The Gamma function

Bill Casselman University of British Columbia cass@math.ubc.ca

I attempt here a somewhat unorthodox introduction to the Gamma function. My principal references here are [Schwartz:1965]. and [Tate:1950/1967].

Contents

1.	Characters as distributions	1
2.	Parties finies	6
3.	The Gamma function	8
4.	The volumes and areas of spheres	9
5.	Tate's functional equation	10
6.	The Beta function	13
7.	The limit product formula	14
8.	The reflection formula	16
9.	The Euler-Maclaurin formula	16
10.	Stirling's formula	18
11.	References	19

1. Characters as distributions

The Schwartz space $\mathcal{S}(\mathbb{R})$ is the space of all smooth functions f on \mathbb{R} such that

$$f^{(n)}(x) \ll (1+|x|)^{-N}$$

for all $n, N \ge 0$ or, equivalently, for which

$$||f||_{N,n} = \sup_{\mathbb{R}} (1+|x|)^N |f^{(n)}(x)| < \infty$$

for all non-negative integers N, n. It is a Fréchet space with these semi-norms. It contains as closed subspaces the spaces $S(0,\infty)$ (resp. $S(-\infty,0)$) of functions that vanish identically for $x \leq 0$ (resp. $x \geq 0$), and as quotient the space $S[0,\infty)$ made up of restrictions to $[0,\infty)$.

The following elementary result will be useful many times:

1.1. Lemma. If f is a smooth function defined in a neighbourhood U of 0 in \mathbb{R} , then for any m it may be expressed as

$$f(x) = \sum_{k < m} f^{(k)}(0) \frac{x^k}{k!} + x^m f_m(x)$$

where f_m is a smooth function defined on U.

Proof. The fundamental theorem of calculus tells us that

$$f(x) - f(0) = \int_0^x f'(s) \, ds$$

An easy estimate tells us that the integral is O(x), but a simple trick will do better. If we set s = tx this equation becomes

$$f(x) = f(0) + x \int_0^1 f'(tx) \, dt$$

and the integral

$$f_1(x) = \int_0^1 f'(tx) \, dt$$

is a smooth function of x. Induction gives us

$$f(x) = \sum_{k < m} c_k x^k + x^m f_m(x)$$

with $f_m(x)$ smooth. An easy calculation tells us that $c_k = f^{(k)}(0)/k!$.

THE SCHWARTZ SPACE OF THE POSITIVE REALS.

1.2. Proposition. The space $S(0, \infty)$ is that of all f in $C^{\infty}(0, \infty)$ such that

$$x^N f^{(n)}(x)$$

is bounded on $(0, \infty)$ for all $n \ge 0, N \in \mathbb{Z}$.

Proof. Suppose f to lie in $S(0, \infty)$. Since f is in $S(\mathbb{R})$, $x^N f^{(n)}(x)$ is bounded for $N \ge 0$. But Lemma 1.1 implies that it remains true for $N \le 0$. So the condition on f is necessary.

As for sufficiency, it must be shown that if this equation holds for all $n, N \ge 0$ then f extends to a function smooth on all of \mathbb{R} vanishing on $(-\infty, 0]$. This is immediate from the definition of smoothness.

Let *D* be the multiplicative derivative xd/dx.

1.3. Corollary. The space $S(0,\infty)$ is the same as that of all f in $C^{\infty}(0,\infty)$ such that

$$x^N[D^n f](x)$$

is bounded on $(0,\infty)$ for all $n \ge 0$, $N \in \mathbb{Z}$.

1.4. Corollary. For any *s* in \mathbb{C} multiplication by x^s is an isomorphism of $\mathcal{S}(0,\infty)$ with itself.

Proof. This follows from Leibniz's formula for $(x^s f)^{(n)}$.

For every s in \mathbb{C} the integral

$$\langle \Phi_s, f \rangle = \int_0^\infty x^s f(x) \, \frac{dx}{x}$$

defines therefore a continuous linear functional on $S(0, \infty)$ —in effect a distribution.

The multiplicative group $\mathbb{R}_{>0}^{\times}$ of positive real numbers acts on both of the spaces $\mathcal{S}(\mathbb{R})$ and $\mathcal{S}(0,\infty)$, as well as on their continuous linear duals, by the formulas:

$$\mu_a f(x) = f(a^{-1}x), \quad \langle \mu_a \Phi, f \rangle = \langle \Phi, \mu_{a^{-1}}f \rangle.$$

The scale factor a^{-1} rather than a has been chosen for compatibility with linear representations of nonabelian groups. The Lie algebra of $\mathbb{R}_{>0}^{\times}$ is spanned by the differential operator D = xd/dx, and the representations are smooth in the sense that

$$\lim_{h \to 0} \frac{\mu_{1+h}f - f}{h} = -Df$$

in $\mathcal{S}(\mathbb{R})$. The – sign here comes about because of the choice of a^{-1} rather than a. It will continue to annoy.

Differential operators act on distributions. If Φ is a smooth function on $(0, \infty)$ then integration by parts implies that

$$\langle \Phi', f \rangle = -\langle \Phi, f' \rangle$$

so we extend the definition of derivative to distributions accordingly. Hence

$$\langle L\Phi, f \rangle = \langle \Phi, L^*f \rangle$$

for any differential operator L, where L^* is its formal adjoint.

1.5. Proposition. The distribution Φ_s on $S(0, \infty)$ is an eigendistribution for μ_a with eigencharacter a^{-s} . Furthermore $D\Phi_s = s\Phi$.

Proof. We have

so that $\mu_a \Phi_s = a^{-s} \Phi_s$ as a distribution (as well as a function). As for the second claim:

$$\begin{split} \langle D\Phi_s, f \rangle &= -\langle \Phi_s, Df \rangle \\ &= -\int_0^\infty x^s f'(x) \, dx \\ &= s \int_0^\infty x^{s-1} f(x) \, dx \\ &= s \langle \Phi_s, f \rangle \end{split}$$

This concludes the proof of the Lemma.

There is a converse to this claim, and there is also a uniqueness theorem for eigendistributions. If f lies in $S(0, \infty)$, its **Mellin transform** is

$$f(s) = \langle \Phi_s, f \rangle.$$

It is uniformly bounded on any horizontally bounded strip $|RE(s) \leq C$. It is also holomorphic in all of \mathbb{C} , and

$$\widehat{Df} = s\widehat{f}.$$

It therefore belongs to the space $PW(0, \infty)$, the space of all function F(s) holomorphic on all of \mathbb{C} such that $(1 + |IM(s)|)^N |F(s)|$ is bounded on any horizontal strip $|RE(s) \leq C$, for all $N \geq 0$.

1.6. Proposition. The map $f \mapsto \hat{f}$ is an isomorphism of $\mathcal{S}(0,\infty)$ with $PW(0,\infty)$.

Proof. One way is because $D\Phi_s = s\Phi_s$. The other way involves shifting contours.

