vi) +mi) .

This suggests the following generalization. For any r in Rn define

ordr(v) = infi(ord(vi) + ri) ,

and then set ‖v‖r = q−ordr(v). If the ri are all integers then this is the norm associated to the lattice

̟ron.

15.3. Proposition. For any r in Rn the function ‖v‖r is a norm. Every norm is the one associated to some
basis and some r in R

n.

Neiher basis nor r is unique. We shall understand this much better shortly.

15.4. Proposition. For r in the convex hull of the µi the norm ‖v‖e,r is independent of the adapted basis
e.

This gives a triangulation of Rn, since every point lies inside the transform of this simplex by a unique
element of W.

Unit cube, Sn.
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