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The Gamma function
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I attempt here a somewhat unorthodox introduction to the Gamma function. My principal references

here are [Schwartz:1965]. and [Tate:1950/1967].
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1. Characters as distributions

The Schwartz space S(R) is the space of all smooth functions f on R such that

f (n)(x) ≪
(
1 + |x|

)−N

for all n, N ≥ 0 or, equivalently, for which

‖f‖N,n = sup
R

(
1 + |x|

)N ∣∣f (n)(x)
∣∣ <∞

for all non­negative integers N , n. It is a Fréchet space with these semi­norms. It contains as closed

subspaces the spaces S(0,∞) (resp. S(−∞, 0)) of functions that vanish identically for x ≤ 0 (resp.
x ≥ 0), and as quotient the space S[0,∞) made up of restrictions to [0,∞).

The following elementary result will be useful many times:

1.1. Lemma. If f is a smooth function defined in a neighbourhood U of 0 in R, then for any m it may be
expressed as

f(x) =
∑

k<m

f (k)(0)
xk

k!
+ xmfm(x)

where fm is a smooth function defined on U .

Proof. The fundamental theorem of calculus tells us that

f(x)− f(0) =

∫ x

0

f ′(s) ds .

An easy estimate tells us that the integral is O(x), but a simple trick will do better. If we set s = tx this
equation becomes

f(x) = f(0) + x

∫ 1

0

f ′(tx) dt ,
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and the integral

f1(x) =

∫ 1

0

f ′(tx) dt

is a smooth function of x. Induction gives us

f(x) =
∑

k<m

ckx
k + xmfm(x)

with fm(x) smooth. An easy calculation tells us that ck = f (k)(0)/k!.

THE SCHWARTZ SPACE OF THE POSITIVE REALS.

1.2. Proposition. The space S(0,∞) is that of all f in C∞(0,∞) such that

xNf (n)(x)

is bounded on (0,∞) for all n ≥ 0, N ∈ Z.

Proof. Suppose f to lie in S(0,∞). Since f is in S(R), xNf (n)(x) is bounded for N ≥ 0. But Lemma 1.1

implies that it remains true for N ≤ 0. So the condition on f is necessary.

As for sufficiency, it must be shown that if this equation holds for all n, N ≥ 0 then f extends to a
function smooth on all of R vanishing on (−∞, 0]. This is immediate from the definition of smoothness.

Let D be the multiplicative derivative xd/dx.

1.3. Corollary. The space S(0,∞) is the same as that of all f in C∞(0,∞) such that

xN [Dnf ](x)

is bounded on (0,∞) for all n ≥ 0, N ∈ Z.

1.4. Corollary. For any s in C multiplication by xs is an isomorphism of S(0,∞) with itself.

Proof. This follows from Leibniz’s formula for (xsf)(n).

For every s in C the integral

〈Φs, f〉 =
∫ ∞

0

xsf(x)
dx

x

defines therefore a continuous linear functional on S(0,∞)—in effect a distribution.

The multiplicative group R×
>0

of positive real numbers acts on both of the spaces S(R) and S(0,∞), as

well as on their continuous linear duals, by the formulas:

µaf(x) = f(a−1x), 〈µaΦ, f〉 = 〈Φ, µa−1f〉 .

The scale factor a−1 rather than a has been chosen for compatibility with linear representations of non­
abelian groups. The Lie algebra of R×

>0
is spanned by the differential operator D = xd/dx, and the

representations are smooth in the sense that

lim
h→0

µ1+hf − f

h
= −Df .

in S(R). The − sign here comes about because of the choice of a−1 rather than a. It will continue to

annoy.

Differential operators act on distributions. If Φ is a smooth function on (0,∞) then integration by parts

implies that
〈Φ′, f〉 = −〈Φ, f ′〉
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so we extend the definition of derivative to distributions accordingly. Hence

〈LΦ, f〉 = 〈Φ, L∗f〉

for any differential operator L, where L∗ is its formal adjoint.

1.5. Proposition. The distribution Φs on S(0,∞) is an eigendistribution for µa with eigencharacter a−s.
FurthermoreDΦs = sΦ.

Proof. We have
〈µaΦs, f〉 = 〈Φs, µa−1f〉

=

∫ ∞

0

xsf(ax)
dx

x

=

∫ ∞

0

(y/a)sf(y)
dy

y

= a−s

∫ ∞

0

ysf(y)
dy

y

= a−s〈Φs, f〉

so that µaΦs = a−sΦs as a distribution (as well as a function).

As for the second claim:
〈DΦs, f〉 = −〈Φs, Df〉

= −
∫ ∞

0

xsf ′(x) dx

= s

∫ ∞

0

xs−1f(x) dx

= s〈Φs, f〉

This concludes the proof of the Lemma.

There is a converse to this claim, and there is also a uniqueness theorem for eigendistributions. If f lies

in S(0,∞), its Mellin transform is

f̂(s) = 〈Φs, f〉 .