For any fixed s_0 the image in $\mathcal{M}(0, \infty)$ of multiplication by $s - s_0$ is the subspace of F such that $F(s_0) = 0$, which is of codimension one. Hence the quotient $\mathcal{S}(0, \infty)/(D - s)\mathcal{S}(0, \infty)$ is isomorphic to \mathbb{C} , and

1.7. Corollary. The space of distributions on $(0, \infty)$ such that $D\Phi = s\Phi$ is spanned by Φ_s .

1.8. Corollary. The space of distributions on $(0, \infty)$ such that $\mu_a \Phi = a^{-s} Phi$ for all a in $\mathbb{R}_{>0}^{\times}$ is spanned by Φ_s .

THE SCHWARTZ SPACE OF THE NON-NEGATIVE REALS. Now define $S[0, \infty)$ to be the space of restrictions to the closed half-line $[0, \infty)$ of functions in $S(\mathbb{R})$. It may be identified with the quotient $S(\mathbb{R})/S(-\infty, 0)$. The space $S(0, \infty)$ is embedded in it, and again the multiplicative group acts smoothly on it.

Does there exist an eigendistribution on $S[0,\infty)$ extending Φ_s ? An affirmative answer follows from:

Π

Π

1.9. Proposition. For $\operatorname{RE}(s) > 0$

$$\int_0^\infty x^s f(s) \, \frac{dx}{x} == \frac{(-1)^{n+1}}{s(s+1)\dots(s+n)} \int_0^\infty x^{s+n} f^{(n+1)}(x) \, dx \, .$$

Proof. Integration by parts give us

$$\begin{split} \langle \Phi_s, f \rangle &= \int_0^\infty x^s f(x) \, \frac{dx}{x} \\ &= \int_0^\infty x^{s-1} f(x) \, dx \\ &= \left[\frac{f(x)x^s}{s} \right]_0^\infty - \frac{1}{s} \int_0^\infty x^s f'(x) \, dx \\ &= -\frac{1}{s} \int_0^\infty x^{s+1} f'(x) \, \frac{dx}{x} \\ &= -\frac{1}{s} \langle \Phi_{s+1}, f' \rangle \end{split}$$

and continuing:

$$= \frac{1}{s(s+1)} \langle \Phi_{s+2}, f'' \rangle$$

...
$$= \frac{(-1)^{n+1}}{s(s+1)\dots(s+n)} \langle \Phi_{s+(n+1)}, f^{(n+1)} \rangle.$$

As a consequence, Φ_s may be defined on $S[0, \infty)$ for all s not in $-\mathbb{N}$. Thus for every s not in $-\mathbb{N}$ we have an eigendistribution with eigencharacter x^{-s} . Is it unique? What happens for s = -n? Set s = -n + hin the Lemma. We get

(1.10)
$$\langle \Phi_s, f \rangle = \frac{-1}{(n-h)(n-1-h)\dots(1-h)h} \int_0^\infty x^h f^{(n+1)}(x) \, dx$$

Thus $(s+n)\langle \Phi_s, f \rangle$ as $s \to -n$ has limit

$$-\frac{1}{n!}\int_0^\infty f^{(n+1)}(x)\,dx = \frac{f^{(n)}(0)}{n!}\,.$$

The distribution δ_0 is defined to take f to f(0). Its derivative $\delta_0^{(n)}$ takes f to $(-1)^n f^{(n)}(0)$. The residue of Φ_s at s = -n is therefore $(-1)^n \delta_0^{(n)} / n!$.

1.11. Lemmma. The distribution $\delta_0^{(n)}$ is an eigendistribution for the character a^n .

Proof. Since
$$f^{(n)}(ax) = a^n f^{(n)}(ax)$$

In other words, the character Φ_s fails to be defined precisely when another eigencharacter arises. One way to understand the situation is by considering the short exact sequence

$$0 \to \mathcal{S}(0,\infty) \to \mathcal{S}[0,\infty) \to \mathbb{C}[[x]] \to 0$$

where the last map is that taking *f* to its Taylor series at 0, surjective by a classic theorem of Émile Borel. If T = D - sI this gives rise to a long exact sequence

$$\begin{split} 0 &\to \mathcal{S}(0,\infty)(T) \to \mathcal{S}[0,\infty)(T) \to \mathbb{C}[[x]](T) \\ &\to \mathcal{S}(0,\infty)/T \cdot \mathcal{S}(0,\infty) \to \mathcal{S}[0,\infty)/T \cdot \mathcal{S}(0,\infty) \to \mathbb{C}[[x]]/T \cdot \mathbb{C}[[x]] \to 0 \,. \end{split}$$

Here V(T) is the subspace of v in V such that Tv = 0. The first two terms are always 0. When s does not belong to $-\mathbb{N}$, the third and sixth terms vanish, but when s does belong to $-\mathbb{N}$ they are both of dimension one.

1.12. Proposition. The distribution Φ_s on $S[0, \infty)$ is meromorphic on all of \mathbb{C} with residue $(-1)^n \delta_0^{(n)}/n!$ at n. For each s not in $-\mathbb{N}$ it is the unique eigendistribution on $S[0, \infty)$ for the character a^s . For s in $-\mathbb{N}$ the distribution $\delta_0^{(n)}$ spans the space of eigendistributions for a^n .

Any function in $S[0,\infty)$ corresponds to the function (sometimes called its **Mellin transform**)

$$\widehat{f}(s) = \langle \Phi_s, f \rangle \,.$$

1.13. Proposition. The function \hat{f} is meromorphic on \mathbb{C} with simple poles on $-\mathbb{N}$. In any bounded vertical strip $|\text{RE}(s)| \leq C$ away from the real axis it is uniformly rapidly decreasing as a function of IM(s).

This is because $D\Phi_s = s\Phi_s$. It is not hard to show that, conversely, any function satisfying these conditions is \hat{f} for some f in $\mathcal{S}[0,\infty)$.

I want now to look at (1.10) again. It can be rewritten and expanded in powers of *h*:

$$\begin{split} \langle \Phi_s, f \rangle &= -\frac{1}{h} \cdot \frac{1}{n!} \cdot \frac{1}{(1 - h/n)(1 - h/n - 1)\dots(1 - h)} \cdot \int_0^\infty e^{h \log x} f^{(n+1)}(x) \, dx \\ &= -\frac{1}{h} \cdot \frac{1}{n!} \cdot \left(1 + h \Lambda_n + O(h^2)\right) \cdot \left(\int_0^\infty f^{(n+1)}(x) \, dx + h \int_0^\infty (\log x) f^{(n+1)}(x) \, dx + O(h^2)\right) \end{split}$$

with

$$\Lambda_n = 1 + 1/2 + 1/3 + \dots + 1/n$$
.

