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Hilbert spaces

This essay is a fairly complete and almost self­contained account of that part of the theory of operators on

Hilbert spaces that’s needed in the theory of automorphic forms. My principal reference is the admirable

manual [Reed­Simon:1972], particularly Chapters VI and VIII. I have also used [Treves:1967]. Much of this
essay is copied from one or the other of these, but neither should be blamed for my sometimes eccentric

approach to well known material.

Some of the theory applies without much modification to Banach spaces, and this too will useful in the

applications to automorphic forms. At little apparent extra cost, I give a short account of this material as

well. Occasionally, I refer to [Reed­Solomon:1972] for proofs there that are essentially self­contained.

All vector spaces will be assumed to be over C unless mentioned otherwise.
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1. Banach spaces

A norm on a vector space V is a function ‖v‖ satisfying the conditions

(a) ‖cv‖ = |c| ‖v‖;
(b) ‖u+ v‖ ≤ ‖u‖+ ‖v‖;
(c) ‖v‖ = 0 if and only if v = 0.

A Banach space is a vector space assigned a norm with respect to which it is complete. Completeness means

that Cauchy sequences converge.

Any book on functional analysis (and certainly [Reed­Simon:1972], in Chapter III) will offer many examples,

but for the applications I have in mind there is one that is particularly relevant. If X is a locally compact
topological space, define C(X) to be the vector space of all continuous bounded complex­valued functions

onX . For f in C(X) define
‖f‖ = sup

x

∣∣f(x)
∣∣ .

I leave the following as an exercise (start with IV.8 of [Reed­Simon:1972]):

1.1. Proposition. The space C(X)with this norm is a Banach space.
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Banach spaces are locally convex topological vector spaces (TVS), and all results about the more general class

apply to them. The following two results are examples:

1.2. Theorem. (Hahn­Banach)If U is a closed subspace of the Banach space V , then any continuous linear
function on U may be extended to one on V .

1.3. Theorem. Every finite­dimensional Banach space is isomorphic to the standard one of the same dimen­
sion, and every finite­dimensional vector subspace of a Banach space is closed.

The proofs of these are no simpler for Banach spaces than for general TVS. I refer elsewhere (say, [Reed­

Simon:1972]) for these things. Some results, while valid for a larger class of TVS, are significantly easier to

prove for Banach spaces, and I include their proofs below.

If V is a Banach space, by convention its dual V ∗ is defined to be its conjugate­linear dual, the space of all

continuous conjugate­linear functions V→ C, satisfying f(cv) = cf(v). Thus for v in V , v∗ in V ∗

〈cv, v∗〉 = c〈v, v∗〉, 〈v, cv∗〉 = c〈v, v∗〉 .

In order to simplify notation throughout this essay, and following standard notation for Hilbert spaces, I
shall write

u • v∗ = the conjugate of 〈u, v∗〉 .
Thus

cu • v∗ = c(u • v∗), u • cv∗ = c(u • v∗) .

As we’ll see in the next section, this agrees with how duality for Hilbert spaces is dealt with.

By definition of continuity, there exists for every f in V ∗ a constant C > 0 such that

∣∣f(v)
∣∣ ≤ C‖v‖

for all v in V . Define

‖f‖ = sup
‖v‖=1

∣∣f(v)
∣∣ .

1.4. Proposition. The space V ∗ with norm ‖f‖ is a Banach space.

Proof. See III.2 of [Reed­Simon:1972].

Since V ∗ is a Banach space, so is its dual V ∗∗. There exists a canonical map from V to V ∗∗.

1.5. Proposition. The canonical map from V to V ∗∗ is an isometric embedding.

Proof. See III.4 of [Reed­Simon:1972].

1.6. Corollary. The canonical image of V in V ∗∗ is closed.

If U is a subspace of V , define

U⊥ = {v∗ ∈ V ∗ |u • v∗ = 0 for all u ∈ U} .

It is the annihilator of U in V ∗. Thus U⊥⊥ is a subspace of V ∗∗.

1.7. Corollary. If U is a closed subspace of V then

U⊥⊥ ∩ V = U .

Proof. By Hahn­Banach.
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2. Hilbert spaces

Suppose V to be a complex vector space given a positive definite Hermitian inner product u • v. Associated

to this is the function ‖u‖ = (u •u)1/2

2.1. Proposition. (Cauchy­Schwarz) For any u and v

|u • v| ≤ ‖u‖ ‖v‖ .

Proof. For any ζ with |ζ| = 1 the quadratic function

‖tζu+ v‖2 = t2‖u‖2 + 2tRE(ζu • v) + ‖v‖2

take non­negative values for all t, which implies that its roots are either complex conjugate or equal, hence

that its discriminant (
RE(ζu • v)

)2 − ‖u‖2‖v‖2

is non­positive and therefore ∣∣RE(ζu • v)
∣∣ ≤ ‖u‖ ‖v‖

for all ζ.

z
−r

ζz

r

But if z is any complex number and
∣∣RE(ζz)

∣∣ ≤ r for all |ζ| = 1 then the circle around the origin of radius |z|
lies inside the vertical strip

∣∣RE(w)
∣∣ ≤ r, and in particular |z| ≤ r.

2.2. Corollary. For any u and v
‖u+ v‖ ≤ ‖u‖+ ‖v‖ .

Equivalently,
‖u− v‖ ≥ ‖u‖ − ‖v‖ .

