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Suppose V to be an affine variety defined over Qp with coefficients in Zp, say embedded in Zd
p. This means

that it is the zero set of a set of polynomials with coefficients in Zp. Hence for each m one can consider its

zero set in (Z/pm)d, those points satisfying these equations modulo pm. What can one say about the number
of points defined over Z/pm, as m grows large? Every point modulo pm+1 determines a point modulo pm.
What is the image of this reduction map? Under what circumstances is this map surjective? What points in
the zero set in (Z/pm)d are in the image of the zero set in Zd

p? Hensel’s Lemma answers these questions. The
well known case is valid for V a smooth scheme overZp. But there is also a versionwhen V is nonsingular as

a variety overQp. In the present version of this note, I’ll look only at the case V is a nonsingular hypersurface

f(x) = 0.

After §1, the situation will be a little more general:

k = a local field

o = the integers of k

p = the maximal ideal of o

̟ = a generator of p, so p = (̟)

Fq = o/p .

Thus q = pr for some prime number p. Let≡n mean congruence modulo pn.
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1. Introduction [Hensel.tex]

Let’s look at a simple example, a variety of dimension 0, with f(x) = x2 − a and a in Zp.

Suppose at first p to be odd. If the image of a modulo p is not a square in Z/p there cannot be any solutions

in Zp. Two cases remain: the image of a in Z/p is (a) a nonzero square or (b) 0. The second case is singular,

and I’ll postpone looking at it.

So now assume that a is a unit square modulo p. There are two solutions in Z/p. What about modulo pn?

We proceed by induction on n. Suppose that xn is a solution modulo pn and that we want to find all those x
modulo pn+1 which are congruent to xn modulo pn. We may express

x = xn + hpn

with x2
n ≡n a. Can we find h such that x2 ≡n+1 a? We must solve

(xn + hpn)2 = x2
n + 2hxnpn + h2p2n ≡n+1 a .

Since n ≥ 1, the last term lies in pn+1, so we may ignore it, and it remains to solve

x2
n + 2hpnxn ≡n+1 a .
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But then we may set

h = −x2
n − a

2xnpn
,

which is legitimate because 2xn is invertible in o and ̟n divides x2
n − a. One important point here is that

h is unique modulo p, hence hpn unique modulo pn+1. At any rate, the process continues, producing a

sequence that converges to some value of
√

a. In effect we are applying the padic analogue of Newton’s

method—we start with a good approximation of a square root and find a sequence of better approximations.
The conclusion is that if p is odd and a modulo p is a nonzero square in Z/p there are exactly two square
roots of a in Zp.

There are other ways in which one can arrive at this conclusion, such as one using the binomial series for

(1 + x)1/2, but I’ll ignore them since my intention is to describe a tool, not a specific conclusion.

The case p = 2 is more interesting. I’ll illustrate what happens by looking at a couple of specific examples.

First take a = 5. Then a is a square modulo 2 and 4, but not modulo 8, so it cannot be a square in Z2. It is

natural to ask, how deep does one have to look in order to apply this sort of test? Next, try a = 17. Here
a is a square modulo 16. As one can check quickly, there is one solution in Z/2, two in Z/4, four solutions
in Z/8, and four in Z/16. Does this number remain fixed for n ≥ 3? Yes, but for slightly peculiar reasons.

After all, there cannot be four square roots of any number in Z2, so something not quite straightforward has
to take place.

In Z/8, the square of every unit is equal to 1. But in Z/16, the solutions of x2 = 1 are ±1, ±7—i.e. only
half the units. Their images in Z/8 give only ±1, which is to say that only half of the solutions in Z/8 lift

to solutions in Z/16. And so it continues—there are indeed 4 solutions in each Z/2n with n ≥ 3, but only
half of them at each stage lift to Z/2n+1. The reason things go wrong is more or less easy to understand—in
Newton’s formula the denominator factor 2xn is no longer a unit, so there has to be some modification in

order to make it work. Exactly how will be seen later on. The conclusion one arrives at here is that if a ≡8 1
then there exist two square roots of a in Z2. (Here, too, one might use the binomial series for (1 + 8x)1/2, but

it is not quite so simple to see why it converges.)

In the next section I’ll explain Hensel’s Lemma in the case that generalizes what happened for x2 − a when

p was odd, and in the section after that I’ll deal with the singular cases.

2. The non-singular case [Hensel.tex]

I shall look in this section and the next at the case when the variety is a hypersurface f = 0, generically non
singular. I recall that a point of the scheme f = 0, in which f has coefficients in the field F , is nonsingular

at a point x if its gradient∇f (x) does not vanish. That means that for some N > 0 we have

∇f (x) ≡N−1 0, ∇f (x) 6≡N 0 .