We have already seen that the leading term is $f^{(n)}(0)/n!$, and now we see that the second term in the expansion is

$$-\frac{1}{n!} \left(\Lambda_n f^{(n)}(0) + \int_0^\infty (\log x) f^{(n+1)}(x) \, dx \right) \, .$$

The integral can be expressed also as the limit as $\varepsilon \to 0$ of

$$\int_{\varepsilon}^{\infty} f^{(n+1)}(x) \log x \, dx = \left[f^{(n)}(x) \log x \right]_{\varepsilon}^{\infty} - \int_{\varepsilon}^{\infty} \frac{f^{(n)}(x)}{x} \, dx$$
$$= -f^{(n)}(\varepsilon) \log \varepsilon - \int_{\varepsilon}^{\infty} \frac{f^{(n)}(x)}{x} \, dx$$
$$= -f^{(n)}(0) \log \varepsilon - \int_{\varepsilon}^{\infty} \frac{f^{(n)}(x)}{x} \, dx \, ,$$

since $f(\varepsilon) - f(0) = O(\varepsilon)$ and $\lim_{\varepsilon \to 0} \varepsilon \log \varepsilon = 0$. The second term in the Laurent expansion of $\langle \Phi_s, f \rangle$ at s = -n is therefore also

(1.14)
$$\frac{1}{n!} \cdot \lim_{\varepsilon \to 0} \left(f^{(n)}(0) \log \varepsilon - \Lambda_n f^{(n)}(0) + \int_{\varepsilon}^{\infty} \frac{f^{(n)}(x)}{x} \, dx \right)$$

THE SCHWARTZ SPACE OF THE REAL LINE. The full multiplicative group \mathbb{R}^{\times} acts on its own Schwartz space $S(\mathbb{R}^{\times})$, the subspace of functions in $S(\mathbb{R})$ whose Taylor series at 0 vanish. We now have distributions

$$\langle \Phi_s^{[m]}, f \rangle = \int_{-\infty}^{\infty} f(x) |x|^s \operatorname{sgn}^m(x) \frac{dx}{|x|}$$

for RE(s) > 0 and m = 0, 1, which are again eigen-distributions:

$$\mu_a \Phi_s^{[m]} = \operatorname{sgn}^m(a) |a|^{-s} \Phi_s^{[m]}.$$

We can express

$$\int_{-\infty}^{\infty} f(x)|x|^{s} \operatorname{sgn}^{m}(x) \frac{dx}{|x|} = (-1)^{m} \int_{-\infty}^{0} x^{s} f(x) \frac{dx}{|x|} + \int_{0}^{\infty} x^{s} f(x) \frac{dx}{x}$$
$$= (-1)^{m} \int_{0}^{\infty} x^{s} f(-x) \frac{dx}{x} + \int_{0}^{\infty} x^{s} f(x) \frac{dx}{x}$$
$$= \langle \Phi_{s}, f \rangle + (-1)^{m} \langle \Phi_{s}, f^{-} \rangle$$
$$= \frac{(-1)^{n}}{s(s+1) \dots (s+n-1)} \langle \Phi_{s+n}, f^{(n)} + (-1)^{m} (f^{-})^{(n)} \rangle$$

which means that $\Phi_s^{[m]}$ extends equivariantly and meromorphically to $\mathcal{S}(\mathbb{R})$ over all of \mathbb{C} with residue

$$\left((-1)^m + (-1)^n\right) \frac{\delta_0^{(n)}}{n!}$$

at -n. In particular, there is no pole if the parity of m is different from the parity of n. In this case, because of (1.14) we get as value at -n

$$\langle \Pr(1/x^{n+1}), f \rangle = \frac{1}{n!} \int_0^\infty \left[\frac{f^{(n)}(x) - f^{(n)}(-x)}{x} \right] dx$$

which always makes sense because the integrand is still a smooth function. For reasons we'll see in a moment this is called the **finite part** of $1/x^{n+1}$. This defines an extension to $S(\mathbb{R})$ of the integral

$$\int_{\mathbb{R}} |x|^{-n-1} \operatorname{sgn}^{n-1}(x) f(x) \, dx = \int_{\mathbb{R}} x^{-(n+1)} f(x) \, dx \, .$$

on \mathbb{R}^{\times} .

2. Parties finies

In order to understand the nature of certain eigenfunctions of D on \mathbb{R} , I now recall the notion of 'parties finies', introduced in [Hadamard:1923] in order to understand classical techniques for solving the wave equation in high dimensions.

The first important observation is that the Dirac distributions are eigendistributions. For $n \ge 0$

$$D\delta_0^{(n)} = -n\,\delta_0^{(n)}\,.$$

There is, however, another distribution Φ such that $D\Phi = -n\Phi$.

2.1. Proposition. *We have*

$$\mu_a Pf(1/x^{n+1}) = a^n sgn(a) Pf(1/x^{n+1})$$
$$D Pf(1/x^{n+1}) = -n Pf(1/x^{n+1})$$
$$(d/dx) Pf(1/x^n) = -n Pf(1/x^{n+1}).$$

The two distributions $\delta_0^{(n)}$ and $Pf(1/x^{n+1})$ span the space of eigendistributions Φ on \mathbb{R} such that $D\Phi = -m\Phi$, or (equivalently) $\mu_a \Phi = a^m \Phi$, but they are distinguished by what μ_{-1} does to them:

$$\mu_{-1}\delta_0^{(n)} = (-1)^n \delta_0^{(n)}, \quad \mu_{-1} \operatorname{Pf}(1/x^{n+1}) = -(-1)^n \operatorname{Pf}(1/x^{n+1}).$$

This has to be, of course, since a cohomological argument like the one we saw earlier shows that there at most one \mathbb{R}^{\times} -equivariant extension to all of $\mathcal{S}(\mathbb{R})$ of the distribution which on $\mathcal{S}(\mathbb{R}^{\times})$ is given by the formula

$$\int_{-\infty}^{\infty} \frac{f(x)}{x^{n+1}} \, dx \, .$$

I'll say more here about the construction of *parties finies* distributions. Suppose f in $\mathcal{S}(\mathbb{R})$, and let

$$f(x) = f_0 + f_1 x + f_2 x^2 + \cdots$$

be its Taylor series at 0, so $f_m = f^{(m)}(0)/m!$. Then

$$\varphi_n(x) = \frac{f - (f_0 + xf_1 + \dots + f_n x^n)}{x^{n+1}}$$

is still smooth throughout \mathbb{R} , although no longer in in $\mathcal{S}(\mathbb{R})$. Then

$$\int_{\varepsilon}^{\infty} \frac{f(x)}{x^{n+1}} dx = \int_{\varepsilon}^{1} \frac{f(x)}{x^{n+1}} dx + \int_{1}^{\infty} \frac{f(x)}{x^{n+1}} dx$$
$$= \int_{\varepsilon}^{1} \frac{f_0 + f_1 x + \dots + f_n x^n}{x^{n+1}} dx + \int_{\varepsilon}^{1} \varphi_n(x) dx + \int_{1}^{\infty} \frac{f(x)}{x^{n+1}} dx$$

The last integral is independent of ε . As $\varepsilon \to 0$, the second integral has a finite limit. The first integral is

$$\left[-\frac{f_0}{nx^n} - \frac{f_1}{(n-1)x^{n-1}} - \dots - f_n \log x \right]_{\varepsilon}^1$$

= $-\frac{f_0}{n} - \frac{f_1}{(n-1)} - \dots - f_{n-1} + \frac{f_0}{n\varepsilon^n} + \frac{f_1}{(n-1)\varepsilon^{n-1}} + \dots + f_n \log \varepsilon$

Therefore the limit

$$\lim_{\varepsilon \to 0} \int_{\varepsilon}^{\infty} \frac{f(x)}{x^{n+1}} \, dx - \left(\frac{f_0}{n\varepsilon^n} + \frac{f_1}{(n-1)\varepsilon^{n-1}} + \dots + f_n \log \varepsilon\right)$$

exists, and agrees with $Pf(1/x^{n+1})$.