Proof. It suffices to show that

‖u+ v‖2 = ‖u‖2 + 2RE(u • v) + ‖v‖2 ≤
(
‖u‖+ ‖v‖

)2
= ‖u‖2 + 2‖u‖ ‖v‖+ ‖v‖2 ,

which follows immediately from the Proposition.

A Hilbert space will be defined in this essay to be a complex vector space assigned a positive­definite inner

product with respect to which it is complete, and which possesses a countable dense subset. (This is what is

often called in the literature a separableHilbert space.)

2.3. Corollary.A Hilbert space is a Banach space.
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2.4. Proposition. If C is any closed convex set in a Hilbert space H and u a point of H , then there exists a
unique point u in C closer to u than any other point in C.

Proof. We may assume that u does not lie in C itself. Let d be the greatest lower bound of all the distances

from u to points of C. This means that there are no points of C inside the ball of radius d centred at u, but
there are some inside that of radius d+ ε for every ε > 0. We want to find a point in C at distance exactly d,
and we shall do this by exhibiting it as the limit of a Cauchy sequence.

Let Cd,ε be the intersection of C with the interior of the ball of radius d+ ε and the exterior of that of radius
d. Wewant to know that the setsCd,ε form a Cauchy sequence, or equivalently that ε becomes small, so does

the diameter of Cd,ε. The following figure suggests how this happens. Any two points in a convex subset of

the ring in between Cd and Cd+ε have to lie inside a ‘cap’ region like the shaded one.

Cd,ε

d

ε

u

√

2dε + ε2

What the picture suggests, since the arc is close to a parabola, is that the diameter of the cap is of the order of√
ε. More precisely:

2.5. Lemma. If v1 and v2 are two points inside a sphere of radius d + ε centred at the origin and the line
segment between v1 and v2 lies completely outside the sphere of radius d then ‖u− v‖ ≤ 2

√
2dε+ ε2.

Proof of the Lemma. If µ = (v1 + v2)/2 is the midpoint between v1 and v2, then

‖µ‖2 + ‖v1 − v2‖2
4

=
‖v1‖2 + ‖v2‖2

2

‖v1 − v2‖2 = 2
(
‖v1‖2 + ‖v2‖2

)
− 4‖µ‖2

≤ 4(d+ ε)2 − 4d2

‖v1 − v2‖ ≤ 2
√
(d+ ε)2 − d2

= 2
√
2dε+ ε2 .

Conclusion of the proof of Proposition 2.4. According to Lemma 2.5, for each positive integer n the set Cn

of all points in C of distance at most d + 1/n isn’t empty and has diameter at most 2
√
2d/n+ 1/n2. This

maximum diameter is a monotonic decreasing function of n with limit 0. Furthermore Cn+1 ⊆ Cn, so the
sets Cn form a Cauchy sequence, hence converge to a unique point ofH . It lies in C since C is closed.

If U is a linear subspace of a Hilbert space, let U⊥ be the subspace of vectors perpendicular to it.

2.6. Corollary. If U is a closed affine subspace of a Hilbert space and u a point in the space, then there exists
on U a unique point u nearest to u. The vector u− u is perpendicular to U .

Proof. Let u be the nearest point,∆u = u−u,w a vector parallel to the given affine subspace. For v = u+ζtw
in U with |ζ| = 1, t > 0 real

‖u− v‖2 = ‖∆u‖2 − 2tRE(ζw •∆u) + t2‖w‖2 = ‖∆u‖2 − t
(
2RE(ζw •∆u)− t‖w‖2

)
.
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If w •∆u 6= 0 we can choose ζ so that ζw •∆u = ζ(w •∆u) > 0. If we then choose t small we can make

2RE(ζw •∆u)− t‖w‖2 positive, a contradiction.

2.7. Corollary. If U is a closed linear subspace of a Hilbert space H then every v in H is the sum of unique
vectors in U and U⊥.

Finite dimensional Hilbert spaces offer no surprises.

2.8. Proposition.Any finite­dimensional subspace of a Hilbert space H is closed.

Proof. Suppose E of dimension n in H , v a point of H not in E. It must be shown that there is a positive

minimum distance from v to points of E.

Since the formula for a Hermitian dot­product is algebraic, the norm onE induces the standard topology on

E. Say ‖v‖ = R. Then the minimum distance from v to E is less than R. If ‖e‖ > 2R then

‖e− v‖ ≥ 2R−R = R .

So the minimum m of the distance ‖e − v‖ (for e in E) is achieved on the compact ball ‖e‖ ≤ 2R. Since v
does not lie in E,m > 0.

2.9. Corollary.A locally compact Hilbert space has finite dimension.

Proof. Let U be a compact neighbourhood of 0. Fix 0 < c < 1. The set U will be covered by a finite number

of translates ei + cU . Let E be the subspace spanned by the ei. I claim that H = E. Since E is closed,
H = E ⊕ E⊥. Let U be the projection of U onto E⊥. Since U is covered by the ei + cU , for every n we can

find a finite set F of f in E with U covered by translates f + cnU . Therefore U ⊆ cnU for all n, and U is at

once homogeneous and compact. It can only be {0} , and hence E⊥ = {0}.
2.10. Proposition.A Hilbert space possesses a countable orthogonal basis.