It is uniformly bounded on any horizontally bounded strip |RE(s) ≤ C. It is also holomorphic in all of

C, and

D̂f = sf̂ .

It therefore belongs to the space PW (0,∞), the space of all function F (s) holomorphic on all of C such

that (1 + |IM(s)|)N |F (s)| is bounded on any horizontal strip |RE(s) ≤ C, for all N ≥ 0.

1.6. Proposition. The map f 7→ f̂ is an isomorphism of S(0,∞) with PW (0,∞).

Proof. One way is because DΦs = sΦs. The other way involves shifting contours.

For any fixed s0 the image inM(0,∞)of multiplication by s−s0 is the subspace ofF such thatF (s0) = 0,

which is of codimension one. Hencethe quotient S(0,∞)/(D − s)S(0,∞) is isomorpphic to C, and

1.7. Corollary. The space of distributions on (0,∞) such that DΦ = sΦ is spanned by Φs.

1.8. Corollary. The space of distributions on (0,∞) such that µaΦ = a−sPhi for all a in R×
>0

is spanned
by Φs.

THE SCHWARTZ SPACE OF THE NON­NEGATIVE REALS. Now define S[0,∞) to be the space of restrictions to

the closed half­line [0,∞) of functions in S(R). It may be identified with the quotient S(R)/S(−∞, 0).
The space S(0,∞) is embedded in it, and again the multiplicative group acts smoothly on it.

Does there exist an eigendistribution on S[0,∞) extending Φs? An affirmative answer follows from:
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1.9. Proposition. For RE(s) > 0

∫ ∞

0

xsf(s)
dx

x
==

(−1)n+1

s(s+ 1) . . . (s+ n)

∫ ∞

0

xs+nf (n+1)(x) dx .

Proof. Integration by parts give us

〈Φs, f〉 =
∫ ∞

0

xsf(x)
dx

x

=

∫ ∞

0

xs−1f(x) dx

=

[
f(x)xs

s

]∞

0

− 1

s

∫ ∞

0

xsf ′(x) dx

= −1

s

∫ ∞

0

xs+1f ′(x)
dx

x

= −1

s
〈Φs+1, f

′〉

and continuing:

=
1

s(s+ 1)
〈Φs+2, f

′′〉

. . .

=
(−1)n+1

s(s+ 1) . . . (s+ n)
〈Φs+(n+1), f

(n+1)〉 .

As a consequence, Φs may be defined on S[0,∞) for all s not in −N. Thus for every s not in −N we have

an eigendistribution with eigencharacter x−s. Is it unique? What happens for s = −n? Set s = −n+ h
in the Lemma. We get

(1.10) 〈Φs, f〉 =
−1

(n− h)(n− 1− h) . . . (1− h)h

∫ ∞

0

xhf (n+1)(x) dx .

Thus (s+ n)〈Φs, f〉 as s→ −n has limit

− 1

n!

∫ ∞

0

f (n+1)(x) dx =
f (n)(0)

n!
.

The distribution δ0 is defined to take f to f(0). Its derivative δ
(n)
0 takes f to (−1)nf (n)(0). The residue

of Φs at s = −n is therefore (−1)nδ
(n)
0 /n!.

1.11. Lemmma. The distribution δ
(n)
0 is an eigendistribution for the character an.

Proof. Since f (n)(ax) = anf (n)(ax).

In other words, the character Φs fails to be defined precisely when another eigencharacter arises. One

way to understand the situation is by considering the short exact sequence

0 → S(0,∞) → S[0,∞) → C[[x]] → 0

where the last map is that taking f to its Taylor series at 0, surjective by a classic theorem of Émile Borel.
If T = D − sI this gives rise to a long exact sequence

0 → S(0,∞)(T ) → S[0,∞)(T ) → C[[x]] (T )

→ S(0,∞)/T · S(0,∞) → S[0,∞)/T · S(0,∞) → C[[x]]/T ·C[[x]] → 0 .
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Here V (T ) is the subspace of v in V such that Tv = 0. The first two terms are always 0. When s does
not belong to −N, the third and sixth terms vanish, but when s does belong to −N they are both of

dimension one.

1.12. Proposition. The distribution Φs on S[0,∞) is meromorphic on all of C with residue (−1)nδ
(n)
0 /n!

at n. For each s not in −N it is the unique eigendistribution on S[0,∞) for the character as. For s in −N

the distribution δ
(n)
0 spans the space of eigendistributions for an.

Any function in S[0,∞) corresponds to the function (sometimes called its Mellin transform)

f̂(s) = 〈Φs, f〉 .

1.13. Proposition. The function f̂ is meromorphic on C with simple poles on −N. In any bounded
vertical strip |RE(s)| ≤ C away from the real axis it is uniformly rapidly decreasing as a function of
IM(s).

This is because DΦs = sΦs. It is not hard to show that, conversely, any function satisfying these

conditions is f̂ for some f in S[0,∞).

I want now to look at (1.10) again. It can be rewritten and expanded in powers of h:

〈Φs, f〉 = − 1

h
· 1
n!