The distribution $Pf(1/x^{n+1})$ on $[0, \infty)$ does not behave equivariantly with respect to scalar multiplication, because of the $\log \varepsilon$ term. But on \mathbb{R} the finite part is

$$\lim_{\varepsilon \to 0} \left(\int_{-\infty}^{\varepsilon} \frac{f(x)}{x^{n+1}} \, dx + \int_{\varepsilon}^{\infty} \frac{f(x)}{x^{n+1}} \, dx \right) - \left(\sum_{\substack{k=1\\k \text{ odd}}}^{n} \frac{2f_{n-k}}{k\varepsilon^k} \right),$$

and it does behave well, because on $(-\infty, 0] \log \varepsilon$ is replaced by $\log |\varepsilon|$.

3. The Gamma function

One function in $S[0,\infty)$ is the restriction of $f(x) = e^{-x}$ to $[0,\infty)$. The Gamma function is defined to be the integral

$$\Gamma(s) = \int_0^\infty x^s e^{-x} \frac{dx}{x} = \langle \Phi_s, e^{-x} \rangle.$$

for RE(s) > 0. The argument extending Φ_s in the last section is classical in this case. Since here f'(x) = -f(x), we have the functional equation

$$\Gamma(s+1) = s\,\Gamma(s)$$

and since $\Gamma(1) = 1$, we see by induction that if *s* is a positive integer *n*

$$\Gamma(n) = (n-1)!$$

The extension formula can be rewritten as

$$\Gamma(s) = \frac{\Gamma(s+1)}{s}$$

so that we can extend the definition of $\Gamma(s)$ to the region $\operatorname{RE}(s) > -1$, except for s = 0. And so on. More explicitly we have

$$\Gamma(s) = \frac{\Gamma(s+n+1)}{(s+n)(s+n-1)\dots(s+1)s}$$

which allows $\Gamma(s)$ to be defined for $\operatorname{RE}(s) > -n - 1$, except at the negative integers, where it will have simple poles (of order one).

Proposition. For $n \ge 0$ the residue of $\Gamma(s)$ at -n is $(-1)^n/n!$

Another formula for $\Gamma(s)$ can be obtained by a change of variables $t = \pi x^2$:

$$\Gamma(s) = 2\pi^s \int_0^\infty e^{-\pi x^2} x^{2s} \frac{dx}{x}$$

which can also be written as

$$\Gamma\left(\frac{s}{2}\right) = \pi^{s/2} \int_{-\infty}^{\infty} |x|^s e^{-\pi x^2} \frac{dx}{|x|}$$

or

$$\pi^{-s/2} \Gamma\left(\frac{s}{2}\right) = \int_{-\infty}^{\infty} |x|^s e^{-\pi x^2} \frac{dx}{|x|}.$$

This function of *s* is often expressed as $\zeta_{\mathbb{R}}(s)$ because of its role in functional equations of ζ functions.

4. The volumes and areas of spheres

If we set s = 1 in the formula for $\zeta_{\mathbb{R}}$ at the end of the last section, we get

$$\pi^{-1/2}\Gamma\left(\frac{1}{2}\right) = \int_{-\infty}^{\infty} e^{-\pi x^2} \, dx \, .$$

The integral on the right cannot be evaluated as an improper integral, but there is a well known trick one can use to evaluate the infinite integral. We move into two dimensions. We can shift to polar coordinates and get

$$\left(\int_{\mathbb{R}} e^{-\pi x^2} dx\right)^2 = \int_{\mathbb{R}} e^{-\pi x^2} dx \cdot \int_{\mathbb{R}} e^{-\pi y^2} dy$$
$$= \int_{\mathbb{R}^2} e^{-\pi (x^2 + y^2)} dx dy$$
$$= \int_0^\infty dr \int_0^{2\pi} e^{-\pi r^2} r d\theta$$
$$= \int_0^\infty 2\pi r e^{-\pi r^2} dr$$
$$= \int_0^\infty 2\sqrt{\pi} r e^{-\pi r^2} dr$$
$$= \int_0^\infty e^{-\pi r^2} (2\pi r) dr$$
$$= \int_0^\infty e^{-s} ds$$
$$= 1,$$

so $\pi^{-1/2}\Gamma(1/2) = 1$, and $\Gamma(1/2) = \sqrt{\pi}$.

We can use this formula and the same trick to find a formula for the volumes of spheres in n dimensions. Let S_{n-1} be the volume of the unit sphere in \mathbb{R}^n . Then

$$\left(\int_{\mathbb{R}} e^{-\pi x^2} dx\right)^n = 1$$

= $\int_{\mathbb{R}^n} e^{-\pi r^2} dx_1 \dots dx_n$
= $\int_0^\infty S_{n-1} r^{n-1} e^{-\pi r^2} dr$
= $\int_0^\infty S_{n-1} r^n e^{-\pi r^2} \frac{dr}{r}$
= $S_{n-1} \frac{1}{2} \pi^{-n/2} \Gamma(n/2)$.
 $S_{n-1} = \frac{2\pi^{n/2}}{\Gamma(n/2)}$.

For example, the area of the two-sphere in \mathbb{R}^3 is

$$S_2 = \frac{2\pi^{3/2}}{\Gamma(3/2)} = \frac{2\pi^{3/2}}{\pi/2} = 4\pi.$$

The volume of the *n*-ball of radius R in \mathbb{R}^n is

$$V_n(R) = \int_0^R S_{n-1} r^{n-1} \, dr = \frac{S_{n-1}R^n}{n} \, .$$

5. Tate's functional equation

Now I introduce the Fourier transform and its interaction with the multiplicative group. For f in $S(\mathbb{R})$ its Fourier transform is

$$\widehat{f}(\lambda) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i \lambda x} dx$$

and this defines an isomorphism of $\mathcal{S}(\mathbb{R})$ with itself. The inverse is

$$f(x) = \int_{-\infty}^{\infty} \widehat{f}(x) e^{2\pi i \lambda x} \, dx$$

Another way to express this is that $\hat{\hat{f}} = \mu_{-1}f$.

How do the Fourier transform and the multiplication operators interact?

