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Hecke algebras associated to reductive groups over a finite field Fq were introduced in order to decompose
representations of those groups induced from parabolic subgroups. They have subsequently become ubiq­

uitous in representation theory, but often as algebras whose coefficients are polynomials, in which variables
replace various powers of q.

The existence of these Hecke algebras with polynomial coefficients is not quite trivial. There are essentially

two constructions in the literature. One originates in Exercices IV.22­25 of [Bourbaki:1968], and is appar­

ently due originally to Jacques Tits. There are other accounts patterned after this argument, for example in
[Humphreys:1990] and [Carter:1993]. My reaction to these is that they are clever but obscurely motivated—

several tools used in the proof do not occur subsequently in the theory. There is a rather different, proof in

[Eriksson:1994], which has much to be said for it. In this paper I offer a third, having something in common
with each of these, but with what I consider to be a more direct approach. It was originally suggested in the

course of writing programs for dealing with Hecke algebras.

I intend this paper to be largely self­contained, readable by novices. Before I present the proof of the general

theorem, I recall the origins of the main theorem by looking at what happens for Hecke algebras of reductive
groups defined over finite fields. Similar discussions are not difficult to find in the literature, but they are

usually embedded in lengthier treatments. I include this section in order to motivate the later, more abstract,
treatment.

Since many readers will be familiar only with finite Coxeter groups, I include a very brief summary of what

parts of the subject I need.
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1. The Hecke algebras of finite reductive groups

The standard reference for this section is Chapter 1 of [Carter:1972].

Let G be the group of Fq­rational points on a Zariski­connected reductive group defined over Fq . By a well

known theorem of Serge Lang, it possesses a Borel subgroup B. A natural and classical question is, how does
the representation of G on the space C[B\G] of C­valued functions on the flag manifold B\G decompose into
irreducible components?

The first step in answering this is to describe the ring of operators on I = C[B\G] commuting with G.

Frobenius reciprocity tells us that

HomG(I, I) ∼= HomB(I, C) .

The space on the right may be identified with functions in H(G//B), the space of complex­valued functions
on G that are bi­invariant with respect to B. It is sometimes called the Hecke algebra of G with respect to B,

for not very adequate historical reasons. Explicitly, F inH(G//B) corresponds to the operator LF where

[LF f ](g) =
1

|B|

∑

x∈B\G

F (x)f(x−1g) .
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This makes sense since the summand depends only on the image of x in B\G.

The ring H(G//B) has convolution as its multiplication, and LF1F2
= LF1

LF2
. The characteristic function

charB is the multiplicative identity. The following is immediate:

Lemma 1.1. The map taking F to LF is an identification of H(G//B) with the commutator of the right action
of G in End

(
C[B\G]

)
.

If (π, V ) is any representation of G, thenH(G//B) acts on the subspace V B of vectors fixed by B:

v 7−→ π(F )v =
1

|B|

∑

G

F (g)π(g)v =
∑

x∈G/B

F (x)π(x)v .

In the case above, π is the left­regular representation of G on itself.

Let T be a maximal torus contained in B, W the correspondingWeyl group NG(T )/T . For w in W the double

coset BwB is well defined, and the Bruhat decomposition asserts that G is the disjoint union of these as w
ranges over W . If τw is the characteristic function charBwB of BwB, then the τw make up a basis ofH(G//B).
How can we compute the product τxτy as a linear combination of the τw?

Lemma 1.2. I BxB is the disjoint union of right cosets xiB and ByB is that of the yjB, then

τxτy =
∑

i,j

xiyj charB .

Here what I mean by xycharB is charxyB .

Proof. If have identified H(G//B) with a subalgebra of the ring of endomorphisms of C[B\G], so it suffices
to show this for operators Lτx

, Lτy
. But for any representation (π, V ) of G we have for any v in V B

π(τx)π(τy)v =
∑

i

π(xi)π(τy)v =
∑

i,j

π(xi)π(yj)v .

Lemma 1.3. Suppose G to have semi­simple rank one. Let N be the unipotent radical of B, and let qG = |N |.
Then

τ2
s = (qG − 1)τs + qGτ1 .