Proof. I have assumedH to possess a countable dense subset E. Apply Gram­Schmidt orthogonalization to

it.

If v is a vector in a Hilbert space then the dot product fv:u 7→ u • v is a continuous (or bounded) linear

function with values in C, since ∣∣fv(u)
∣∣ ≤ C ‖u‖

with C = ‖v‖. The converse to this is the most characteristic property of Hilbert spaces:

2.11. Proposition. (Riesz Lemma) If H is a Hilbert space and f :H → C a bounded linear function, there
exists a unique v inH such that f(u) = u • v for all v inH .

Proof. We may assume f does not vanish identically. The linear space where f(u) = 0 is closed and by

Corollary 2.7 possesses an orthogonal complement, which is necessarily one­dimensional. The vector v can
be taken to be a suitably normalized vector in that complement.

In other words, and in somewhat informal terms:

2.12. Corollary.A Hilbert space H may be identified with its own conjugate linear dualH∗.

It is this that makes Hilbert spaces so much simpler than general topological vector spaces, for which duality
causes major complications.
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3. Bounded operators on a Banach space

If T : V1 → V2 is a linear transformation from one Banach space to another then it is continuous if and only
if for some r > 0 the image under T of the ball

Br = Br(0) =
{
v
∣∣ ‖v‖ ≤ r

}

of radius r in V1 is contained in the unit ball of V2. Clearly equivalent is the condition that it be bounded—i.e.
that

‖T (u)‖ ≤ C‖u‖

for some constant C. The norm ‖T ‖ is defined to be the supremum of the ratios ‖T (u)‖/‖u‖ as u varies over
all non­zero vectors in the domain space of T , or equivalently the supremum of ‖T (u)‖ for ‖u‖ = 1. Thus
by definition

‖T (u)‖ ≤ ‖T ‖ ‖u‖

for all u.

The bounded linear operators from one Banach space to another are not the most interestingmaps associated
to the two spaces. In particular, it is another class of operators that arises in spectral analysis of differential

operators in one and more dimensions. But in the end just about all questions reduce to one about bounded

operators of some kind or another.

Going from finite­dimensional vector spaces to infinite­dimensional ones often induces a somewhat queasy

feeling, as if all were not what it seems, and certainly not what it should be. The significance of the next
result, although at first sight quite technical, is that things aren’t all that bad.

3.1. Proposition. (Open Mapping Theorem) Every surjective, bounded, linear operator T :V1 → V2 is an
open mapping.

Proof. It has to be shown that the image under T of a ballBr in V1 contains a ball in the image space. In order
to prove this, we have to use the Baire Category Theorem, which asserts that if a countable union of closed

subsets of a separable metric space contains an open set, then one of the closed sets already has to contain

an open set. If this doesn’t seem quite obvious, that’s perhaps because its proof depends on the Axiom of
Choice, which often offers surprises in its manymanifestations. At any rate, I’ll just sweep this little difficulty

under the rug and not prove it here.

Its application here should be clear. We want to show that the image T (B1) contains an open neighbourhood

of 0. It will suffice to show this for any Bn. The union of the closures of the images T (Bn) of the balls Bn is

all of V2, hence according to Baire one of the closures T (Bn) must contain an open subset of V2, hence some

v +Bε. But then it will also contain (v +Bε)− (v +Bε) = B2ε.

The final step of the proof is to show that T (B4n) contains T (B2n) and thus Bε in turn. Equivalently, after

rescaling, we just need to show that T (B2) contains T (B1), given that T (B1) contains Bε. Suppose y to lie

in T (B1). Choose x1 in B1 such that

y1 = y − T (x1) ∈ Bε/2 ⊆ T (B1/2) .

Then choose x2 in B1/2 so that

y1 − T (x2) ∈ Bε/4 . . .

In the limit

y = T (x1 + x2 + · · · ) .

This has a remarkable and reassuring consequence:
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3.2. Corollary.A bounded bijective operator is a topological isomorphism.

In other words, its inverse is also bounded.

If T :V1 → V2 is a bounded operator, its graph is the set of all pairs
(
x, T (x)

)
in their direct sum, with x

ranging over all vectors in V1. It is a closed linear subspace of V1 ⊕ V2, one which projects isomorphically
onto the first factor. Conversely, as an immediate consequence of the previous result:

3.3. Corollary. (Closed Graph Theorem) If Γ is a closed linear subspace of the direct sum V1⊕V2 that projects
bijectively onto the first summand then it is the graph of a bounded operator.

The condition of course means that (a) the image of the projection is all of V1 and (b) the inverse image of 0 is

just (0, 0). Both of these conditions will be relaxed in the next section, where more interesting operators are
considered.

4. Unbounded operators

Abounded operator from the Banach space V1 to another one V2 is determined by its graph, a linear subspace
in V1 ⊕ V2 that projects isomorphically onto V1. But it is useful to consider other linear subspaces of the

sum as defining analogues of the bounded operators. Phenomena appear, and are important, that have no

analogue in finite dimensions. A typical and relevant example is the operator D = d/dx. It is not in any
straightforward way defined on all of the Hilbert space L2(R), but it is defined on a dense subspace, that

of all smooth functions of compact support. This definition can be extended to all functions f such that f ′,

when considered as a distribution on R, lies in L2(R). Integration by parts tells us that the equation

f ′
• g = −f • g′

holds for all f , g in C1
c (R). The theory to come will imply that it also holds whenever f , f ′, g, g′ lie in L2(R).