5.1. Proposition. For $a \neq 0$

$$\widehat{\mu_a f} = |a| \,\mu_{a^{-1}} \widehat{f} \,.$$

Proof. Because

$$\widehat{\mu_a f}(\lambda) = \int_{-\infty}^{\infty} [\mu_a f](x) e^{-2\pi i \lambda x} dx$$
$$= \int_{-\infty}^{\infty} f(a^{-1}x) e^{-2\pi i \lambda x} dx$$
$$= |a| \int_{-\infty}^{\infty} f(y) e^{-2\pi i \lambda a y} dy$$
$$= |a| \mu_{a^{-1}} \widehat{f}(\lambda) . \square$$

The Fourier transform $\widehat{\Phi}$ of a distribution Φ is defined by

$$\langle \widehat{\Phi}, f \rangle = \langle \Phi, \widehat{f} \rangle.$$

This, as an easy calculation will show, agrees with the definition the Fourier transform on $\mathcal{S}(\mathbb{R})$. Suppose χ to be a multiplicative character. The distribution $\Phi = \Phi_{\chi}$ is defined by

$$\langle \Phi_{\chi}, \rangle = \int_{\mathbb{R}} \chi(x) f(x) \, \frac{dx}{x}$$

defined by convergence for certain χ and extended meromorphically. What is the Fourier transform of Φ ? Since $\mu_a \Phi_{\chi} = \chi^{-1}(a) \Phi_{\chi}$ we have

$$\begin{split} \langle \mu_a \widehat{\Phi}, f \rangle &= \langle \widehat{\Phi}, \mu_{a^{-1}} f \rangle \\ &= \langle \Phi, \widehat{\mu_{a^{-1}}} f \rangle \\ &= \langle \Phi, |a|^{-1} \mu_a \widehat{f} \rangle \\ &= |a|^{-1} \langle \mu_{a^{-1}} \Phi, \widehat{f} \rangle \\ &= |a|^{-1} \chi(a) \langle \Phi, \widehat{f} \rangle \\ &= |a|^{-1} \chi(a) \langle \widehat{\Phi}, f \rangle \end{split}$$

so because of uniqueness $\widehat{\Phi}$ must be a scalar multiple $\gamma_{\chi} \Phi_{\widetilde{\chi}}$ where $\widetilde{\chi}(a) = |a|\chi^{-1}(a)$. To calculate the scalar γ_{χ} explicitly, we calculate first the Fourier transform of some particular functions.

5.2. Lemma. The Fourier transform of $e^{-\pi x^2}$ is itself. Proof. Let $f(x) = e^{-\pi x^2}$. Then

$$\widehat{f}(\lambda) = \int_{-\infty}^{\infty} e^{-2\pi i\lambda x - \pi x^2} dx$$
$$= e^{-\pi\lambda^2} \int_{-\infty}^{\infty} e^{\pi\lambda^2 - 2\pi i\lambda x - \pi x^2} dx$$
$$= e^{-\pi\lambda^2} \int_{-\infty}^{\infty} e^{-\pi (x - i\lambda)^2} dx$$
$$= e^{-\pi\lambda^2} \int_{-\infty}^{\infty} e^{-\pi x^2} dx$$
$$= e^{-\pi\lambda^2} . \blacksquare$$

Let now $\chi(x) = |x|^s$, $\Phi = \Phi_{\chi}$. Then

$$\begin{split} \langle \widehat{\Phi}, e^{-\pi x^2} \rangle &= \langle \Phi, e^{-\pi x^2} \rangle \\ &= \int_{-\infty}^{\infty} |x|^s e^{-\pi x^2} \frac{dx}{|x|} \\ &= \pi^{-s/2} \int_{-\infty}^{\infty} |x|^s e^{-x^2} \frac{dx}{|x|} \\ &= \pi^{-s/2} \Gamma(s/2) \\ &= \zeta_{\mathbb{R}}(s) \,. \end{split}$$

Since $\widetilde{\chi} = |x|^{1-s}$:

5.3. Proposition. We have

where

$$\gamma_s = \frac{\zeta_{\mathbb{R}}(s)}{\zeta_{\mathbb{R}}(1-s)} \,.$$

 $\widehat{\Phi}_{s,0} = \gamma_s \Phi_{1-s,0}$

This formula isn't quite right for values of s where $\Phi_{s,0}$ or $\Phi_{1-s,0}$ have poles. The simplest way to formulate things is to observe that $\Phi_{s,0}/\zeta(s)$ is entire, and that this formula says that the Fourier transform of $\Phi_{s,0}/\zeta_{\mathbb{R}}(s)$ is $\Phi_{1-s,0}/\zeta_{\mathbb{R}}(1-s)$.

We can reason similarly for $|x|^s \operatorname{sgn}(x)$ with $x e^{\pi x^2}$.

5.4. Proposition. The Fourier transform of $xe^{-\pi x^2}$ is $-i\lambda e^{-\pi \lambda^2}$.

Proof. Differentiate the equation

$$\int_{-\infty}^{\infty} e^{-\pi x^2} e^{-2\pi i \lambda x} \, dx = e^{-\pi \lambda^2}$$

with respect to λ .

Therefore

$$\widehat{\langle \Phi_{s,1}, xe^{-\pi x^2} \rangle} = \langle \Phi_{s,1}, -ixe^{-\pi x^2} \rangle$$
$$= -i \int_{\mathbb{R}} |x|^{s-1} \operatorname{sgn}(x) xe^{-\pi x^2} dx$$
$$= -i \int_{\mathbb{R}} |x|^s e^{-\pi x^2} dx$$
$$= -i \zeta_{\mathbb{R}} (1+s)$$
$$\langle \Phi_{1-s,1}, xe^{-\pi x^2} \rangle = \zeta_{\mathbb{R}} (1+(1-s))$$

and hence:

5.5. Proposition. We have

$$\widehat{\Phi}_{s,1} = \lambda_s \Phi_{1-s,1}$$

where

$$\lambda_s = -i \frac{L_{\mathbb{R}}(s)}{L_{\mathbb{R}}(1-s)}, \quad L_{\mathbb{R}}(s) = \pi^{-(s+1)/2} \Gamma\left(\frac{s+1}{2}\right).$$

I conclude with a useful calculation, then I examine some special cases.

5.6. Proposition. Suppose Φ to be a tempered distribution on \mathbb{R} . Then

- (a) the Fourier transform of Φ' is $2\pi i\lambda \widehat{\Phi}$;
- (b) the Fourier transform of $x\Phi$ is $\widehat{\Phi}'/(-2\pi i)$.

Proof. First assume Φ to be in $S(\mathbb{R})$. The first assertion follows from integration by parts, the second by differentiating

$$\int_{-\infty}^{\infty} \Phi(x) e^{-2\pi i \lambda x} \, dx = \widehat{\Phi}(\lambda)$$

with respect to λ . Proving the assertion for distributions follows from this simpler case. The distributions defined by integrals

$$\int_{\mathbb{R}} x^n f(x) \, dx, \quad \int_{\mathbb{R}} x^n \operatorname{sgn}(x) f(x) \, dx$$

are of particular importance.