Proof. The Weyl group in this case has two elements, 1 and s. Let w be a representative in NG(T ) of the
non­trivial element s. The double coset BwB factors uniquely as NwB, so by the previous Lemma we can

write

τ2
s =

∑
x,y∈N

xw·yw charB

If y = 1 the product wyw lies in B, and the terms with y = 1 therefore contribute qGτ1 to the product. But if

y 6= 1 we have wyw = nyw∗by, with ny ∈ N , by ∈ B. Proving this reduces to an explicit calculation in one
of the two possible semi­simple groups of rank one over Fq , either SL2(Fq) or SU3(Fq). For example in SL2

with c 6= 0 [
0 1

−1 0

] [
1 c
0 1

] [
0 1

−1 0

]
=

[
−1 0

c −1

]

=

[
1 −1/c
0 1

] [
0 −1/c
c 0

] [
1 −1/c
0 1

]
.

The terms with y 6= 1 therefore contribute (qG − 1)τs.

Let ∆ be the set of simple roots α determined by B and T . If Tα is the kernel of α in T , its centralizer Gα in G
is a reductive group of semi­simple rank one containing T . The Weyl group of T in Gα contains a non­trivial

involution sα. The group W is a Coxeter group, generated by the sα.
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A representation ofw as a product of sα is said to be reduced if it is of minimal length ℓ(w). This is the same as
the number of positive roots taken into negative ones by w. I write ws > w if ℓ(ws) = ℓ(w) + 1 and similarly

sw > w if ℓ(sw) > ℓ(w).

Let qα = |Nα|. It only depends on the W ­orbit of α, or equivalently on the conjugacy class of sα in W .

Proposition 1.4. Suppose w to be in W , s = sα one of the simple generators. Then

τwτs = τws ws > w
= (qα − 1)τw + qατws ws < w

τsτw = τsw sw > w
= (qα − 1)τw + qατsw sw < w

Since W is generated by the sα, these formulas determine completely the multiplication inH(G//B).

I’ll sketch the Proof. Half of these claims follow from the more general claim that

τxτy = τxy

if ℓ(xy) = ℓ(x) + ℓ(y), which I prove first.

For each root λ let Nλ be the unipotent subgroup whose Lie algebra is the T ­eigenspace gλ, isomorphic to Fq .
Let N be the unipotent radical of B, which is isomorphic to the direct product

N =
∏

λ>0

Nλ .

The product may be taken in any order, according to Lemme 3.3 of [Borel­Tits:1965]. Let N be the opposite
subgroup, corresponding to negative roots. For any w in W we have the direct product factorization

N = (wNw−1 ∩ N)(wNw−1 ∩ N)

with
wNw−1 ∩ N =

∏

λ>0

w−1λ>0

Nλ

wNw−1 ∩ N =
∏

λ>0

w−1λ<0

Nλ

= Nw (say) .

Since N/(wNw−1 ∩ N) ∼= Nw , we now have the very explicit formula

τw =
∑

n∈Nw

nw charB .

Let Λw be the set of all positive roots λ such that w−1λ < 0. If ℓ(xy) = ℓ(x) + ℓ(y) then

Λxy = xΛy ⊔ Λy

so the product map is a bijection of Nx × xNyx−1 with Nxy . The number of roots in Λw is the same as the

length of w−1. But then

τxτy =
⊔

Nx×Ny
(nxx)(nyy)B =

⊔
Nx×Ny

(nx) (xnyx−1) xy)B =
⊔

Nxy
nxyB = τxy

which proves the first assertion in the Proposition.
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It remains to compute τws when ws < w. If ws < w then w = ws·s with ℓ(w) = ℓ(ws) + 1, so by the first part

TwTs = (TwsTs)Ts

= τwsτ
2
s

τsτw = τs(τsτws)

= τ2
s τws

so both formulas we want follow from the single equation

τ2
s = (qα − 1)τs + qατ1 ,

which is Lemma 1.3.

The use of associativity here in setting (τwsτs)τs = τws(τsτs) will be significant later on.

Knowing the structure of the Hecke algebraH(G//B) is only a first basic step. Understanding the decomposi­

tion of C[B\G] as a representation of G requiresmuch more, eventually the theory of [Kazhdan­Lusztig:1979].

Similar algebras, called Iwahori­Hecke algebras, arise in the theory of unramified representations of a p­adic
reductive group. For these, affine Weyl groups replace W .