This not an obvious fact.

We start with a slightly more general situation. A correspondance Γ between two Banach spaces V1, V2 is
any linear subspace of the direct sum V1⊕V2. There are interesting cases in which it need not even be closed.

Its domain Dom(Γ) is its projection onto the first factor, and I define its ambiguity Amb(Γ) to be the kernel

of this projection, which may (and will) be identified with a linear subspace of V2. If its ambiguity is trivial,
I call Γ well defined or unambiguous. If the graph is closed, as we have seen in the previous section, an

unambiguous correspondance whose domain is all of V1 is the graph of a bounded operator.

An unambiguous correspondance Γ defines a linear transformation TΓ from its domain to V2—for any x in

this domain its image TΓ(x) with respect to the operator is the unique y in V2 such that (x, y) lies in Γ. An

unambiguous correspondance is usually denoted by the pair (D,T ), whereD is the domain and T the linear
operator, but sometimes one or the other is not explicitly mentioned. Sometimes also, D is referred to as

Dom(T ). A correspondance is rarely of interest unless both of these conditions hold:

(1) it is unambiguous;

(2) its domain is dense in V1.

Without the second condition there is not much tie to the Banach space V1, after all. Correspondances

satisfying these two conditions I call operators.

As suggested by opening remarks, a typical example of an operator would be the pair C∞
c (R) and the graph

of f 7→ df/dx, with V1 = V2 = L2(R).

CLOSED OPERATORS.A correspondance Γ is called closedwhen it is a closed subspace of the direct sum. In
this caseAmb(Γ) is a closed subspace ofH2. Closed operators are to be thought of as the true generalizations

of bounded operators, since one cannot expect too much from operators with no topological properties
imposed. If Γ is any correspondance then one may define its graph closure Γ to be the correspondance

which is the closure of its graph. However, even if Γ is an operator this new correspondance may not be an
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operator—that is to say, it may not be unambiguously defined. An operator is called closable if its closure

is unambiguous—i.e. again an operator. Operators that aren’t closable aren’t very interesting, but it is not

always easy to tell whether one is or isn’t. We shall see later a large class of interesting operators that are
closable. This will include the operator

(
d/dx, C∞

c (R)
)
mentioned above.

4.1. Proposition. If Γ is unambiguous, its domain is the completion of the domainD of Γwith respect to the
metric ‖x‖+ ‖TΓ(x)‖.
The Banach space norm ‖x‖ + ‖TΓ(x)‖, or any norm equivalent to it, is called for obvious reasons a graph

norm. In the case of an operator on Hilbert spaces, an equivalent norm is
(
‖x‖2 + ‖TΓ(x)‖2

)1/2

Proof. Because according to Corollary 3.2 its domain is isomorphic under projection to its graph.

If you believe the claim that d/dx defines a closable operator on L2, this at least gives you a non­trivial

example of an operator, since it should be pretty clear that the completion of C∞
c (R) with respect to the

norms ‖f‖2L2 and ‖f‖2L2 + ‖f ′‖2L2 are very different—the first is L2(R), while as we shall see later the second

consists of all f in L2(R) such that f ′, considered as a distribution, is also in L2(R).

If T is a closable operator, then v lies in the domain of its closure with T (v) = w if and only if there
exists a sequence vi in the domain of T with lim vi = v, lim T (vi) = w.

ADJOINTS. Suppose T to be a bounded operator V1 → V2. Then for every v∗ in V ∗
2 wemay define an element

T ∗(v∗) in V ∗
1 by the condition

u1 •T ∗(v∗) = T (u1) • v∗ .

This map

T ∗: V ∗
2 → V ∗

1 ,

is called the adjoint of T . If the Vi are Hilbert spaces then according to the Riesz Lemma (Proposition 2.11)
this gives a map

T ∗: V2 → V1 .

4.2. Proposition. If T :V1 → V2 is a bounded operator, its adjoint T ∗:V ∗
2 → V ∗

1 is also bounded.

Proof. Because
u •T ∗(v∗) = T (u) • v∗ ≤ ‖T ‖ ‖u‖ ‖v∗‖ .

The pair (v∗, w∗) lies in the graph Γ(T ∗), which is a linear subspace of V ∗
2 ⊕ V ∗

1 , if and only if T (x) • v∗ −
x •w∗ = 0 for all x in V1, or yet again if and only if (v∗, w∗) in V ∗

2 ⊕ V ∗
1 lies in the annihilator of all (−y, x)

for (x, y) in the graph of T .

Define the signed swap
σ: (x, y) 7−→ (−y, x) .

Consistent with the observation just made, define the adjoint of an arbitrary correspondance Γ ⊆ V1 ⊕ V2

to be the correspondance
Γ∗ = (Γσ)⊥ ⊆ V ∗

2 ⊕ V ∗
1 .

That is to say, it is the correspondance between the duals whose graph is the subspace annihilating all pairs

(−y, x) ∈ V2 ⊕ V1 with (x, y) ∈ Γ. These properties are immediate from the definition:

(a) this definition agrees with that for bounded operators;

(b) the adjoint of any correspondance is closed;

(c) a correspondance and its closure have the same adjoint.

