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Suppose V' to be an affine variety defined over @, with coefficients in Z,,, say embedded in Zg. This means
that it is the zero set of a set of polynomials with coefficients in Z,. Hence for each m one can consider its
zero set in (Z/p™)<, those points satisfying these equations modulo p™. What can one say about the number
of points defined over Z/p™, as m grows large? Every point modulo p™ ! determines a point modulo p™.
What is the image of this reduction map? Under what circumstances is this map surjective? What points in
the zero set in (Z/p™)¢ are in the image of the zero set in Zg ? Hensel’s Lemma answers these questions. The
well known case is valid for V' a smooth scheme over Z,,. But there is also a version when V" is non-singular as
avariety over Q. In the present version of this note, I'll look only at the case V" is a non-singular hypersurface

f(z) =0.

After §1, the situation will be a little more general:

£ = alocal field
o = the integers of £

p = the maximal ideal of o
w = a generator of p, so p = (w)
F,=0/p.

Thus ¢ = p” for some prime number p. Let =,, mean congruence modulo p”.
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Let’s look at a simple example, a variety of dimension 0, with f(z) = 2° — a and @ in Z,,.

Suppose at first p to be odd. If the image of @ modulo p is not a square in Z/p there cannot be any solutions
in Z,. Two cases remain: the image of a in Z /p is (a) a non-zero square or (b) 0. The second case is singular,
and I'll postpone looking at it.

So now assume that « is a unit square modulo p. There are two solutions in Z/p. What about modulo p"?
We proceed by induction on n. Suppose that z,, is a solution modulo p™ and that we want to find all those z
modulo p™*! which are congruent to z,, modulo p™. We may express

r=xn,+ hp"
with 22 =,, a. Can we find h such that 2% =,, ;1 a? We must solve
(xn + hp")2 = 17721 + 2ha,p" + B2 p*" =n41 a.

n+1

Since n > 1, the last term lies in p" ", so we may ignore it, and it remains to solve

17121 + 2hp"x, =py1 a.
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But then we may set
CC% —a

- 2x,p"

which is legitimate because 2z, is invertible in 0 and ™ divides 72 — a. One important point here is that
h is unique modulo p, hence hp™ unique modulo p"*!. At any rate, the process continues, producing a
sequence that converges to some value of v/a. In effect we are applying the p-adic analogue of Newton’s
method—we start with a good approximation of a square root and find a sequence of better approximations.
The conclusion is that if p is odd and a modulo p is a non-zero square in Z/p there are exactly two square
roots of a in Zy.

There are other ways in which one can arrive at this conclusion, such as one using the binomial series for
(1 + x)'/2, but I'll ignore them since my intention is to describe a tool, not a specific conclusion.

The case p = 2 is more interesting. I'll illustrate what happens by looking at a couple of specific examples.
First take a = 5. Then a is a square modulo 2 and 4, but not modulo 8§, so it cannot be a square in Z,. It is
natural to ask, how deep does one have to look in order to apply this sort of test? Next, try a = 17. Here
a is a square modulo 16. As one can check quickly, there is one solution in Z/2, two in Z/4, four solutions
in Z/8, and four in Z/16. Does this number remain fixed for n > 3? Yes, but for slightly peculiar reasons.
After all, there cannot be four square roots of any number in Z5, so something not quite straightforward has
to take place.

In Z/8, the square of every unit is equal to 1. But in Z/16, the solutions of 2> = 1 are +1, £7—i.e. only
half the units. Their images in Z/8 give only £1, which is to say that only half of the solutions in Z/8 lift
to solutions in Z/16. And so it continues—there are indeed 4 solutions in each Z/2" with n > 3, but only
half of them at each stage lift to Z/2"*!. The reason things go wrong is more or less easy to understand—in
Newton’s formula the denominator factor 2z,, is no longer a unit, so there has to be some modification in
order to make it work. Exactly how will be seen later on. The conclusion one arrives at here is that ifa =g 1
then there exist two square roots of a in Zy. (Here, too, one might use the binomial series for (1 + 8:6)1/ 2 but
it is not quite so simple to see why it converges.)