· 1

(1− h/n)(1− h/n− 1) . . . (1 − h)
·
∫ ∞

0

eh log xf (n+1)(x) dx

= − 1

h
· 1
n!

·
(
1 + hΛn +O(h2)

)
·
(∫ ∞

0

f (n+1)(x) dx + h

∫ ∞

0

(log x)f (n+1)(x) dx +O(h2)

)

with

Λn = 1 + 1/2 + 1/3 + · · ·+ 1/n .

We have already seen that the leading term is f (n)(0)/n!, and now we see that the second term in the

expansion is

− 1

n!

(
Λnf

(n)(0) +

∫ ∞

0

(log x)f (n+1)(x) dx

)
.

The integral can be expressed also as the limit as ε→ 0 of

∫ ∞

ε

f (n+1)(x) log x dx =
[
f (n)(x) log x

]∞
ε

−
∫ ∞

ε

f (n)(x)

x
dx

= −f (n)(ε) log ε−
∫ ∞

ε

f (n)(x)

x
dx

= −f (n)(0) log ε−
∫ ∞

ε

f (n)(x)

x
dx ,

since f(ε)− f(0) = O(ε) and limε→0 ε log ε = 0. The second term in the Laurent expansion of 〈Φs, f〉
at s = −n is therefore also

(1.14)
1

n!
· lim
ε→0

(
f (n)(0) log ε− Λnf

(n)(0) +

∫ ∞

ε

f (n)(x)

x
dx

)
.

THE SCHWARTZ SPACE OF THE REAL LINE. The full multiplicative groupR× acts on its own Schwartz space

S(R×), the subspace of functions in S(R) whose Taylor series at 0 vanish. We now have distributions

〈Φ[m]
s , f〉 =

∫ ∞

−∞

f(x)|x|ssgnm(x)
dx

|x|
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for RE(s) > 0 and m = 0, 1, which are again eigen­distributions:

µaΦ
[m]
s = sgnm(a)|a|−sΦ[m]

s .

We can express

∫ ∞

−∞

f(x)|x|ssgnm(x)
dx

|x| = (−1)m
∫ 0

−∞

xsf(x)
dx

|x| +
∫ ∞

0

xsf(x)
dx

x

= (−1)m
∫ ∞

0

xsf(−x) dx
x

+

∫ ∞

0

xsf(x)
dx

x

= 〈Φs, f〉+ (−1)m〈Φs, f
−〉

=
(−1)n

s(s+ 1) . . . (s+ n− 1)

〈
Φs+n, f

(n) + (−1)m(f−)(n)
〉

which means that Φ
[m]
s extends equivariantly and meromorphically to S(R) over all of C with residue

(
(−1)m + (−1)n

) δ(n)0

n!

at −n. In particular, there is no pole if the parity of m is different from the parity of n. In this case,

because of (1.14) we get as value at −n

〈Pf(1/xn+1), f〉 = 1

n!

∫ ∞

0

[
f (n)(x)− f (n)(−x)

x

]
dx

which always makes sense because the integrand is still a smooth function. For reasons we’ll see in a
moment this is called the finite part of 1/xn+1. This defines an extension to S(R) of the integral

∫

R

|x|−n−1sgnn−1(x)f(x) dx =

∫

R

x−(n+1)f(x) dx .

on R×.

2. Parties finies

In order to understand the nature of certain eigenfunctions of D on R, I now recall the notion of ‘parties

finies’, introduced in [Hadamard:1923] in order to understand classical techniques for solving the wave

equation in high dimensions.

The first important observation is that the Dirac distributions are eigendistributions. For n ≥ 0

Dδ
(n)
0 = −n δ(n)0 .

There is, however, another distribution Φ such that DΦ = −nΦ.

2.1. Proposition. We have
µaPf(1/x

n+1) = ansgn(a)Pf(1/xn+1)

DPf(1/xn+1) = −nPf(1/xn+1)

(d/dx)Pf(1/xn) = −nPf(1/xn+1) .

Proof. Left as exercise.
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The two distributions δ
(n)
0 and Pf(1/xn+1) span the space of eigendistributions Φ on R such that

DΦ = −mΦ, or (equivalently) µaΦ = amΦ, but they are distinguished by what µ−1 does to them:

µ−1δ
(n)
0 = (−1)nδ

(n)
0 , µ−1Pf(1/x

n+1) = −(−1)nPf(1/xn+1) .

This has to be, of course, since a cohomological argument like the one we saw earlier shows that there

at most one R×­equivariant extension to all of S(R) of the distribution which on S(R×) is given by the

formula ∫ ∞

−∞

f(x)

xn+1
dx .