I give quickly one simple example, in whch D = C∞
c (R) and T = d/dt. The domain of its adjoint is the

space of all F in L2(R) for which there exists F∗ in L2(R) with T (f) •F = f •F∗ for all f in C∞
c . Now any
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function in L2(R) may be considered as a distribution, and its derivative F ′ is defined as a distribution by

the equation

〈f, F ′〉 = −〈f ′, F 〉 .

So the domain of T ∗ is exactly the space of F in L2(R) for which F ′, defined as a distribution, lies also in

L2(R).

Suppose now that Γ is a correspondance in V ∗
2 ⊕ V ∗

1 . Its adjoint Γ∗ lies in V ∗∗
1 ⊕ V ∗∗

2 , and since the image of

V1 ⊕ V2 is closed in this, the intersection of Γ∗ with V1 ⊕ V2 is closed, defining a correspondance I’ll call Γ⋄.

If V is a Hilbert space, Γ⋄ = Γ∗.

4.3. Proposition. If Γ is a correspondance in V1 ⊕ V2 then Γ∗⋄ = Γ.

Proof. Because U⊥⊥ ∩ V = U if U is a vector subspace of a Banach space V , by Proposition 8.4.

But this leaves completely open the question: When is T ∗ an operator? This breaks up into two questions:

When is it unambiguous? Densely defined? The first question is simple to answer:

4.4. Proposition. For any correspondance Γ

Dom(Γ)⊥ = Amb(Γ∗) .

Proof. If x∗ is in V ∗
1 then it lies in Amb(Γ∗) if and only if

(−y, x) • (0, x∗) = 0

for every (x, y) in Γ, or if and only if x •x∗ = 0 for every x in Dom(T ).

4.5. Corollary. If Γ is densely defined, its adjoint Γ∗ is unambiguous.

Equally simple is this:

4.6. Proposition. If Γ∗ has a dense domain, Γ is closable.

To decide if Γ∗ is densely defined is not always easy. In practice, exactly one criterion is useful. Suppose

(D,T ) an operator. Since T is densely defined, T ∗ is unambiguous. A formal adjoint (D∗, T
#) is an operator

T# with domainD∗ ⊆ V ∗
2 such that

T (u) • v∗ = u •T#(v∗)

for all u inDom(T ), v∗ inDom(T#). The domain of T ∗ contains the domain of any formal adjoint. Therefore:

4.7. Corollary.An operator T with a densely defined formal adjoint is closable.

RANGE. Analysts define the range Ran(T ) of an operator (D,T ) to be what everybody else would call its
image, the linear subspace T (D).

The following is immediate:

4.8. Proposition. For any operator T
Ran(T )⊥ = Ker(T ∗) .

As a special case:

4.9. Corollary. Suppose T to be a bounded operator T from one Banach space to another. The range of T is
dense if and only if T ∗ is injective. A map T from one Hilbert space to another is injective if and only if the
range of T ∗ is dense.
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There is a slightly more conceptual way to define the adjoint, one that is very close to the method actually

used to determine it in practice. The domain D of the closure is the completion of the domain of T with

respect to the graph norm ‖v‖ + ‖T (v)‖, a Banach space in its own right. Under the assumption that the
closure is unambiguous, we have the injection

ι:D →֒ V1

and under the assumption that the domain is dense we have a dual injection

ι̂:V ∗
1 →֒ D∗ .

The map T :D→ V2 determines a dual map

T̂ :V ∗
2 −→ D∗

4.10. Proposition. In these circumstances, the domainDom(T ∗) is the inverse image in V ∗
2 of V ∗

1 ⊆ D∗, and

on this domain T ∗ = T̂ .

This is nothing more than a restatement of the definition. It can be summarized in a diagram:

D →֒ι V1 D∗ ←֓ι̂ V ∗
1

↓T ↑ T̂ ↑ T∗

V2 V ∗
2 ←֓ι

∗

Dom(T ∗)

This fits in with the earlier discussion of d/dt acting on distributions. There V1 = V2 = L2(R),D = C∞
c (R),

andD∗ is the space of distributions. The domain ofD∗ is the subs[pace of f inL2(R) such that the distribution

df/dx lies in L2(R|).

5. Self­adjoint operators

There is one situation where closeability is straightforward. An operator T on the Hilbert space H with

values inH is called symmetric if
T (x) • y = x •T (y)

for all x, y in Dom(T ). It follows from Corollary 4.7 that any symmetric operator T is closable. A simple
argument about limits proves that its closure is still symmetric, and thatT ∗ extendsT . A self­adjointoperator

is one which in fact coincides with its adjoint. Self­adjoint operators and operators related to them might be
reasonably considered to be the real justification for the whole machinery of unbounded operators.

5.1. Lemma. If T is a symmetric operator, it is closable, and the domain of any symmetric extension T0 of T
lies betweenDom(T ) and Dom(T ∗).

Proof. From Corollary 4.7, as I have already remarked, and the definition of the adjoint.

If the closure of a symmetric operator T is the same as its adjoint, the adjoint will be symmetric and in fact

self­adjoint. In this case T is said to be essentially self­adjoint. One example of this, as we shall see, is

the operator id/dt with domain C∞
c (R) in L2(R). It may also happen, however, that T has no self­adjoint

extensions at all. An example of this is id/dtwith domain C∞
c (0,∞) in L2(0,∞, dx).