In the theory of Kazhdan and Lusztig, as well as in answering other questions in representation theory, it

is important to know that the prime powers qα in the definition of the Hecke algebra may be replaced by

variables. This is not so surprising, since the formulas for multiplication are polynomials in the qα that do
not depend on the particular value of q but only on the root structure of G. It ought not to be too surprising,

either, that the Hecke algebras may also be defined for Kac­Moody groups or, in other words, crystallographic
Coxeter groups. What is really remarkable is that a Hecke algebra may be defined for any Coxeter group, even

the ones like H3 or H4 (the symmetry groups of the regular icosahedron and its four­dimensional analogue)

that are not crystallographic and do not correspond to any algebraic group. This is the simplest example
of the general rule that arbitrary Coxeter groups deserve to be treated as nicely as crystallographc ones. A

more complicated one is that Kazhdan­Lusztig polynomials may be defined for all Coxeter groups, and truly

astonishing is the conjecture that they always have non­negative coefficients.

The rest of this paper will present a new proof of the construction of the polynomial Hecke algebras for an
arbitrary Coxeter group.

2. Coxeter groups

The standard references for this section are [Humphreys:1990] and [Bourbaki:1968].

Definition. SupposeS to be anyfinite set. ACoxetermatrix indexedbyS is a symmetricmatrixM = (ms,t)
with entries in {1, 2, 3, . . . ,∞} such that

(a) ms,s = 1;
(b) ms,t ≥ 2 if s 6= t.

The Coxeter group W defined by these data is that with involutive generators in S and relations

s2 = 1, st . . . = ts . . . (ms,t terms on each side if ms,t < ∞.)

This last is called a braid relation . These relations imply, and are implied by, the relations

(st)ms,t = 1

for all s, t.

Geometric realization. Let (αs) be a basis of the vector space V = R
S . Define on it an inner product:

αs •αt = −2 cos(π/ms,t) .
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In particular, αs • αs = 1, and for s 6= t we have αs •αt ≤ 0. For each s in S define the linear transformation
of V :

rs: v 7−→ v − 2(αs • v)αs .

It is an orthogonal reflection, and the map s 7→ rs determines a homomorphism from W to GL(V ). Let

C = {v ∈ V |αs • v > 0}

C = the interior of the union of the transforms {wC |w ∈ W}

Then W embeds into GL(V ) and acts discretely on C, which is a convex cone in V . (It is called the Tits cone,

although it seems to have been independently discovered by Vinberg.) The closure C is a strict fundamental

domain for the action of W on C.

If W is finite, then C is all of V , but otherwise it is a proper subset. If W is an affine Weyl group, it is an open

half­space. Otherwise, it is an acute cone.

The αs are the simple roots of this realization of W , and the other roots λ are the transforms of these by

elements of W . The transforms of C by elements of W make up the complement in C of the root hyperplanes
λ • v = 0.

Exchange Condition. The fundamental relation between geometry and the combinatorics of W is that

sw > w if and only if C and wC lie in the half­plane αs • v > 0. It follows easily from this that if w has the

reduced expression
w = s1 . . . sn

and sw < w, then for some k
sw = s1 . . . sk−1ŝksk+1 . . . sn .

This is the Exchange Condition. (See §IV.1.5 of [Bourbaki:1968], Lemme 1.4 of [Tits:1968].) The simple

geometric fact underlying this is that if sw < w then the path of neighbouring chambers

C, sC, ss1C, ss1s2C, . . . , swC

first crosses and later recrosses the hyperplane αs = 0.

Coset representatives. For this section, see §5.12 of [Humphreys:1990].

Given any subset T ⊆ S, let WT be the subgroup generated by the s in T . It, too, is a Coxeter group, and

cosets of WT \W have special representatives in

[WT \W ] = {w ∈ W | tw > w for all t ∈ T} .

Every w in W may be written uniquely as wT wT with wT ∈ WT , w
T ∈ [WT \W ], and ℓ(w) = ℓ(wT ) + ℓ(wT ).

Similarly every double coset in WT \W/WU possesses an element w of minimal length such that tw > w for

all t in T , wu > w for all u in U .

Tits’ equivalence theorem. According to the definition of a Coxeter group, two words in S give rise to

the same element of W if and only if one of them can be obtained by a sequence of (a) deletion of a pair s⋄s;
(b) insertion of a pair s⋄s; (3) replacement of one side of a braid relation inside a word by the other side. This

criterion can be made somewhat more practical. The descendants of a word are all those obtained from it just

by deletions and braid relations. Finding all descendants is a lengthy but finite process. The main result of
[Tits:1968] is that two words are equivalent if and only their descendants overlap. This is discussed in §2.3.3
of [Abramenko­Brown:2009].

