Hensel's Lemma

Bill Casselman University of British Columbia cass@math.ubc.ca

Suppose *V* to be an affine variety defined over \mathbb{Q}_p with coefficients in \mathbb{Z}_p , say embedded in \mathbb{Z}_p^d . This means that it is the zero set of a set of polynomials with coefficients in \mathbb{Z}_p . Hence for each *m* one can consider its zero set in $(\mathbb{Z}/p^m)^d$, those points satisfying these equations modulo p^m . What can one say about the number of points defined over \mathbb{Z}/p^m , as *m* grows large? Every point modulo p^{m+1} determines a point modulo p^m . What is the image of this reduction map? Under what circumstances is this map surjective? What points in the zero set in $(\mathbb{Z}/p^m)^d$ are in the image of the zero set in \mathbb{Z}_p^d ? Hensel's Lemma answers these questions. The well known case is valid for *V* a smooth scheme over \mathbb{Z}_p . But there is also a version when *V* is non-singular as a variety over \mathbb{Q}_p . In the present version of this note, I'll look only at the case *V* is a non-singular hypersurface f(x) = 0.

After $\S1$, the situation will be a little more general:

 $\mathfrak{k} = a \text{ local field}$ $\mathfrak{o} = \text{the integers of } \mathfrak{k}$ $\mathfrak{p} = \text{the maximal ideal of } \mathfrak{o}$ $\overline{\varpi} = a \text{ generator of } \mathfrak{p}, \text{ so } \mathfrak{p} = (\overline{\omega})$ $\mathbb{F}_q = \mathfrak{o}/\mathfrak{p}.$

Thus $q = p^r$ for some prime number p. Let \equiv_n mean congruence modulo \mathfrak{p}^n .

Contents

- 1. Introduction
- 2. The non-singular case
- 3. The singular case

1. Introduction [Hensel.tex]

Let's look at a simple example, a variety of dimension 0, with $f(x) = x^2 - a$ and a in \mathbb{Z}_p .

Suppose at first p to be odd. If the image of a modulo p is not a square in \mathbb{Z}/p there cannot be any solutions in \mathbb{Z}_p . Two cases remain: the image of a in \mathbb{Z}/p is (a) a non-zero square or (b) 0. The second case is singular, and I'll postpone looking at it.

So now assume that a is a unit square modulo p. There are two solutions in \mathbb{Z}/p . What about modulo p^n ? We proceed by induction on n. Suppose that x_n is a solution modulo p^n and that we want to find all those x modulo p^{n+1} which are congruent to x_n modulo p^n . We may express

$$x = x_n + hp^r$$

with $x_n^2 \equiv_n a$. Can we find h such that $x^2 \equiv_{n+1} a$? We must solve

$$(x_n + hp^n)^2 = x_n^2 + 2hx_np^n + h^2p^{2n} \equiv_{n+1} a$$

Since $n \ge 1$, the last term lies in p^{n+1} , so we may ignore it, and it remains to solve

$$x_n^2 + 2hp^n x_n \equiv_{n+1} a$$

But then we may set

$$h = -\frac{x_n^2 - a}{2x_n p^n} \,,$$

which is legitimate because $2x_n$ is invertible in \mathfrak{o} and ϖ^n divides $x_n^2 - a$. One important point here is that h is unique modulo p, hence hp^n unique modulo p^{n+1} . At any rate, the process continues, producing a sequence that converges to some value of \sqrt{a} . In effect we are applying the p-adic analogue of Newton's method—we start with a good approximation of a square root and find a sequence of better approximations. The conclusion is that *if* p *is odd and* a *modulo* p *is a non-zero square in* \mathbb{Z}/p *there are exactly two square roots of* a *in* \mathbb{Z}_p .

There are other ways in which one can arrive at this conclusion, such as one using the binomial series for $(1 + x)^{1/2}$, but I'll ignore them since my intention is to describe a tool, not a specific conclusion.