There is in principle a way to characterize all self­adjoint extensions of a given symmetric operator. Suppose
T to be symmetric and closed. The domain of T ∗ is a Hilbert space with squared norm ‖v‖2 + ‖T ∗v‖2.
The subspace Dom(T ) is closed in it. The quotient Dom(T ∗)/Dom(T ) possesses a natural Hilbert space

structure, and on it one may define the non­degenerate skew­Hermitian form

T ∗(x) • y − x •T ∗(y) .
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The possible self­adjoint extensions of T correspond bijectively, in the obvious way, to the closed subspaces

of this quotient which are, with respect to this form, their own complements. If Dom(T ∗)/Dom(T ) is finite
dimensional, these are just the classical Lagrangian subspaces. For such subspaces to exist, this formmust be
hyperbolic in a strong sense. It is not hard to see that this is always true ifH and T arise by complexification

from a real Hilbert space.

Example. It should help if I explain right now one example, even though without proof.

Let H be L2[0, 1], the space of all square­integrable functions on [0, 1]. Let T = d2/dx2 with domain
D = C∞

0 [0, 1], the linear space of all smooth functions on [0, 1] vanishing of infinite order at 0 and 1. The

adjoint is the space of all f in H such that f ′ and f ′′, considered as distributions, are square­integrable

functions. Such a function is continuous, and so is f ′, and in effect evaluation at 0 and 1 are continuous on
Dom(T ∗). (This will be proved later.) On the other hand, the domain of the closure of T is the subspace

where f(0) = f(1) = 0, and the quotient of Dom(T ∗)/Dom(T )may be identified with C4 via evaluation of
f and f ′ at 0 and 1.

We have the integral formula

∫ 1

0

f(x)g′′(x) dx = [f(x)g′(x)]
1
0 −

∫ 1

0

f ′(x)g′(x) dx

∫ 1

0

f ′′(x)g(x) dx = [f ′(x)g(x)]
1
0 −

∫ 1

0

f ′(x)g′(x) dx

∫ 1

0

f(x)g′′(x) dx −
∫ 1

0

f ′′(x)g(x) dx = [f(x)g′(x)− f ′(x)g(x)]
1
0 .

What this means is that self­adjoint extensions correspond to the Lagrangian subspaces of C4 with respect to
the skew­Hermitian form

[f(x)g′(x) − f ′(x)g(x)]
1
0 .

This is because each Lagrangian subspace give rise to certain homogeneous conditions on boundary values.
for example, one is determined by boundary conditions f(0) = f(1) = 0, another by periodicity.

I have not proved these claims, but I hope this will convey to you the association between self­adjoint
extensions and boundary­values. To be essentially self­adjoint often means that a geometric region has no

boundaries, at least not in the analytic sense.

Example. Let’s look now at one case which is in some sense a model for all. Let dx be the usual measure on
R, and let Mϕ be multiplication by the continuous function ϕ(x) acting on the domain of all functions f in

L2(R) such that ϕ(x)f(x) is also in L2(R).

5.2. Proposition.. The operator Mϕ is self­adjoint.

Proof. The operator Mϕ is certainly symmetric, hence closable, so M∗
ϕ is an operator. Suppose g to be in the

domain ofM∗
ϕ. This means that there exists h in L2(R) such that

ϕf • g = f •h

for all f with f , ϕf in L2(R). It must be shown that h = ϕg, or equivalently that ϕg lies in L2.

Let χN be the characteristic function of [−N,N ]. For every f in L2(rR) the function χNf lies in Dom(T ).
If g lies in Dom(T ∗) then by definition there exists h in L2(R) such that

(ϕχNf) • g = (χNf) •h

for all f in L2(R). This implies that if only ϕg lie sin L2(R) then h = M∗
ϕ(g) = ϕg.
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If f is any locally L2 function then f will be globally L2 if and only if the limit of the ‖χNf‖ is bounded, and
in that case ‖f‖will be the limit of the ‖χNf‖ asN →∞. But:

∥∥χNM∗
ϕ(g)

∥∥ = sup
‖f‖=1

f •χNM∗
ϕ(g)

= sup
‖f‖=1

χNf •M∗
ϕ(g)

= sup
‖f‖=1

Mϕ(χNf) • g

= sup
‖f‖=1

ϕχNf • g dµ

= sup
‖f‖=1

f •χN ϕg

= ‖χN ϕg‖

so that ∥∥M∗
ϕg

∥∥ = lim
N→∞

‖χN ϕg‖

and ‖ϕg‖ <∞.

6. The spectrum

Suppose in this section that H1 = H2 = H . An eigenvector of an operator T from H to itself is a vector
v 6= 0 in the domain of T such that T (v) is a scalar multiple of v. An eigenvalue is one of the scalars that

occurs. IfH has finite dimension then the following conditions are equivalent:

(a) λ is an eigenvalue of T ;
(b) T − λI is not invertible.

This is because in finite dimensions the dimension of the kernel is also the dimension of the cokernel. In
infinite dimensions things are more complicated. We no longer have an equivalence of these conditions,

as already the example of multiplication by x on L2(R) shows. The set of eigenvalues of an operator T is
replaced by its spectrum, which is defined negatively—that is to say, it is defined only in terms of properties

of its complement.