I’ll say more here about the construction of parties finies distributions. Suppose f in S(R), and let

f(x) = f0 + f1x+ f2x
2 + · · ·

be its Taylor series at 0, so fm = f (m)(0)/m!. Then

ϕn(x) =
f − (f0 + xf1 + · · · fnxn)

xn+1

is still smooth throughout R, although no longer in in S(R). Then

∫ ∞

ε

f(x)

xn+1
dx =

∫ 1

ε

f(x)

xn+1
dx+

∫ ∞

1

f(x)

xn+1
dx

=

∫ 1

ε

f0 + f1x+ · · ·+ fnx
n

xn+1
dx +

∫ 1

ε

ϕn(x) dx +

∫ ∞

1

f(x)

xn+1
dx .

The last integral is independent of ε. As ε→ 0, the second integral has a finite limit. The first integral is

[
− f0
nxn

− f1
(n− 1)xn−1

− · · · − fn log x
]1
ε

= −f0
n

− f1
(n− 1)

− · · · − fn−1 +
f0
nεn

++
f1

(n− 1)εn−1
+ · · ·+ fn log ε

Therefore the limit

lim
ε→0

∫ ∞

ε

f(x)

xn+1
dx−

( f0
nεn

+
f1

(n− 1)εn−1
+ · · ·+ fn log ε

)

exists, and agrees with Pf(1/xn+1).

The distribution Pf(1/xn+1) on [0,∞) does not behave equivariantly with respect to scalar multiplica­

tion, because of the log ε term. But on R the finite part is

lim
ε→0

(∫ ε

−∞

f(x)

xn+1
dx+

∫ ∞

ε

f(x)

xn+1
dx

)
−
( n∑

k=1
k odd

2fn−k

kεk

)
,

and it does behave well, because on (−∞, 0] log ε is replaced by log |ε|.
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3. The Gamma function

One function in S[0,∞) is the restriction of f(x) = e−x to [0,∞). The Gamma function is defined to be

the integral

Γ(s) =

∫ ∞

0

xse−x dx

x
= 〈Φs, e

−x〉 .

for RE(s) > 0. The argument extending Φs in the last section is classical in this case. Since here
f ′(x) = −f(x), we have the functional equation

Γ(s+ 1) = sΓ(s)

and since Γ(1) = 1, we see by induction that if s is a positive integer n

Γ(n) = (n− 1)!

The extension formula can be rewritten as

Γ(s) =
Γ(s+ 1)

s

so that we can extend the definition of Γ(s) to the region RE(s) > −1, except for s = 0. And so on. More

explicitly we have

Γ(s) =
Γ(s+ n+ 1)

(s+ n)(s+ n− 1) . . . (s+ 1)s

which allows Γ(s) to be defined for RE(s) > −n− 1, except at the negative integers, where it will have

simple poles (of order one).

Proposition. For n ≥ 0 the residue of Γ(s) at −n is (−1)n/n!

Another formula for Γ(s) can be obtained by a change of variables t = πx2:

Γ(s) = 2πs

∫ ∞

0

e−πx2

x2s
dx

x

which can also be written as

Γ
(s
2

)
= πs/2

∫ ∞

−∞

|x|se−πx2 dx

|x|
or

π−s/2 Γ
(s
2

)
=

∫ ∞

−∞

|x|se−πx2 dx

|x| .

This function of s is often expressed as ζR(s) because of its role in functional equations of ζ functions.
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4. The volumes and areas of spheres

If we set s = 1 in the formula for ζR at the end of the last section, we get

π−1/2Γ

(
1

2

)
=

∫ ∞

−∞

e−πx2

dx .

The integral on the right cannot be evaluated as an improper integral, but there is a well known trick one

can use to evaluate the infinite integral. We move into two dimensions. We can shift to polar coordinates

and get (∫

R

e−πx2

dx

)2

=

∫

R

e−πx2

dx ·
∫

R

e−πy2

dy

=

∫

R2

e−π(x2+y2) dx dy

=

∫ ∞

0

dr

∫ 2π

0

e−πr2r dθ

=

∫ ∞

0

2πre−πr2 dr

=

∫ ∞

0

2
√
πre−πr2 dr

=

∫ ∞

0

e−πr2(2πr) dr

=

∫ ∞

0

e−s ds

= 1 ,

so π−1/2Γ(1/2) = 1, and Γ(1/2) =
√
π.

We can use this formula and the same trick to find a formula for the volumes of spheres in n dimensions.
Let Sn−1 be the volume of the unit sphere in Rn. Then

(∫

R

e−πx2

dx

)n

= 1

=

∫

Rn

e−πr2 dx1 . . . dxn

=

∫ ∞

0

Sn−1 r
n−1e−πr2 dr

=

∫ ∞

0

Sn−1 r
ne−πr2 dr

r

= Sn−1
1

2
π−n/2Γ(n/2) .

Sn−1 =
2πn/2

Γ(n/2)
.

For example, the area of the two­sphere in R3 is

S2 =
2π3/2

Γ(3/2)
=

2π3/2

π/2
= 4π .