The case p = 2 is more interesting. I'll illustrate what happens by looking at a couple of specific examples. First take a = 5. Then a is a square modulo 2 and 4, but not modulo 8, so it cannot be a square in \mathbb{Z}_2 . It is natural to ask, how deep does one have to look in order to apply this sort of test? Next, try a = 17. Here a is a square modulo 16. As one can check quickly, there is one solution in $\mathbb{Z}/2$, two in $\mathbb{Z}/4$, four solutions in $\mathbb{Z}/8$, and four in $\mathbb{Z}/16$. Does this number remain fixed for $n \ge 3$? Yes, but for slightly peculiar reasons. After all, there cannot be four square roots of any number in \mathbb{Z}_2 , so something not quite straightforward has to take place.

In $\mathbb{Z}/8$, the square of every unit is equal to 1. But in $\mathbb{Z}/16$, the solutions of $x^2 = 1$ are $\pm 1, \pm 7$ —i.e. only half the units. Their images in $\mathbb{Z}/8$ give only ± 1 , which is to say that only half of the solutions in $\mathbb{Z}/8$ lift to solutions in $\mathbb{Z}/16$. And so it continues—there are indeed 4 solutions in each $\mathbb{Z}/2^n$ with $n \geq 3$, but only half of them at each stage lift to $\mathbb{Z}/2^{n+1}$. The reason things go wrong is more or less easy to understand—in Newton's formula the denominator factor $2x_n$ is no longer a unit, so there has to be some modification in order to make it work. Exactly how will be seen later on. The conclusion one arrives at here is that *if* $a \equiv_8 1$ *then there exist two square roots of* a *in* \mathbb{Z}_2 . (Here, too, one might use the binomial series for $(1 + 8x)^{1/2}$, but it is not quite so simple to see why it converges.)

In the next section I'll explain Hensel's Lemma in the case that generalizes what happened for $x^2 - a$ when p was odd, and in the section after that I'll deal with the singular cases.

2. The non-singular case [Hensel.tex]

I shall look in this section and the next at the case when the variety is a hypersurface f = 0, generically nonsingular. I recall that a point of the scheme f = 0, in which f has coefficients in the field F, is non-singular at a point x if its gradient $\nabla_f(x)$ does not vanish. That means that for some N > 0 we have

$$\nabla_f(x) \equiv_{N-1} 0, \quad \nabla_f(x) \not\equiv_N 0.$$

I shall assume in this section that N = 1, or equivalently that f = 0 in fact remains non-singular at x modulo p at the point concerned.

[hensel] 2.1. Lemma. (Hensel's Lemma I) Suppose f(x) to be a polynomial in d variables with coefficients in \mathfrak{o} . Then for every solution x_n of $f(x_n) \equiv_n 0$ but $\nabla_f(x_n) \not\equiv_1 0$ there exist p^{d-1} solutions modulo \mathfrak{p}^{n+1} that are $\equiv_n x_n$.

Proof. The assumption means that $\nabla_f(x_n)$ is non-zero modulo \mathfrak{p} , hence that $\nabla_f(x)$ is a non-zero function on \mathbb{F}_q^d . We want to show that for every solution of $f(x_n) \equiv_n 0$ there exist exactly q^{d-1} modulo \mathfrak{p}^{n+1} that are $\equiv_n x_n$. But if we choose an arbitrary x modulo \mathfrak{p}^{n+1} with $x \equiv_n x_n$ then we can in fact find exactly q^{d-1} solutions of

$$f(x + \varpi^n a) = f(x) + \varpi^n \langle \nabla_f(x_n), a \rangle \equiv_{n+1} 0$$

by solving $\langle \nabla_f(x_n), a \rangle = -f(x_n)/\varpi^n$ for a.

From this, one can construct a Cauchy sequence converging to a root of f(x) = 0:

[hensels-theorem] **2.2.** Theorem. If x_n satisfies $f(x_n) \equiv 0$ and $\nabla_f(x) \neq 1$ 0, then there exists x in \mathfrak{o}^d with f(x) = 0 and $x \equiv_n x_n$.

3. The singular case [Hensel.tex]

We now look at a more complicated case. Suppose x in \mathfrak{o} , $f(x) \equiv_n 0$, $\nabla_f(x) \equiv_N 0$ but not $\equiv_{N+1} 0$. We have seen from examples above that we cannot expect to find $y \equiv_n x$ with $f(y) \equiv_{n+1} 0$. So we search more generally for y of the form $x + \varpi^{n-k}h$. (In the non-singular case, with N = 0, we may choose k = 0.) Now

$$f(x + \varpi^{n-k}h) = f(x) + \varpi^{n-k} \langle \nabla_f(x), h \rangle + O(\varpi^{2n-2k}).$$

In order to make the earlier technique work, we must first require

$$2n - 2k \ge n + 1$$
, $n \ge 2k + 1$.