I shall assume in this section that N = 1, or equivalently that f = 0 in fact remains nonsingular at x modulo
p at the point concerned.

2.1. Lemma. (Hensel’s Lemma I) Suppose f(x) to be a polynomial in d variables with coefficients in o. Then[hensel]

for every solution xn of f(xn) ≡n 0 but∇f (xn) 6≡1 0 there exist pd−1 solutionsmodulo pn+1 that are≡n xn.

Proof. The assumption means that ∇f (xn) is nonzero modulo p, hence that ∇f (x) is a nonzero function on
Fd

q . We want to show that for every solution of f(xn) ≡n 0 there exist exactly qd−1 modulo pn+1 that are

≡n xn. But if we choose an arbitrary x modulo pn+1 with x ≡n xn then we can in fact find exactly qd−1

solutions of
f(x + ̟na) = f(x) + ̟n〈∇f (xn), a〉 ≡n+1 0

by solving 〈∇f (xn), a〉 = −f(xn)/̟n for a.

From this, one can construct a Cauchy sequence converging to a root of f(x) = 0:

2.2. Theorem. If xn satisfies f(xn) ≡ 0 and∇f (x) 6≡1 0, then there exists x in od with f(x) = 0 and x ≡n xn.[hensels-theorem]
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3. The singular case [Hensel.tex]

We now look at a more complicated case. Suppose x in o, f(x) ≡n 0, ∇f (x) ≡N 0 but not ≡N+1 0. We

have seen from examples above that we cannot expect to find y ≡n x with f(y) ≡n+1 0. So we search more
generally for y of the form x + ̟n−kh. (In the nonsingular case, with N = 0, we may choose k = 0.) Now

f(x + ̟n−kh) = f(x) + ̟n−k〈∇f (x), h〉 + O(̟2n−2k) .

In order to make the earlier technique work, we must first require

2n − 2k ≥ n + 1, n ≥ 2k + 1 .

Set f(x) = c̟n, ∇f (x) = d̟N with d a nonzero vector modulo p. We now want to be able to solve

̟n−k〈∇f (x), h〉 ≡n+1 −c̟n

̟n−k+N 〈d, h〉 ≡n+1 −c̟n

̟N−k〈d, h〉 ≡1 −c

This will be possible precisely when k = N , and the value of h will be unique modulo p.

3.1. Lemma. (Hensels’ Lemma II) Suppose f(xn) ≡n 0, ∇f (xn) ≡N 0 but not ≡N+1 0. If n ≥ 2N + 1 there[hensels-lemma-2]

exists h unique modulo p such that if
xn+1 = xn + ̟n−Nh

then
f(xn+1) ≡n+1 0 .

Thus for n ≥ 2N + 1 the number of solutions modulo pn remains constant, but only 1/qN of the solutions

modulo pn lift to solutions modulo pn+1, and in fact to solutions in od.

Note that if x is a solution modulo pn with n ≥ 2N + 1 then so are all x + ̟n−Nh, since then

f(x + ̟n−Nh) ≡n f(xn) + ̟n−N+N 〈∇f (x), h〉 ≡n f(xn) .

I think the final result is this: say there are M solutions modulo pN+1 that come from solutions modulo
p2N+1. Then these lift to o, and more generally modulo pN+1+n there are Mq(d−1)k solutions that lift to

o. This at least agrees with what happens in the nonsingular case, in which N = 0 and any nonsingular

solutions over Fq lift to o.

For example, take f(x) = x2 − 17 and o = Z2. Then ∇f = 2x. Any solution of f(x) = 0 will be a unit, so

N = 1. Each of the four units x in Z8 is a solution of f(x) ≡3 a, and for any of them we may find y in Z/16
with y ≡2 x. Modulo 16 there are again 4 solutions, whose images modulo 8 are half the solutions modulo

8. Etc. In general, half the solutions in Z/pn lift to solutions in Zp. They are the ones that lift to solutions in

Z/pn+1.

If f is a system of equations then ∇f is a matrix, to which we must presumably apply the principal divisor

theorem, assuming the point isnot singular over k, but only singular to finite depth over o. Thus∇f is amatrix
of maximum rank over k, and to apply the same reasoning as above we must express lattices accordingly.

3.2. Theorem. Suppose xn satisfies[hensels-theorem-2]

f(xn) ≡n 0, ∇f (x) ≡N 0, ∇f (x) 6≡N+1 0 .

If n ≥ 2N + 1, there exists x in od with f(x) = 0 and x ≡n−N xn.