The volume of the n­ball of radius R in Rn is

Vn(R) =

∫ R

0

Sn−1r
n−1 dr =

Sn−1R
n

n
.
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5. Tate’s functional equation

Now I introduce the Fourier transform and its interaction with the multiplicative group. For f in S(R)
its Fourier transform is

f̂(λ) =

∫ ∞

−∞

f(x)e−2πiλx dx

and this defines an isomorphism of S(R) with itself. The inverse is

f(x) =

∫ ∞

−∞

f̂(x)e2πiλx dx

Another way to express this is that
̂̂
f = µ−1f .

How do the Fourier transform and the multiplication operators interact?

5.1. Proposition. For a 6= 0

µ̂af = |a|µa−1 f̂ .

Proof. Because

µ̂af(λ) =

∫ ∞

−∞

[µaf ](x)e
−2πiλx dx

=

∫ ∞

−∞

f(a−1x)e−2πiλx dx

= |a|
∫ ∞

−∞

f(y)e−2πiλay dy

= |a|µa−1 f̂(λ) .

The Fourier transform Φ̂ of a distribution Φ is defined by

〈Φ̂, f〉 = 〈Φ, f̂〉 .

This, as an easy calculation will show, agrees with the definition the Fourier transform on S(R).
Suppose χ to be a multiplicative character. The distribution Φ = Φχ is defiend by

〈Φχ, 〉 =
∫

R

χ(x)f(x)
dx

x

defined by convergence for certain χ and extended meromorphically. What is the Fourier transform of
Φ? Since µaΦχ = χ−1(a)Φχ we have

〈µaΦ̂, f〉 = 〈Φ̂, µa−1f〉
= 〈Φ, µ̂a−1f〉
= 〈Φ, |a|−1µaf̂〉
= |a|−1〈µa−1Φ, f̂〉
= |a|−1χ(a)〈Φ, f̂〉
= |a|−1χ(a)〈Φ̂, f〉

so because of uniqueness Φ̂ must be a scalar multiple γχΦχ̃ where χ̃(a) = |a|χ−1(a). To calculate the

scalar γχ explicitly, we calculate first the Fourier transform of some particular functions.
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5.2. Lemma. The Fourier transform of e−πx2

is itself.

Proof. Let f(x) = e−πx2

. Then

f̂(λ) =

∫ ∞

−∞

e−2πiλx−πx2

dx

= e−πλ2

∫ ∞

−∞

eπλ
2−2πiλx−πx2

dx

= e−πλ2

∫ ∞

−∞

e−π(x−iλ)2 dx

= e−πλ2

∫ ∞

−∞

e−πx2

dx

= e−πλ2

.

Let now χ(x) = |x|s, Φ = Φχ. Then

〈Φ̂, e−πx2〉 = 〈Φ, e−πx2〉

=

∫ ∞

−∞

|x|se−πx2 dx

|x|

= π−s/2

∫ ∞

−∞

|x|se−x2 dx

|x|
= π−s/2Γ(s/2)

= ζR(s) .

Since χ̃ = |x|1−s:

5.3. Proposition. We have
Φ̂s,0 = γsΦ1−s,0

where

γs =
ζR(s)

ζR(1− s)
.

This formula isn’t quite right for values of s where Φs,0 or Φ1−s,0 have poles. The simplest way

to formulate things is to observe that Φs,0/ζ(s) is entire, and that this formula says that the Fourier
transform of Φs,0/ζR(s) is Φ1−s,0/ζR(1 − s).

We can reason similarly for |x|ssgn(x) with xeπx
2

.

5.4. Proposition. The Fourier transform of xe−πx2

is −iλe−πλ2

.

Proof. Differentiate the equation
∫ ∞

−∞

e−πx2

e−2πiλx dx = e−πλ2

with respect to λ.

Therefore
〈Φ̂s,1, xe

−πx2〉 = 〈Φs,1,−ixe−πx2〉

= −i
∫

R

|x|s−1sgn(x)xe−πx2

dx

= −i
∫

R

|x|se−πx2

dx

= −iζR(1 + s)

〈Φ1−s,1, xe
−πx2〉 = ζR

(
1 + (1− s)

)



The Gamma function 12

and hence:

5.5. Proposition. We have
Φ̂s,1 = λsΦ1−s,1

where

λs = −i LR(s)

LR(1− s)
, LR(s) = π−(s+1)/2 Γ

(
s+ 1

2

)
.

I conclude with a useful calculation, then I examine some special cases.

5.6. Proposition. Suppose Φ to be a tempered distribution on R. Then

(a) the Fourier transform of Φ′ is 2πiλΦ̂;
(b) the Fourier transform of xΦ is Φ̂′/(−2πi).

Proof. First assume Φ to be in S(R). The first assertion follows from integration by parts, the second by

differentiating ∫ ∞

−∞

Φ(x)e−2πiλx dx = Φ̂(λ)

with respect to λ. Proving the assertion for distributions follows from this simpler case.

The distributions defined by integrals

∫

R

xnf(x) dx,

∫

R

xnsgn(x)f(x) dx

are of particular importance.

