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The Hardy-Littlewood maximal inequality (discrete versio n)

In this essay, I’ll present the proof in [Bollobas:2006] (solution to Problem 85) of a well known result of

[HardyLittlewood:1930], which amounts to the discrete case of a more famous theorem. In fact, this discrete

version was for them a preliminary to the later continuous one. The illustrations are my main contribution,
but I have also made some effort to make the obvious a little more obvious.

Mymotive for taking up this subject is the approach in [Brislawn:1988] and [Brislawn:1990] to trace formulas.
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1. Finite arrays

Suppose a to be an array (ai) for 0 ≤ i < n.

I’ll associate to it a function defined on all of [0, n], which I’ll also designate as a:

a(x) = ai if i ≤ x < i + 1 .

For convenience, I’ll assume all the ai to be nonnegative. The graph of the array will then be some kind of

bar graph.

For example, the figure on the left below displays the graph of the extended a when the original array is

(1, 7, 3, 4, 2, 3):

a Ra

Define Ra to be the array a rearranged so as to be in (weakly) decreasing order. Thus Ra = (7, 4, 3, 3, 2, 1)
if a = (1, 7, 3, 4, 2, 3). The figure on the right above displays its graph—the bars of the graph of a are just

shifted around horizontally.

To every array is associated the set

Ma(c) = {i | ai ≥ c}
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and the associated function ma(c) = |Ma(c)|. This is also the onedimensional measure of the intersection

of the line y = c and the region

{(x, y) | 0 ≤ y ≤ a(x)} .

y = c
m(c) = 4

The functions ma and mRa are the same.

1.1. Proposition. Suppose a and b to be two nonnegative weakly decreasing arrays. The following are
equivalent:

(a) ai ≤ bi for all i;
(b) ma(y) ≤ mb(y) for all y;
(c) the bar graph of a is contained in that of b.

The following figure illustrates what’s going on.

I’ll write a ≤ b if these conditions hold.

1.2. Corollary. If a ≤ b then Ra ≤ Rb.

Proof. Because ma(y) ≤ mb(y) for all y.

The following is a trivial observation:

1.3. Lemma. If b = Ra, then for every set I of size n

b0 + · · · + bn−1 ≥
∑

i∈I
ai .
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2. The maximal function

Continue to let a be an array with indices in [0, n). I now associate to it a new array Ma. Define it by the

specification

Mai = max
0≤j≤i

aj + · · · + ai

(i − j) + 1
.

This can be calculated by hand, but also very easily in a spreadsheet. For convenience of notation in the table
below, let

Si
j =

(

∑i

k=i−j+1
ak

)/

j .

Then the tableau looks like this:

i ai Si
1 Si

2 Si
3 Si

4 Si
5 Si

6 max
0 1 1 1
1 7 7 4 7
2 3 3 5 11/3 5
3 4 4 7/2 14/3 15/4 14/3
4 2 2 3 3 4 17/5 4
5 3 3 5/2 3 3 19/5 20/6 19/5

In dealing with averages, it will be convenient to have in front of us a trivial observation:

2.1. Lemma. Suppose the finite set A to be the disjoint union of subsets Ai, and for each i let si = |Ai|/|A|.
Then the average of a function f over A is equal to the weighted sum of the averages over the Ai:

∑

a∈Af(a)

|A|
=

∑

i
si ·

∑

a∈Ai
f(a)

|Ai|
.

One consequence is that

• if the average over each Ai is in the interval [a, b], so is the average over A.

There are a couple of simple facts about the array Ma. First of all, since ai itself is among the averages,

Mai ≥ ai. Second, if a is a weakly decreasing array then Mai is simply the average

a0 + a1 + · · · + ai

i + 1

of all preceding entries. This should be intuitively clear, but follows also from Lemma 2.1.

The main result of this essay:

2.2. Theorem. (HardyLittlewood) For all a, RMa ≤ MRa.

For example, with a as above, here are some relevant graphs:

a

Ma

Ra

RMa
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Ra

MRa

RMa

MRa

Proof. In several steps.

Step 1. It is to be shown that RMai ≤ MRai. According to Proposition 1.1, for this it suffices to show that

for every y less than the maximum value of ai

(2.3)
∣

∣M(y)
∣

∣ =
∣

∣{i |RMai ≥ y}
∣

∣ =
∣

∣{i |Mai ≥ y}
∣

∣ ≤
∣

∣{i |MRai ≥ y}
∣

∣ .

So suppose that the right hand side is equal to k. We want to deduce that |M(y)| ≤ k.

If k = n, this is immediate. So from now on suppose k < n. To reduce notational complexity, let b = Ra.
Since b is decreasing,

MRai =
b0 + · · · + bi

i + 1
.

for all i. The assumption about k therefore directly translates to the condition

b0 + · · · + bk−1

k
≥ y >

b0 + · · · + bk

k + 1
.

The average value of any k + 1 values of ai is therefore less than y. Equivalently,

• if I is any subset of [0, n) on which the average value of ai is ≤ y, then |I| ≤ k.

The proof will show that this holds for M(y).

Step 2. If Mai ≥ y there will be some largest index µ = µ(i) ≤ i such that

Mai ≥
aµ + · · · + ai

(i − µ) + 1
≥ y .

That is to say, the interval Ii = [µ, i] is the shortest possible satisfying this condition. In these circumstances

aj + · · · + ai

(i − j) + 1

{

< y if µ < j ≤ i
= y if µ = j.

2.4. Lemma. Suppose i, j both in [0, n). Then either Ii and Ij are disjoint, or one is contained in the other.

Proof. We may suppose j < i. If Ii and Ij overlap, then µ(i) ≤ j < i. If Ij is not contained in Ii, then

µ(j) < µ(i). The average of Ra on the interval [µ(i), h] is less than y, by choice of µ(j). But so is the average
over the interval [h + 1, i], by choice of µ(i). By Lemma 2.1, this implies that the average over [µ(i), i] is less
than y, a contradiction.

Step 3. Let I be the union of the all the intervals [µ(i), i], which, according to the Lemma, is the same as the

union of all the maximal intervals. Since the average of ai over each is ≥ y, so is the average over all of I.
According to an earlier observation, this implies that |I| ≤ k.

Step 4. However, the set M(y) is contained in I, and therefore |M(y)| ≤ k.
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