Example. Consider T = id/dx as an operator on L2(R). Its domain is the space of all f in L2(R) such that
f ′ is also in L2(R), and it is self­adjoint. The Fourier transform, formally defined as

f̂(s) =

∫ ∞

−∞

f(x)e−sx dx (RE(s) = 0)

identifies L2(R) with L2(iR), but takes T into multiplication by is. There are no square­integrable eigen­

functions of T , but the function esx for RE(s) = 0 is at least bounded, and taken into a real multiple of itself
by T . It is hard to make this observation very general, but what does generalize nicely is this observation:

for c with IM(c) 6= 0 the operator T − cI is an isomorphism of Dom(T ) with L2(R), as you can easily check

by applying the Fourier transform.

The resolvent set ρ(T ) of a closed operator T is defined to be the set of all c ∈ C such that T − cI is a bijection
between Dom(T ) and H . When this occurs, then the inverse of T − cI is a bounded operator from H onto
Dom(T ), and in particular into itself. The spectrum σ(T ) of T is the complement of its resolvent set. For

finite­dimensional linear transformations the spectrum is equal to the set of its eigenvalues, but in general
the set of eigenvalues is a proper subset.

6.1. Proposition. The resolvent set of any closed operator is open in C.



Hilbert spaces 13

Proof. Let T be the operator and assume c ∈ ρ(T ). Let S = T − cI , so that by assumption R = S−1 is a

bounded linear transformation. Formally for x = c+ h we have

(T − xI)−1 = (S − hI)−1 = S−1(I − hS−1)−1

= R(I − cR)−1 = R(I + hR+ h2R2 + · · · )

and in fact the series converges for h small to an operator that one can easily verify to be (T − xI)−1.

6.2. Lemma. Suppoes T to be a symmetric operator. Then:

(a) for any c ∈ C− R,Ker(T − cI) = 0;
(b) if T is closed then Ran(T − cI) is closed inH for every c ∈ C− R;

Itemc conversely if Ran(T − cI) is closed inH for some c ∈ C− R then T is closed.

Proof. If c = s+ it, then for every x in Dom(T )

∥∥(T − cI)(x)
∥∥2

=
∥∥(T − sI)(x)

∥∥2
+ t2

∥∥x
∥∥2 ≥ t2

∥∥x
∥∥2 .

Assertion (a) follows immediately. For (b), this same formula implies that if

z = lim
n

(T − cI)(yn)

then the yn converge also to some element y ofH with (T − cI)(y) = z. The proof of the converse is similar.

6.3. Lemma. Suppose T to be a symmetric closed operator. Then the following are equivalent:

(a) the operator T is self­adjoint;
(b) the operator T ∗ is symmetric;
(c) Ker(T ∗ − cI) = 0 for all c ∈ C− R;
(d) Ker(T ∗ − cI) = 0 for some pair of conjugate c ∈ C− R;
(e) there exists a conjugate pair (possibly a single element—i.e. a real number) in ρ(T );
(f) the spectrum of T is contained in R.

Some of the implications are trivial. What is important is that (d) implies (a).

Proof. It is easy to see that (a) implies (d). To see that (d) implies (e) and (f): according to Proposition 4.8

the image of T − λI is dense and according to Lemma 6.2 it is closed. To see that (e) implies (a), let c be

some element of ρ(T ) which is not real and such that its conjugate is also in ρ(T ). This is guaranteed by
assumption (e), together with Proposition 6.1 if this number is real. Let x be in Dom(T ∗). Then there exists

y ∈ Dom(T ) with
(T − cI)(y) = (T ∗ − cI)(x) .

Since T is symmetric,Dom(T ) ⊆ Dom(T ∗), so (x− y) lies in the kernel of (T ∗ − cI). But by Proposition 4.8

and the assumption that the conjugate of c is also in ρ(T ), this means that x = y. ThusDom(T ∗) ⊆ Dom(T ).

6.4. Proposition. If Ker(T ∗− cI) = 0 for some pair of conjugate c ∈ C−R then T is essentially self­adjoint.

This is a fairly practical criterion.

Proof. Because of Lemma 6.3, condition (d) of the previous Lemma with the stronger assumption that the
conjugate pair is not real implies self­adjointness even without the preliminary condition that T be closed.

A symmetric operator is called positive if T (v) • v ≥ 0 for all v ∈ Dom(T ).

6.5. Lemma. Suppose T to be a positive symmetric operator.
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(a) if T is closed then Ran(T + cI) is closed for all c > 0 and conversely
(b) if Ran(T + cI) is closed for some c > 0 then T is closed.

6.6. Proposition. The spectrum of a positive self­adjoint operator is contained in [0,∞).

Proof. For any λ > 0 the operator T + λI is closed according to the previous proposition, and the space
perpendicular to the image, which is Ker(T + λI) because of self­adjointness, is clearly null by positivity.

I leave this as an exercise:

6.7. Proposition. If T is a positive operator and Ker(T ∗ + cI) = {0} for some c > 0 then T is essentially
self­adjoint.

Let’s look again at the example we looked at before.

6.8. Proposition. Suppose ϕ(x) to be a continuous real­valued function on R. If T is multiplication by ϕ on
L2(R)with domain equal to that of all f such that ϕf lies again in L2, its spectrum is the closure of the image
of ϕ in R.