In the next section I'll explain Hensel’s Lemma in the case that generalizes what happened for 22 — a when
p was odd, and in the section after that I'll deal with the singular cases.
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I shall look in this section and the next at the case when the variety is a hypersurface f = 0, generically non-
singular. I recall that a point of the scheme f = 0, in which f has coefficients in the field F, is non-singular
at a point z if its gradient Vy(x) does not vanish. That means that for some N > 0 we have

Vi(@) =n-10, Vi(z) #5 0.
I shall assume in this section that NV = 1, or equivalently that f = 0 in fact remains non-singular at x modulo

p at the point concerned.

[hensel] 2.1. Lemma. (Hensel’s Lemma I) Suppose f(x) to be a polynomial in d variables with coefficients in 0. Then
for every solution z., of f () =,, 0 but V(x,) %1 0 there exist p?~! solutions modulo p"*+! that are =,, x.,.

Proof. The assumption means that Vy(z,,) is non-zero modulo p, hence that V() is a non-zero function on
Fg. We want to show that for every solution of f(x,) =,, 0 there exist exactly q%~! modulo p™*! that are
=, =,. But if we choose an arbitrary  modulo p" ! with z =,, z,, then we can in fact find exactly q?1
solutions of

flx+w"a) = f(x) + @"(Vi(xn),a) =p+1 0
by solving (Vy(z,,),a) = — f(z,) /@™ for a. 0
From this, one can construct a Cauchy sequence converging to a root of f(z) = 0:

[hensels-theorem] 2.2. Theorem. If z,, satisfies f(x,,) = 0 and Vj(z) #1 0, then there exists z in 0? with f(x) = 0 and x =,, x,.
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3. The singular case [Hensel.tex]

We now look at a more complicated case. Suppose x in o, f(z) =,, 0, Vy(z) =5 0 but not =y41 0. We

have seen from examples above that we cannot expect to find y =,, = with f(y) =,+1 0. So we search more

generally for y of the form x + "~ *h. (In the non-singular case, with N = 0, we may choose k = 0.) Now
fl@+@" " h) = (@) + ="V (@), h) + O(="~*).

In order to make the earlier technique work, we must first require

2n—2k>n+1, n>2k+1.

Set f(z) = cw", V¢(z) = dw with d a non-zero vector modulo p. We now want to be able to solve

w <Vf (I)a h> =n+1 —cw"
"M R =, —c”
oV R, h) =1 —c

This will be possible precisely when k = N, and the value of h will be unique modulo p.

[hensels-lemma-2] 3.1. Lemma. (Hensels’ Lemma II) Suppose f(xy,) =5, 0, Vy(x,) =n 0 butnot =n41 0. If n > 2N + 1 there
exists h unique modulo p such that if
Tptl = Ty + o N

then
f(anrl) =541 0.

Thus for n > 2N + 1 the number of solutions modulo p™ remains constant, but only 1/ q" of the solutions
modulo p” lift to solutions modulo p”*!, and in fact to solutions in 0%.

Note that if x is a solution modulo p™ withn > 2N + 1 then so are all = + w" N, since then
fla+a" " Nh) =, fan) +@" NNV (2),h) =5 ().

I think the final result is this: say there are M solutions modulo p¥*! that come from solutions modulo

p?N+1. Then these lift to 0, and more generally modulo p™¥+1+" there are M¢(¢~D¥ solutions that lift to
0. This at least agrees with what happens in the non-singular case, in which N' = 0 and any non-singular
solutions over IF lift to o.

For example, take f(x) = 2% — 17 and 0 = Zs. Then V; = 2z. Any solution of f(z) = 0 will be a unit, so
N = 1. Each of the four units z in Zg is a solution of f(x) =3 a, and for any of them we may find y in Z/16
with ¥y =2 2. Modulo 16 there are again 4 solutions, whose images modulo 8 are half the solutions modulo
8. Etc. In general, half the solutions in Z/p" lift to solutions in Z,. They are the ones that lift to solutions in
7, /pn-l—l'

If f is a system of equations then V/ is a matrix, to which we must presumably apply the principal divisor
theorem, assuming the point is not singular over £, but only singular to finite depth over 0. Thus V is a matrix
of maximum rank over £, and to apply the same reasoning as above we must express lattices accordingly.

[hensels-theorem-2] 3.2. Theorem. Suppose x,, satisfies
f(@n) =00, Vi(z) =n0, Vi(z)#N4+10.

If n > 2N + 1, there exists x in 0 with f(z)=0andz =,_N xn.