Set $f(x) = c \varpi^n$, $\nabla_f(x) = d \varpi^N$ with *d* a non-zero vector modulo \mathfrak{p} . We now want to be able to solve

$$\begin{aligned} \varpi^{n-k} \langle \nabla_{f}(x), h \rangle &\equiv_{n+1} - c \varpi^{n} \\ \varpi^{n-k+N} \langle d, h \rangle &\equiv_{n+1} - c \varpi^{n} \\ \varpi^{N-k} \langle d, h \rangle &\equiv_{1} - c \end{aligned}$$

This will be possible precisely when k = N, and the value of h will be unique modulo \mathfrak{p} .

[hensels-lemma-2] 3.1. Lemma. (Hensels' Lemma II) Suppose $f(x_n) \equiv_n 0$, $\nabla_f(x_n) \equiv_N 0$ but not $\equiv_{N+1} 0$. If $n \ge 2N + 1$ there exists h unique modulo \mathfrak{p} such that if

$$x_{n+1} = x_n + \varpi^{n-N}h$$

then

$$f(x_{n+1}) \equiv_{n+1} 0.$$

Thus for $n \ge 2N + 1$ the number of solutions modulo \mathfrak{p}^n remains constant, but only $1/q^N$ of the solutions modulo \mathfrak{p}^n lift to solutions modulo \mathfrak{p}^{n+1} , and in fact to solutions in \mathfrak{o}^d .

Note that if x is a solution modulo \mathfrak{p}^n with $n \ge 2N + 1$ then so are all $x + \varpi^{n-N}h$, since then

$$f(x + \varpi^{n-N}h) \equiv_n f(x_n) + \varpi^{n-N+N} \langle \nabla_f(x), h \rangle \equiv_n f(x_n) + \varpi^{n-N+N} \langle \nabla_f(x), h \rangle \equiv_n f(x_n) + \varepsilon^{n-N+N} \langle \nabla_f(x), h \rangle =_n f(x_n) + \varepsilon^{n-N+N} \langle \nabla_f(x), h \rangle$$

I think the final result is this: say there are M solutions modulo \mathfrak{p}^{N+1} that come from solutions modulo \mathfrak{p}^{2N+1} . Then these lift to \mathfrak{o} , and more generally modulo \mathfrak{p}^{N+1+n} there are $Mq^{(d-1)k}$ solutions that lift to \mathfrak{o} . This at least agrees with what happens in the non-singular case, in which N = 0 and any non-singular solutions over \mathbb{F}_q lift to \mathfrak{o} .

For example, take $f(x) = x^2 - 17$ and $\mathfrak{o} = \mathbb{Z}_2$. Then $\nabla_f = 2x$. Any solution of f(x) = 0 will be a unit, so N = 1. Each of the four units x in \mathbb{Z}_8 is a solution of $f(x) \equiv_3 a$, and for any of them we may find y in $\mathbb{Z}/16$ with $y \equiv_2 x$. Modulo 16 there are again 4 solutions, whose images modulo 8 are half the solutions modulo 8. Etc. In general, half the solutions in \mathbb{Z}/p^n lift to solutions in \mathbb{Z}_p . They are the ones that lift to solutions in \mathbb{Z}/p^{n+1} .

If *f* is a system of equations then ∇_f is a matrix, to which we must presumably apply the principal divisor theorem, assuming the point is *not* singular over \mathfrak{k} , but only singular to finite depth over \mathfrak{o} . Thus ∇_f is a matrix of maximum rank over \mathfrak{k} , and to apply the same reasoning as above we must express lattices accordingly.

[hensels-theorem-2] 3.2. Theorem. Suppose x_n satisfies

 $f(x_n) \equiv_n 0, \quad \nabla_f(x) \equiv_N 0, \quad \nabla_f(x) \not\equiv_{N+1} 0.$

If $n \ge 2N + 1$, there exists x in \mathfrak{o}^d with f(x) = 0 and $x \equiv_{n-N} x_n$.