5.7. Proposition. For n ≥ 0

(a) the Fourier transform of xn is δ
(n)
0 /(−2πi)n;

(b) the transform of xnsgn(x) is
2n!

(2πi)n+1
Pf(1/xn+1) .

As for the first, calculation shows that the transform of 1 is δ0. But then by the previous lemma the

transform of xn is δ
(n)
0 /(−2πi)n.

For the second, we can write xnsgn(x) as |x|n+1sgnn+1(x)/|x|, so its transform will be an eigendistri­
bution for |x|−nsgnn+1 = xnsgn(x), which means that it is a multiple of Pf(1/xn+1). To compute the

constant, let’s look at n = 0, where we want the Fourier transform of sgn(x) itself. Here

〈ŝgn, xe−πx2〉 = −i
π

=
2

2πi

〈Pf(1/x), xe−πx2〉 = 1

so that the transform of sgn is (2/2πi)Pf(1/x). Then

̂xnsgn(x) =
1

(−2πi)n
2

2πi

(
Pf(1/x)

)(n)
=

2n!

(2πi)n+1
Pf(1/xn+1)

since Pf(1/xn)′ = −nPf(1/xn+1).
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6. The Beta function

The Gamma function appears in a wide variety of integration formulas. One of the most useful is:

6.1. Proposition. We have

∫ ∞

0

tα

(1 + t2)β
dt =

1

2

Γ
(
α+ 1
2

)
Γ
(
β − α+ 1

2

)

Γ(β)

Proof. Start with

Γ(s) = 2

∫ ∞

0

e−x2

x2s−1 dx .

Moving to two dimensions and switching to polar coordinates:

Γ(u)Γ(v) = 4

∫ ∫

s≥0,t≥0

e−s2−t2s2u−1t2v−1 ds dt

= 4

∫ ∫

r≥0,0≤θ≤π/2

e−r2r2(u+v)−1 cos2u−1 θ sin2v−1 θ dr dθ

= 4

∫

r≥0

e−r2r2(u+v)−1 dr

∫ π/2

0

cos2u−1(θ) sin2v−1(θ) dθ

= Γ(u+ v)B(u, v)

B(u, v) =
Γ(u)Γ(v)

Γ(u + v)
,

where

B(u, v) = 2

∫ π/2

0

cos2u−1(θ) sin2v−1(θ) dθ .

If we change variables to t = tan(θ) we get

θ = arctan(t)

dθ = dt/(1 + t2)

cos(θ) = 1/
√
1 + t2

sin(θ) = t/
√
1 + t2

leading to

∫ ∞

0

tα

(1 + t2)β
dr =

1

2

Γ
(
α+ 1
2

)
Γ
(
β − α+ 1

2

)

Γ(β)
,

and in particular

Γ2(1/2) =

∫ ∞

−∞

dr

1 + r2
= π, Γ(1/2) =

√
π .
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7. The limit product formula

The exponential function e−t can be approximated by finite products.

Lemma. For any real t we have

e−t = lim
n→∞

(
1− t

n

)n

.

This can be seen most easily by taking logarithms since for 0 ≤ t < n

log

(
1− t

n

)n

= n log

(
1− t

n

)

= n

(
−
(
t

n

)
− 1

2

(
t

n

)2

− 1

3

(
t

n

)3

− . . .

)

= −t− t2

2n
− t3

3n2
− . . .

= −t− T

where

T =
t2

2n
+

t3

3n2
+ . . . .

which converges to 0 as n→ ∞.

Another way of putting this is to define

ϕn(t) =

{
(1− t/n)

n
0 ≤ t ≤ n

0 t > n

and then define for each n an approximation Γn(s) to Γ(s):

Γn(s) =

∫ ∞

0

ts−1ϕn(t) dt

=

∫ n

0

ts−1

(
1− t

n

)n

dt

On the one hand, this can be explicitly calculated through repeated integration by parts:

∫ n

0

ts−1

(
1− t

n

)n

dt =
1

s

n− 1

n(s+ 1)

n− 2

n(s+ 2)
. . .

1

n(s+ n− 1)

∫ n

0

ts+n−1 dt =
n!ns

s(s+ 1) . . . (s+ n)

On the other, since for all fixed t the limit of ϕn(t) as n→ ∞ is equal to e−t, and both ϕn(t) and e−t are

small at ∞, this is at least plausible:

Proposition. For any s with RE(s) > 1 the limit of Γn(s) as n→ ∞ is equal to Γ(s). In other words, for
any s in C

Γ(s) = lim
n→∞

n!ns

s(s+ 1) . . . (s+ n)
.

The Euler constant γ is defined to be the limit

γ = lim
n→∞

(
1 +

1

2
+

1

3
+ . . .

1

n− 1

)
− logn.
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The limit product formula implies immediately a limit formula for 1/Γ(s):

1

Γ(s)
= lim

n→∞

[
s
(
1 +

s

1

)(
1 +

s

2

)
. . .