Since a reducedword is not equivalent to a shorter one, two reducedwords give rise to the same group element
if and only if one can be obtained from the other by a sequence of braid relations. This is proven directly in

the course of the proof of Tits’ proof in [Tits:1968]. This result does not lead to a practical algorithm for telling

whether two elements of W , expressed as products from W , are the same are not, but nonetheless it ought to
be considered one of the fundamental results about Coxeter groups.

There do exist very efficient algorithms for computing in Coxeter groups. The best ones are purely combi­

natorial, and are based on the main theorem of [Brink­Howlett:1994], which asserts that a Coxeter group is

automatic.
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3. The Hecke algebra of a Coxeter group

Let (W,S) be any Coxeter group, say with Coxeter matrix (ms,t). Suppose assigned to each s in S a parameter

qs. This assignment will be called consistent if qs = qt whenever s and t are conjugate in W . Consistency is
relatively easy to check, because s and twill be conjugate inW if and only if they are conjugate in the dihedral

group Ws,t generated by them ([Bourbaki:1968], p. 12). More explicitly, they will be conjugate if and only if

ms,t is odd.

The proof of the next result is based on a practical algorithm, which requires that every element of W be
assigned a unique expression as a product of elements of S. There is one most frequently used, its ShortLex

expression. Assume S to be ordered. The expression

w = s1s2 . . . sn

is said to be in ShortLex form if s1 is the least s in S such that sw < w and the expression s2 . . . sn is
the ShortLex form for s1w. Such an expression is as short as possible, and lex icographically least among

reduced expressions for w. Every w can be represented uniquely by its ShortLex expression, so this offers a
purely combinatorial way to represent elements of W in a computer program. Every strict subexpression of a

ShortLex word is also a ShortLex word.

Theorem 3.1. If s 7→ qs is an assignment of parameters in a ring R, then there exists an associative algebra
H(W,S) which is free over R with basis Tw, indexed by elements of W , and identity T1, such that

TwTs = Tws ws > w
= (qs − 1)Tw + qsTws ws < w

TsTw = Tsw sw > w
= (qs − 1)Tw + qsTsw sw < w

if and only if the parameters are consistent. It is unique up to isomorphism.

Induction then implies

TxTy = Txy

if ℓ(xy) = ℓ(x) + ℓ(y).

Proof. Necessity first. The elements s, t in S are conjugate in W if and only if ms,t is odd and hence

tw = ws
(
w = (st)(ms,t−1)/2

)
,

with sw = wt > w. But then s(sw) = w = (wt)t so that assuming the formulas of the Theorem to be true

TsTsw = qsTw + (qs − 1)Tsw = TwtTt = qtTw + (qt − 1)Twt ,

requiring qs = qt.

The more difficult half is sufficiency.

Let H = H(W,S) be the free module over R with basis Tw (w ∈ W ). Define a product on H by an inductive

formula. First of all, let T1 be the multiplicative identity. Next I define multiplication by Ts (s ∈ S) on the left

by the formulas

TsTw =

{
Tsw if sw > w
(qs − 1)Tw + qsTsw otherwise.

To define products TwTx in general, I use a notion arising in computation with Coxeter groups.

Suppose x in W , with ShortLex expression x = s1 . . . sn = (say) s1y. Define recursively

TxTw = Ts1
(TyTw) .
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This is consistent with the earlier definition since an element of S has exactly one reduced expression. We can
unravel the induction to some extent:

TxTw = Ts1
(Ts2

(. . . (Tsn
Tw) . . .)) .

This can be rephrased, since because strict subexpressions of a ShortLex expression are ShortLex:

Lemma 3.2. If z has ShortLex expression s1 . . . sn and

x = s1 . . . sm, y = sm+1 . . . sn

then
TzTw = Tx(TyTw) .

The problem now is to show that this product is associative.

Lemma 3.3. If ℓ(xy) = ℓ(x) + ℓ(y) then
TxTy = Txy .

Proof. By induction on ℓ(x). For ℓ(x) = 0 it is trivial, and if ℓ(x) = 1 then x = s, so it is a matter of definition.

It is straightforward even in general. Suppose x to have the ShortLex expression

x = s1s2 . . . sn = (say) s1z .

Then by definition

TxTy = Ts1
(TzTy)

and by the induction assumption

Ts1
(TzTy) = Ts1

Tzy = Ts1zy = Txy .

Lemma 3.4. We have

TxTs =

{
Txs if xs > x
(qs − 1)Tx + qsTxs otherwise.