5.7. Proposition. For $n \ge 0$

- (a) the Fourier transform of x^n is $\delta_0^{(n)}/(-2\pi i)^n$;
- (b) the transform of $x^n \operatorname{sgn}(x)$ is

$$\frac{2n!}{(2\pi i)^{n+1}}\operatorname{Pf}(1/x^{n+1})\,.$$

As for the first, calculation shows that the transform of 1 is δ_0 . But then by the previous lemma the transform of x^n is $\delta_0^{(n)}/(-2\pi i)^n$.

For the second, we can write $x^n \operatorname{sgn}(x)$ as $|x|^{n+1} \operatorname{sgn}^{n+1}(x)/|x|$, so its transform will be an eigendistribution for $|x|^{-n} \operatorname{sgn}^{n+1} = x^n \operatorname{sgn}(x)$, which means that it is a multiple of $\operatorname{Pf}(1/x^{n+1})$. To compute the constant, let's look at n = 0, where we want the Fourier transform of $\operatorname{sgn}(x)$ itself. Here

$$\langle \widehat{\operatorname{sgn}}, xe^{-\pi x^2} \rangle = \frac{-i}{\pi} = \frac{2}{2\pi i}$$

 $\langle \operatorname{Pf}(1/x), xe^{-\pi x^2} \rangle = 1$

so that the transform of sgn is $(2/2\pi i)$ Pf(1/x). Then

$$\widehat{x^n \operatorname{sgn}(x)} = \frac{1}{(-2\pi i)^n} \frac{2}{2\pi i} \left(\operatorname{Pf}(1/x) \right)^{(n)} = \frac{2n!}{(2\pi i)^{n+1}} \operatorname{Pf}(1/x^{n+1})$$

since $Pf(1/x^n)' = -n Pf(1/x^{n+1})$.

6. The Beta function

The Gamma function appears in a wide variety of integration formulas. One of the most useful is: **6.1. Proposition**. *We have*

$$\int_0^\infty \frac{t^\alpha}{(1+t^2)^\beta} dt = \frac{1}{2} \frac{\Gamma\left(\frac{\alpha+1}{2}\right)\Gamma\left(\beta-\frac{\alpha+1}{2}\right)}{\Gamma(\beta)}$$

Proof. Start with

$$\Gamma(s) = 2 \int_0^\infty e^{-x^2} x^{2s-1} \, dx$$

Moving to two dimensions and switching to polar coordinates:

$$\begin{split} \Gamma(u)\Gamma(v) &= 4 \int \int_{s \ge 0, t \ge 0} e^{-s^2 - t^2} s^{2u-1} t^{2v-1} \, ds \, dt \\ &= 4 \int \int_{r \ge 0, 0 \le \theta \le \pi/2} e^{-r^2} r^{2(u+v)-1} \cos^{2u-1} \theta \sin^{2v-1} \theta \, dr \, d\theta \\ &= 4 \int_{r \ge 0} e^{-r^2} r^{2(u+v)-1} \, dr \, \int_0^{\pi/2} \cos^{2u-1}(\theta) \sin^{2v-1}(\theta) \, d\theta \\ &= \Gamma(u+v) B(u,v) \\ B(u,v) &= \frac{\Gamma(u)\Gamma(v)}{\Gamma(u+v)} \,, \end{split}$$

where

$$B(u,v) = 2 \int_0^{\pi/2} \cos^{2u-1}(\theta) \, \sin^{2v-1}(\theta) \, d\theta \, .$$

If we change variables to $t = tan(\theta)$ we get

$$\theta = \arctan(t)$$
$$d\theta = dt/(1+t^2)$$
$$\cos(\theta) = 1/\sqrt{1+t^2}$$
$$\sin(\theta) = t/\sqrt{1+t^2}$$

leading to

$$\int_0^\infty \frac{t^\alpha}{(1+t^2)^\beta} \, dr = \frac{1}{2} \frac{\Gamma\left(\frac{\alpha+1}{2}\right)\Gamma\left(\beta - \frac{\alpha+1}{2}\right)}{\Gamma(\beta)} \; ,$$

and in particular

$$\Gamma^2(1/2) = \int_{-\infty}^{\infty} \frac{dr}{1+r^2} = \pi, \quad \Gamma(1/2) = \sqrt{\pi}.$$

7. The limit product formula

The exponential function e^{-t} can be approximated by finite products.

Lemma. For any real t we have

$$e^{-t} = \lim_{n \to \infty} \left(1 - \frac{t}{n}\right)^n.$$

This can be seen most easily by taking logarithms since for $0 \leq t < n$

$$\log\left(1-\frac{t}{n}\right)^n = n\log\left(1-\frac{t}{n}\right)$$
$$= n\left(-\left(\frac{t}{n}\right) - \frac{1}{2}\left(\frac{t}{n}\right)^2 - \frac{1}{3}\left(\frac{t}{n}\right)^3 - \dots\right)$$
$$= -t - \frac{t^2}{2n} - \frac{t^3}{3n^2} - \dots$$
$$= -t - T$$

where

$$T = \frac{t^2}{2n} + \frac{t^3}{3n^2} + \dots$$

which converges to 0 as $n \to \infty$.

Another way of putting this is to define

$$\varphi_n(t) = \begin{cases} (1 - t/n)^n & 0 \le t \le n \\ \\ 0 & t > n \end{cases}$$

and then define for each n an approximation $\Gamma_n(s)$ to $\Gamma(s)$:

$$\begin{split} \Gamma_n(s) &= \int_0^\infty t^{s-1} \varphi_n(t) \, dt \\ &= \int_0^n t^{s-1} \left(1 - \frac{t}{n} \right)^n \, dt \end{split}$$

On the one hand, this can be explicitly calculated through repeated integration by parts:

$$\int_0^n t^{s-1} \left(1 - \frac{t}{n}\right)^n dt = \frac{1}{s} \frac{n-1}{n(s+1)} \frac{n-2}{n(s+2)} \dots \frac{1}{n(s+n-1)} \int_0^n t^{s+n-1} dt = \frac{n! n^s}{s(s+1) \dots (s+n)}$$

On the other, since for all fixed t the limit of $\varphi_n(t)$ as $n \to \infty$ is equal to e^{-t} , and both $\varphi_n(t)$ and e^{-t} are small at ∞ , this is at least plausible:

Proposition. For any *s* with $\operatorname{RE}(s) > 1$ the limit of $\Gamma_n(s)$ as $n \to \infty$ is equal to $\Gamma(s)$. In other words, for any *s* in \mathbb{C}

$$\Gamma(s) = \lim_{n \to \infty} \frac{n! n^s}{s(s+1) \dots (s+n)}.$$

The **Euler constant** γ is defined to be the limit

$$\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1} \right) - \log n.$$

The limit product formula implies immediately a limit formula for $1/\Gamma(s)$:

$$\frac{1}{\Gamma(s)} = \lim_{n \to \infty} \left[s \left(1 + \frac{s}{1} \right) \left(1 + \frac{s}{2} \right) \dots \left(1 + \frac{s}{n-1} \right) n^{-s} \right]$$

but

$$n^{-s} = e^{-s\log n} = e^{-s\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1}\right) + s\gamma_n}$$

where $\gamma_n \to \gamma$. Therefore:

Proposition. The inverse Gamma function has the product expansion

$$\frac{1}{\Gamma(s)} = s e^{\gamma s} \prod_1^{\infty} \left(1 + \frac{s}{n}\right) e^{-s/n}$$

where γ is Euler's constant.

