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The Hardy-Littlewood maximal inequality (discrete versio n)

In this essay, I'll present the proof in [Bollobas:2006] (solution to Problem 85) of a well known result of
[Hardy-Littlewood:1930], which amounts to the discrete case of a more famous theorem. In fact, this discrete
version was for them a preliminary to the later continuous one. The illustrations are my main contribution,
but I have also made some effort to make the obvious a little more obvious.

My motive for taking up this subject is the approach in [Brislawn:1988] and [Brislawn:1990] to trace formulas.
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1. Finite arrays

Suppose a to be an array (a;) for 0 < i < n.

I'll associate to it a function defined on all of [0, n], which I'll also designate as a:
alz)=qa; f i<z <i+l1.

For convenience, I'll assume all the a; to be non-negative. The graph of the array will then be some kind of
bar graph.

For example, the figure on the left below displays the graph of the extended a when the original array is
(1,7,3,4,2,3):

[
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Define Ra to be the array a rearranged so as to be in (weakly) decreasing order. Thus Ra = (7,4,3,3,2,1)
ifa =(1,7,3,4,2,3). The figure on the right above displays its graph—the bars of the graph of « are just
shifted around horizontally.

To every array is associated the set
Ma(c) = {ilai = c}
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and the associated function m,(c) = |9, (c)|. This is also the one-dimensional measure of the intersection

of the line y = c and the region
{(z,9) |0 <y < a(x)}.

=

The functions m, and m g, are the same.

1.1. Proposition. Suppose a and b to be two non-negative weakly decreasing arrays. The following are
equivalent:

(a) a; < b; for alli;

(b) maly) < my(y) for ally;

(c) the bar graph of a is contained in that of b.

The following figure illustrates what’s going on.

I'll write a < b if these conditions hold.

1.2. Corollary. If a < b then Ra < RbD.

Proof. Because m(y) < my(y) for all y. 0
The following is a trivial observation:

1.3. Lemma. If b = Ra, then for every set I of sizen

bo+ -+ b1 Zzielai'
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2. The maximal function

Continue to let a be an array with indices in [0,n). I now associate to it a new array Ma. Define it by the
specification

Ma; = max 7%,_'_.:._'—%
0<ji<i (i—j)+1

This can be calculated by hand, but also very easily in a spreadsheet. For convenience of notation in the table

below, let | .
55 = (Zk:i—jﬂak)/j'

Then the tableau looks like this:

i a; Si Ss Sé St St Sé max
0 1 1 1
17 7 4 7
2 3 3 5 11/3 5
3 4 4 7/2  14/3 15/4 14/3
4 2 2 3 3 4 17/5 4
5 3 3 5/2 3 3 19/5 20/6 19/5

In dealing with averages, it will be convenient to have in front of us a trivial observation:

2.1. Lemma. Suppose the finite set A to be the disjoint union of subsets A;, and for each i let s; = |A;|/|A|.
Then the average of a function f over A is equal to the weighted sum of the averages over the A;:

|4 _Zi ' |4l

One consequence is that

e if the average over each A; is in the interval [a, b], so is the average over A.

There are a couple of simple facts about the array Ma. First of all, since q; itself is among the averages,
Ma; > a;. Second, if a is a weakly decreasing array then Ma; is simply the average

ap+ar+---+a;
i+1

of all preceding entries. This should be intuitively clear, but follows also from Lemma 2.1.
The main result of this essay:
2.2. Theorem. (Hardy-Littlewood) For all a, RMa < MRa.

For example, with a as above, here are some relevant graphs:

RMa

g

[

Ma
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MRa MRa

Ra RMa

Proof. In several steps.
Step 1. Itis to be shown that RMa; < MRa;. According to Proposition 1.1, for this it suffices to show that
for every y less than the maximum value of a;

(2.3) |M(y)| = |{i| RMa; > y}| = |{i| Ma; > y}| < |{i| MRa; > y}|.

So suppose that the right hand side is equal to k. We want to deduce that |M(y)| < k.

If & = n, this is immediate. So from now on suppose k < n. To reduce notational complexity, let b = Ra.
Since b is decreasing,
bo+ - +b;

i+1

for all 7. The assumption about k therefore directly translates to the condition

MRai =

bo+ -+ br_1 bo + -+ by
> .
F =Y7 TR
The average value of any k + 1 values of a; is therefore less than y. Equivalently,

e if I is any subset of [0,n) on which the average value of a; is < y, then |I| < k.
The proof will show that this holds for M(y).

Step 2. If Ma; > y there will be some largest index 1 = p(i) < i such that

alu‘_l’_..._i_ai

Ma; > —
(i—p)+1

2y.

That is to say, the interval I; = [, 7] is the shortest possible satisfying this condition. In these circumstances

%+”'+M{<y ifpu<j<i
(i—j+1 =y ifp=j.

2.4. Lemma. Suppose i, j bothin [0, n). Then either I; and I; are disjoint, or one is contained in the other.

Proof. We may suppose j < i. If I; and I; overlap, then u(i) < j < i. If I; is not contained in I;, then
w(j) < u(i). The average of Ra on the interval [1(4), h] is less than y, by choice of 1(j). But so is the average
over the interval [h + 1, 4], by choice of 1(7). By Lemma 2.1, this implies that the average over [p(7), 7] is less
than y, a contradiction.

Step 3. Let Z be the union of the all the intervals [1(), 7], which, according to the Lemma, is the same as the
union of all the maximal intervals. Since the average of a; over each is > y, so is the average over all of 7.
According to an earlier observation, this implies that |Z| < k.

Step 4. However, the set M (y) is contained in Z, and therefore |M(y)| < k. 0
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