Proof. If ℓ(x) = 0 there is nothing to prove, and if ℓ(x) = 1 it is a matter of definition. So assume ℓ(x) ≥ 2.

If xs > x then TxTs = Txs by the previous Lemma. Otherwise let the ShortLex expression for x be sn . . . s1.
The induction hypothesis is that the Lemma is true for y with ℓ(y) < ℓ(x) = n. Let m be least such that

sm . . . s1s < sm . . . s1 .

That is to say, if u = sm−1 . . . s1 then us > u but smus < us. By the Exchange Condition we have

sm . . . s1s = sm−1 . . . s1s or smus = u .

If v = sn . . . sm+1 then

x = vsmu, so xs = vsmus = vu .

Because us = smu, the elements s and sm are conjugate, hence qs = qsm
. At first I take v = 1, x = smu. Then

because strict subexpressions of a ShortLex expression are ShortLex:

TxTs = TsmuTs

= Tsmsm−1...s1
Ts) (u = sm−1 . . . s1)

= Tsm
(Tsm−1

(. . . (Ts1
Ts) . . .)) (definition)

= Tsm
Tus (Lemma 3.3)

= (qsm
− 1)Tsmu + qsm

Tsmus (definition)
= (qsm

− 1)Tsmu + qsm
Tu (smus = u)

= (qs − 1)Tsmu + qsTu (qs = qsm
)

= (qs − 1)Tx + qsTxs .



Hecke algebras 8

Now take v arbitrary. Then

TxTs = TvsmuTs

= Tv(TsmuTs) (by Lemma 3.2)

= Tv((qs − 1)Tsmu + qsTu)

= (qs − 1)Tx + qsTxs .

The last step is by Lemma 3.3, since the hypotheses imply that ℓ(vus) = ℓ(v) + ℓ(us) and ℓ(vu) = ℓ(v) + ℓ(u).

The following is a special case of associativity, and the crux of the proof of associativity in general.

Lemma 3.5. For s, t in S, w in W , (TsTw)Tt = Ts(TwTt).

Proof. For anyu inS letWu = {1, u}. The groupW decomposes into a disjoint union of double cosetsWswWt,

on each of which the product Ws × Wt acts by left and right multiplication. There are two kinds of cosets,
according to what the isotropy group is. Suppose w to be of minimal length in the coset (as in [Bourbaki:1968],

Exercice 3 of IV.1). In one case, the isotropy group is trivial, and the coset is {w < sw,wt < wst} . In the
otehr, it has two elements and the coset is {w < sw = wt}.

Let λs be left multiplication by Ts, ρt right multiplication by Tt. Associativity means that λs and ρt com­

mute. On {w, sw,wt, swt} this is straightforward. On a double coset {w, sw = wt} the calculation is also

straightforward, using the consistency of the parameters and the previous lemma.

From this to a full proof of associativity is a straightforward induction argument.

Corollary 3.6. For each pair s, t in S

TsTt . . . = TtTs . . . (ms,t terms on each side) .

Proof. Immediate from Lemma 3.3 and the braid relations in W .

4. Generators and relations

It is important in representation theory to know that the Hecke algebra is defined by the equations in Theorem
3.1.

Define now H(W,S) to be the associative algebra defined by generators τs (s ∈ S) with relations

τ2
s = (qs − 1)τs + qsτ1

τsτt . . . = τtτs . . . (ms,t terms on each side) .

The map τs 7→ Ts defines a homomorphism from H(W,S) toH(W,S).

Theorem 4.1. This homomorphism is an isomorphism of H(W,S) with H(W,S).

Proof. From Tits’ result, we can derive an algorithm to express any product τs1
. . . τsn

as a linear combination

of such products for which the sequence is ShortLex. First of all, we repeatedly apply braid relations to make
a list of all products of the same length. If the product is reduced, then by Tits’ theorem one of themwill be the

ShortLex expression. If the product is not reduced, then by Tits’ theorem at least one of them will include a

duplication τsτs, which may be reduced to a sum of two products of lower degree. So an induction argument
will work.

Tits’ result does not give us a practical algorithm for finding a ShortLex expression, but of course here that

doesn’t matter.

Corollary 4.2. If V is a vector space and we are given operators es for each s in S such that

e2
s = (qs − 1)es + qsI

eset . . . = etes . . . (ms,t terms on each side)

then Ts 7→ es defines V as a module overH(W,S).
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