The limit product formula also implies Legendre's duplication formula:

$$\Gamma\left(\frac{1}{2}\right)\Gamma(s) = 2^{s-1}\Gamma\left(\frac{s}{2}\right)\Gamma\left(\frac{s+1}{2}\right)$$

Explicitly

$$\Gamma\left(\frac{s}{2}\right) = \lim_{n \to \infty} \frac{2^{n+1}n! n^{s/2}}{s(s+2)\dots(s+2n)}$$
$$\Gamma\left(\frac{s+1}{2}\right) = \lim_{n \to \infty} \frac{2^{n+1}n! n^{s+1/2}}{(s+1)\dots(s+2n+1)}$$

so

$$2^{s} \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s+1}{2}\right) / \Gamma(s)$$

$$= \lim_{n \to \infty} 2^{s} \frac{2^{n+1}n! \, n^{s/2}}{s(s+2) \dots (s+2n)} \frac{2^{n+1}n! \, n^{(s+1)/2}}{(s+1)(s+3) \dots (s+2n+1)} \frac{s(s+1)(s+2) \dots (s+2n)}{(2n)! \, (2n)!}$$

$$= \lim_{n \to \infty} \frac{(n!)^{2}}{(2n)!} \frac{2^{2n+2} n^{1/2}}{(s+2n+1)}$$

$$= \lim_{n \to \infty} \frac{(n!)^{2} 2^{2n+1}}{(2n)! \sqrt{n}}$$

but this last does not depend on s, and is finite since the limit on the left hand side exists, so we may set s = 1/2 to see that it is equal to $2\sqrt{\pi}$.

8. The reflection formula

The formula for the Beta function gives us

$$\Gamma(s)\Gamma(1-s) = \int_0^1 u^{s-1}(1-u)^{-s} du$$

= $\int_0^\infty \frac{v^{s-1}}{1+v} dv \quad (u = v/1 + v, v = (u/1-u), du/(1-u) = (1+v)dv)$

We can calculate this last integral by means of a contour integral in \mathbb{C} . Let *C* be the path determined by these four segments: (1) along the positive real axis, or just above it, from ϵ to *R*; (2) around the circle of radius *R*, counter-clockwise, to the point just below *R*; (3) along and just below the real axis to ϵ ; (4) around the circle of radius ϵ , clockwise, to just above ϵ . We want to calculate the limit of the integral

$$\int_C \frac{z^{s-1}}{1+z} \, dz$$

as $\epsilon \to 0$ and $R \to \infty$.

On the one hand the integrals over the different components converge to

$$\int_0^\infty \frac{z^{s-1}}{1+z} \, dz + 0 - e^{2\pi i s} \int_0^\infty \frac{z^{s-1}}{1+z} \, dz + 0 = (1 - e^{2\pi i s}) \int_0^\infty \frac{z^{s-1}}{1+z} \, dz$$

But on the other there is exactly one pole inside the curves *C*, so the integral is also equal to $-2\pi i e^{\pi i s}$. Therefore

$$\Gamma(s)\Gamma(1-s) = \int_0^\infty \frac{z^{s-1}}{1+z} \, dz = \frac{-2\pi i e^{\pi i s}}{1-e^{2\pi i s}} = \frac{\pi}{\sin \pi s}$$

Incidentally, combined with the product formula for $\Gamma(s)$ this gives the product formula for $\sin \pi s$

$$\sin \pi s = \pi s \prod_{1}^{\infty} \left(1 - \frac{s^2}{n^2} \right)$$

9. The Euler-Maclaurin formula

Define a sequence of polynomials

$$B_0(x) = 1$$

 $B_1(x) = x - 1/2$
 $B_2(x) = x^2 - x + 1/6$
...

recursively determined by

$$B'_{n+1}(x) = nB_n(x), \quad \int_0^1 B_n(x) \, dx = 0.$$

These are the **Bernoulli polynomials**. They determine in turn functions ψ_n by extension to all of \mathbb{R} of period 1.

The following is a simple version of the much more interesting Euler-Maclaurin sum formula:

Proposition. Suppose f to be a function on the interval $[k, \ell]$ which has continuous second derivatives. Then

$$f(k) + f(k+1) + \dots f(\ell-1) = \int_{k}^{\ell} f(x) \, dx - \frac{1}{2} \big(f(\ell) - f(k) \big) + \frac{1}{12} \big(f'(\ell) - f'(k) \big) + R_2$$

where

$$R_2 = -\frac{1}{2} \int_k^\ell f''(x)\psi_2(x) \, dx \, .$$

The proof is very simple, a repetition of integration by parts. Suppose m to be an integer with f defined and continuously differentiable on [m, m + 1]. Then since $\psi_0 = 1$ and $\psi'_1 = \psi_0$

$$\int_{m}^{m+1} f(x) dx = \int_{m}^{m+1} f(x)\psi_{0}(x) dx$$
$$= [f(x)\psi_{1}(x)]_{m}^{m+1} - \int_{m}^{m+1} f'(x)\psi_{1}(x) dx$$
$$= \frac{1}{2} (f(m) + f(m+1)) - \int_{m}^{m+1} f'(x)\psi_{1}(x) dx$$

since $\psi'_1(x) = 1$, and of course we look at the limit of ψ_1 from above at m, the limit from below at m + 1. Then we sum this equation over all the unit sub-intervals of $[k, \ell]$, using the periodicity of ψ_1 .

$$\int_{k}^{\ell} f(x) \, dx = (1/2)f(k) + f(k+1) + \ldots + f(\ell-1) + (1/2)f(\ell) - \int_{k}^{\ell} f'(x)\psi_{1}(x) \, dx$$

We can rewrite this and apply integration by parts successively:

$$\begin{split} f(k) + f(k+1) + \dots + f(\ell-1) \\ &= \int_{k}^{\ell} f(x) \, dx - \frac{1}{2} \big(f(\ell) - f(k) \big) + \int_{k}^{\ell} f'(x) \psi_{1}(x) \, dx \\ &= \int_{k}^{\ell} f(x) \, dx - \frac{1}{2} \big(f(\ell) - f(k) \big) + \frac{1}{2} \big(\psi_{2}(\ell) f'(\ell) - \psi_{2}(k) f'(k) \big) - \frac{1}{2} \int_{k}^{\ell} f''(x) \psi_{2}(x) \, dx \\ &= \int_{k}^{\ell} f(x) \, dx - \frac{1}{2} \big(f(\ell) - f(k) \big) + \frac{1}{12} \big(f'(\ell) - f'(k) \big) - \frac{1}{2} \int_{k}^{\ell} f''(x) \psi_{2}(x) \, dx \end{split}$$

The calculations can be continued to obtain an infinite asymptotic expansion involving the polynomials and their constant terms, the **Bernoulli numbers**.