(
1 +

s

n− 1

)
n−s

]

but

n−s = e−s logn = e−s(1+ 1

2
+ 1

3
+...+ 1

n−1 )+sγn

where γn → γ. Therefore:

Proposition. The inverse Gamma function has the product expansion

1

Γ(s)
= seγs

∞∏

1

(
1 +

s

n

)
e−s/n

where γ is Euler’s constant.

The limit product formula also implies Legendre’s duplication formula:

Γ

(
1

2

)
Γ(s) = 2s−1Γ

(
s

2

)
Γ

(
s+ 1

2

)

Explicitly

Γ

(
s

2

)
= lim

n→∞

2n+1n!ns/2

s(s+ 2) . . . (s+ 2n)

Γ

(
s+ 1

2

)
= lim

n→∞

2n+1n!ns+1/2

(s+ 1) . . . (s+ 2n+ 1)

so

2s Γ

(
s

2

)
Γ

(
s+ 1

2

)/
Γ(s)

= lim
n→∞

2s
2n+1n!ns/2

s(s+ 2) . . . (s+ 2n)

2n+1n!n(s+1)/2

(s+ 1)(s+ 3) . . . (s+ 2n+ 1)

s(s+ 1)(s+ 2) . . . (s+ 2n)

(2n)! (2n)s

= lim
n→∞

(n!)2

(2n)!

22n+2 n1/2

(s+ 2n+ 1)

= lim
n→∞

(n!)222n+1

(2n)!
√
n

but this last does not depend on s, and is finite since the limit on the left hand side exists, so we may set

s = 1/2 to see that it is equal to 2
√
π.
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8. The reflection formula

The formula for the Beta function gives us

Γ(s)Γ(1 − s) =

∫ 1

0

us−1(1− u)−s du

=

∫ ∞

0

vs−1

1 + v
dv (u = v/1 + v, v = (u/1− u), du/(1− u) = (1 + v)dv)

We can calculate this last integral by means of a contour integral in C. Let C be the path determined by

these four segments: (1) along the positive real axis, or just above it, from ǫ to R; (2) around the circle
of radius R, counter­clockwise, to the point just below R; (3) along and just below the real axis to ǫ; (4)

around the circle of radius ǫ, clockwise, to just above ǫ. We want to calculate the limit of the integral

∫

C

zs−1

1 + z
dz

as ǫ→ 0 and R → ∞.

On the one hand the integrals over the different components converge to

∫ ∞

0

zs−1

1 + z
dz + 0− e2πis

∫ ∞

0

zs−1

1 + z
dz + 0 = (1− e2πis)

∫ ∞

0

zs−1

1 + z
dz

But on the other there is exactly one pole inside the curves C, so the integral is also equal to −2πieπis.
Therefore

Γ(s)Γ(1 − s) =

∫ ∞

0

zs−1

1 + z
dz =

−2πieπis

1− e2πis
=

π

sinπs

Incidentally, combined with the product formula for Γ(s) this gives the product formula for sinπs

sinπs = πs

∞∏

1

(
1− s2

n2

)

9. The Euler­Maclaurin formula

Define a sequence of polynomials

B0(x) = 1

B1(x) = x− 1/2

B2(x) = x2 − x+ 1/6

. . .

recursively determined by

B′
n+1(x) = nBn(x),

∫ 1

0

Bn(x) dx = 0 .

These are the Bernoulli polynomials. They determine in turn functions ψn by extension to all of R of

period 1.

The following is a simple version of the much more interesting Euler­Maclaurin sum formula:
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Proposition. Suppose f to be a function on the interval [k, ℓ] which has continuous second derivatives.
Then

f(k) + f(k + 1) + . . . f(ℓ− 1) =

∫ ℓ

k

f(x) dx− 1

2

(
f(ℓ)− f(k)

)
+

1

12

(
f ′(ℓ)− f ′(k)

)
+R2

where

R2 = −1

2

∫ ℓ

k

f ′′(x)ψ2(x) dx .

The proof is very simple, a repetition of integration by parts. Suppose m to be an integer with f defined

and continuously differentiable on [m,m+ 1]. Then since ψ0 = 1 and ψ′
1 = ψ0

∫ m+1

m

f(x) dx =

∫ m+1

m

f(x)ψ0(x) dx

= [f(x)ψ1(x)]
m+1
m −

∫ m+1

m

f ′(x)ψ1(x) dx

=
1

2

(
f(m) + f(m+ 1)

)
−
∫ m+1

m

f ′(x)ψ1(x) dx

since ψ′
1(x) = 1, and of course we look at the limit of ψ1 from above atm, the limit from below atm+1.

Then we sum this equation over all the unit sub­intervals of [k, ℓ], using the periodicity of ψ1.