10. Stirling's formula

We know that the Gamma function can be evaluated as a limit product

$$\begin{split} \Gamma(s) &= \lim_{n \to \infty} \frac{(n-1)! \, (n-1)^s}{s(s+1) \dots (s+n-1)} \\ &= \lim_{n \to \infty} \frac{(n-1)! \, n^s}{s(s+1) \dots (s+n-1)} \left(\frac{n-1}{n}\right)^s \\ &= \lim_{n \to \infty} \frac{(n-1)! \, n^s}{s(s+1) \dots (s+n-1)} \end{split}$$

We have proven this for *s* in the domain of convergence of the integral defining $\Gamma(s)$, but in fact the limit exists and defines an analytic function for all *s* except s = -n with *n* a non-negative integer, so that by the principle of analytic continuation it must be valid wherever $\Gamma(s)$ is defined. As a consequence

$$\log \Gamma(s) = \lim_{n \to \infty} S_{n-1}(1) - S_n(s) + s \log n$$

where

$$S_n(s) = \log s + \log(s+1) + \ldots + \log(s+n-1)$$

We can evaluate $S_n(s)$ by the Euler-Maclaurin formula

$$f(0) + f(1) + \dots + f(n-1) = \int_0^n f(x) \, dx - \frac{1}{2} \big(f(n) - f(0) \big) + \frac{\beta_2}{2} \big(f'(n) - f'(0) \big) - \frac{1}{2} \int_0^n f^{(2)}(x) \psi_2(x) \, dx$$

with

$$f(x) = \log(s+x), \quad f'(x) = \frac{1}{s+x}, \quad f^{(2)}(x) = -\frac{1}{(s+x)^2}$$

so

$$\begin{split} \log s + \log(s+1) + \dots + \log(s+n-1) \\ &= \int_0^n \log(s+x) \, dx - \frac{1}{2} \left[\log(s+n) - \log s \right] + \frac{1}{12} \left[\frac{1}{s+n} - \frac{1}{s} \right] + \frac{1}{2} \int_0^n \frac{\psi_2(x)}{(s+x)^2} \, dx \\ &= \left[x \log x - x \right]_s^{s+n} - \frac{1}{2} \left[\log(s+n) - \log s \right] + \frac{1}{12} \left[\frac{1}{s+n} - \frac{1}{s} \right] + \frac{1}{2} \int_0^n \frac{\psi_2(x)}{(s+x)^2} \, dx \\ &= (s+n-1/2) \log(s+n) - (s-1/2) \log s - n + \frac{1}{12} \left[\frac{1}{s+n} - \frac{1}{s} \right] + \frac{1}{2} \int_0^n \frac{\psi_2(x)}{(s+x)^2} \, dx \end{split}$$

and setting s = 1, n - 1 for n:

 $\log 1 + \log 2 + \ldots + \log n$

$$= (n - 1/2) \log n - (n - 1) + \frac{1}{12} \left[\frac{1}{n} - 1 \right] + \frac{1}{2} \int_{1}^{n} \frac{\psi_{2}(x)}{x^{2}} dx$$
$$= (n - 1/2) \log n - n + \frac{11}{12} + \frac{1}{12n} + \frac{1}{2} \int_{1}^{n} \frac{\psi_{2}(x)}{x^{2}} dx$$
$$= (n - 1/2) \log n - n + C + \frac{1}{12n} - \frac{1}{2} \int_{n}^{\infty} \frac{\psi_{2}(x)}{x^{2}} dx$$

where we define the constant

$$C = \frac{11}{12} + \frac{1}{2} \int_{1}^{\infty} \frac{\psi_2(x)}{x^2} \, dx.$$

Taking limits, therefore

$$\log \Gamma(s) = \left(s - \frac{1}{2}\right) \log s - s + C + \frac{1}{12s} - \frac{1}{2} \int_0^\infty \frac{\psi_2(x)}{(s+x)^2} \, dx.$$

This is valid for all *s* not on the negative real axis, and gives immediately the generalization of Stirling's formula

$$\Gamma(s) \sim \frac{e^C}{\sqrt{s}} \left(\frac{s}{e}\right)^s$$

as s goes to infinity in any region

$$-\pi + \delta \le \arg(s) \le \pi - \delta$$

since the remainder will have a uniform estimate in this region. The constant *C* can be evaluated by letting $t \to \pm \infty$ in the reflection formula. On the one hand

$$\Gamma(it)\Gamma(-it) = -\frac{\pi}{it\sin\pi it}$$
$$= -\frac{2\pi i}{it[e^{-\pi t} - e^{\pi t}]}$$
$$\sim 2\pi t^{-1}e^{-\pi t}$$

while on the other

$$\begin{split} \Gamma(it)\Gamma(-it) &\sim \frac{e^C}{\sqrt{it}} \left(\frac{it}{e}\right)^{it} \frac{e^C}{\sqrt{-it}} \left(\frac{-it}{e}\right)^{-it} \\ &= \frac{e^{2C}}{t} (i)^{it} (-i)^{-it} \\ &= \frac{e^{2C}}{t} e^{(it)(\pi i)/2} e^{(-it)(-\pi i)/2} \\ &= \frac{e^{2C}}{t} e^{-\pi t} \end{split}$$

I recall that

$$x^y = e^{y \log x}$$

where log is given its principal value. This gives

$$C = \log \sqrt{2\pi}$$

and finally the explicit version

Proposition. (Stirling's asymptotic formula) As *s* goes to ∞ in the region

$$\pi + \delta \le \arg(s) \le \pi - \delta$$

we have the asymptotic estimate

$$\Gamma(s) \sim \sqrt{\frac{2\pi}{s}} \left(\frac{s}{e}\right)^s$$

11. References

1. Jacques Hadamard, Lectures on Cauchy's problem, Yale University Press, 1923.

Chapter 1 of Book III introduces 'finite parts' of integrals. This notion is necessary in order to interpret the fundamental solutions to the wave equation in high dimensions.

2. Laurent Schwartz, **Méthodes mathématiques pour les sciences physiques**, Hermann, 1965. Also available in English. This is very readable, although with few rigourous proofs.

3. John Tate, 'Fourier analysis in number fields and Hecke's zeta functions', pp. 305–347 in in **Algebraic number theory**, edited by J. W. S. Cassels and A. Fröhlich, Thompson, 1967. This is his Princeton Ph. D. thesis.