∫ ℓ

k

f(x) dx = (1/2)f(k) + f(k + 1) + . . .+ f(ℓ− 1) + (1/2)f(ℓ)−
∫ ℓ

k

f ′(x)ψ1(x) dx

We can rewrite this and apply integration by parts successively:

f(k) + f(k + 1) + . . .+ f(ℓ− 1)

=

∫ ℓ

k

f(x) dx − 1

2

(
f(ℓ)− f(k)

)
+

∫ ℓ

k

f ′(x)ψ1(x) dx

=

∫ ℓ

k

f(x) dx − 1

2

(
f(ℓ)− f(k)

)
+

1

2

(
ψ2(ℓ)f

′(ℓ)− ψ2(k)f
′(k)

)
− 1

2

∫ ℓ

k

f ′′(x)ψ2(x) dx

=

∫ ℓ

k

f(x) dx − 1

2

(
f(ℓ)− f(k)

)
+

1

12

(
f ′(ℓ)− f ′(k)

)
− 1

2

∫ ℓ

k

f ′′(x)ψ2(x) dx

The calculations can be continued to obtain an infinite asymptotic expansion involving the polynomials

and their constant terms, the Bernoulli numbers.
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10. Stirling’s formula

We know that the Gamma function can be evaluated as a limit product

Γ(s) = lim
n→∞

(n− 1)! (n− 1)s

s(s+ 1) . . . (s+ n− 1)

= lim
n→∞

(n− 1)!ns

s(s+ 1) . . . (s+ n− 1)

(
n− 1

n

)s

= lim
n→∞

(n− 1)!ns

s(s+ 1) . . . (s+ n− 1)

We have proven this for s in the domain of convergence of the integral defining Γ(s), but in fact the limit

exists and defines an analytic function for all s except s = −n with n a non­negative integer, so that by

the principle of analytic continuation it must be valid wherever Γ(s) is defined. As a consequence

log Γ(s) = lim
n→∞

Sn−1(1)− Sn(s) + s logn

where

Sn(s) = log s+ log(s+ 1) + . . .+ log(s+ n− 1)

We can evaluate Sn(s) by the Euler­Maclaurin formula

f(0) + f(1) + . . .+ f(n− 1)

=

∫ n

0

f(x) dx − 1

2

(
f(n)− f(0)

)
+
β2
2

(
f ′(n)− f ′(0)

)
− 1

2

∫ n

0

f (2)(x)ψ2(x) dx

with

f(x) = log(s+ x), f ′(x) =
1

s+ x
, f (2)(x) = − 1

(s+ x)2

so

log s+ log(s+ 1) + . . .+ log(s+ n− 1)

=

∫ n

0

log(s+ x) dx − 1

2
[log(s+ n)− log s] +

1

12

[
1

s+ n
− 1

s

]
+

1

2

∫ n

0

ψ2(x)

(s+ x)2
dx

= [x log x− x]
s+n
s − 1

2
[log(s+ n)− log s] +

1

12

[
1

s+ n
− 1

s

]
+

1

2

∫ n

0

ψ2(x)

(s+ x)2
dx

= (s+ n− 1/2) log(s+ n)− (s− 1/2) log s− n+
1

12

[
1

s+ n
− 1

s

]
+

1

2

∫ n

0

ψ2(x)

(s+ x)2
dx

and setting s = 1, n− 1 for n:

log 1 + log 2+ . . .+ logn

= (n− 1/2) logn− (n− 1) +
1

12

[
1

n
− 1

]
+

1

2

∫ n

1

ψ2(x)

x2
dx

= (n− 1/2) logn− n+
11

12
+

1

12n
+

1

2

∫ n

1

ψ2(x)

x2
dx

= (n− 1/2) logn− n+ C +
1

12n
− 1

2

∫ ∞

n

ψ2(x)

x2
dx

where we define the constant

C =
11

12
+

1

2

∫ ∞

1

ψ2(x)

x2
dx.
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Taking limits, therefore

log Γ(s) =

(
s− 1

2

)
log s− s+ C +

1

12s
− 1

2

∫ ∞

0

ψ2(x)

(s+ x)2
dx.

This is valid for all s not on the negative real axis, and gives immediately the generalization of Stirling’s

formula

Γ(s) ∼ eC√
s

(s
e

)s

as s goes to infinity in any region

−π + δ ≤ arg(s) ≤ π − δ

since the remainder will have a uniform estimate in this region. The constant C can be evaluated by

letting t→ ±∞ in the reflection formula. On the one hand

Γ(it)Γ(−it) = − π

it sinπit

= − 2πi

it[e−πt − eπt]

∼ 2πt−1e−πt

while on the other

Γ(it)Γ(−it) ∼ eC√
it

(
it

e

)it
eC√
−it

(−it
e

)−it

=
e2C

t
(i)it(−i)−it

=
e2C

t
e(it)(πi)/2e(−it)(−πi)/2

=
e2C

t
e−πt

I recall that

xy = ey log x

where log is given its principal value. This gives

C = log
√
2π

and finally the explicit version

Proposition. (Stirling’s asymptotic formula) As s goes to ∞ in the region

−π + δ ≤ arg(s) ≤ π − δ

we have the asymptotic estimate

Γ(s) ∼
√

2π

s

(s
e

)s
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