Proof. Lemma 6.3 implies that the spectrum is contained inR. Suppose c is real. Since the spectrum is always
closed, we must show that (a) if c = ϕ(x) then the range of T − cI is not all of L2(R) and (b) if c is in the

complement of the closure of the image of ϕ then T − cI is bijective.

Suppose c = ϕ(x). I claim that the characteristic function χ of any interval [c− δ, c+ δ] is not in the image of

T − cI . If it were, then let h = (T − cI)−1χ. If χε is the characteristic function of the union of the intervals
[c− δ, c− ε] and [c+ ε, c+ δ] then χε converges to χ as ε→ 0, so hε = (T − cI)−1χε will converge to h. But
as ε→ 0 the L2­norm of hε passes off to infinity.

As for (b), if c is not in the closure of the image of ϕ, let d > 0 be the minimum value of ϕ(x)− c as x ranges
overR. Then |ϕ− c|−1 is bounded by d−1, so multiplication by it is a bounded operator with norm≤ d−1.

7. The Friedrichs extension

It is not true that every symmetric operator possesses self­adjoint extensions, but a positive symmetric
operator (D,T ) on a Hilbert space H always has at least one, called its Friedrichs extension.

Define a Hilbert space which for the moment I’ll callHF to be the completion ofDom(T )with respect to the
norm ‖x‖2F = x •x+ T (x) •x.

7.1. Lemma. The inclusion of Dom(T ) inH induces an inclusion ofHF as well.

Proof. Since x •x ≤ ‖x‖F , the inclusion of Dom(T ) extends to a continuous map ι: HF → H satisfying the

condition
‖ι(x)‖ ≤ ‖x‖F

for all x inHF . It is to be shown that ι is injective. Now for every x, y in Dom(T )

〈x, y〉F = x •
(
y + T (y)

)
, (1)

and by continuity this translates to
〈x, y〉F = ι(x) •

(
y + T (y)

)
(2)

for every x ∈ HF , y ∈ Dom(T ). If ι(x) = 0 then this implies that 〈x, y〉F = 0 for every y ∈ Dom(T ), which

in turn implies that x = 0 since Dom(T ) is dense inHF . Q.E.D.

I will now identifyHF with its (dense) image inH . We have the two equations

‖x‖ ≤ ‖x‖F
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〈x, y〉F = x •
(
y + T (y)

)

for all x inHF , y in Dom(T ).

Let τ be the canonical map fromHF to its conjugate dualH∗
F—i.e. to itself—taking x to the conjugate­linear

functional y 7→ 〈y, x〉F . This is an isomorphism. We then have a commutative diagram

Dom(T ) →֒ HF

↓ I+T ↓ τF

H →֒ H∗
F

I now define the operator TF by specifying its domain to be the elements of HF whose image under τF lies
in the image of H , and for x in this domain define TF (x) to be y − x if y in H is such that the image of y in

ĤF is τF (x).

As the follwoing diagram indicates, the domain of TF may also be specified as the intersection of HF with

the domain of T ∗:
Dom(T ) →֒ HF →֒ H
↓ I+T ↓ τF ↓
H →֒ H∗

F →֒ Dom(T )∗

7.2. Proposition. The operator TF defined in this way is a positive self­adjoint extension of T .

Proof. We have

〈x, y〉F = 〈x, y + T (y)〉

for every x ∈ HF , y ∈ Dom(T ), and by transposition and continuity this implies that

〈TFx, y〉 = 〈x, y〉F − 〈x, y〉

for every x ∈ Dom(TF ), y ∈ HF . From this it is clear that TF is positive and symmetric.

It is immediate from the definition that the range of TF + I is all ofH , which implies by Lemma 6.3 that it is
self­adjoint.

Example. LetDf = df/dx for f in C∞
c (0,∞), and let∆f = −D2f = −d2f/dx2. Integration by parts shows

that∆ is a positive operator, and more precisely that

f•∆f = Df•Df .

If nowH = L2(0,∞), we get:

7.3. Proposition. The Friedrichs extension of (∆, C∞
c (0,∞)) has as domain those f in L2(0,∞) such that

df/dx lies in L2(R) and d2f/dx2 lies in L2(0,∞).

Such functions are in fact continuous on R, so in effect the Friedrichs extension corresponds to the boundary
value condition f = 0.
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8. Derivatives on R

I’ll discuss here several classical examples involving analysis on the real line. LetD be differentiation id/dx.
Integration by parts gives ∫ ∞

−∞

f(x)g′(x) dx = −
∫ ∞

−∞

f ′(x)g(x) dx

for f and g in C∞
c (R). This implies that f •Dg = Df • g, so that the operator D, and in fact everyDk, with

domain C∞
c (R), is symmetric. Most of this section will be concerned with the proof of the following result,

which is along essentially the same lines as the earlier analysis of
(
d/dx, C∞(S)

)
.

8.1. Proposition. For every k ≥ 0 the operator
(
Dk, C∞

0 (R)
)
is essentially self­adjoint.

The proof will show how powerful the criterion of Lemma 6.3 is. This is a special case of a far more general

result about the Laplacian on complete Riemannian manifolds, to be found in [Gaffney:1951], but I cannot
begin to give any idea of how his proof goes.

Proof. The domain of the adjoint of T =
(
Dk, C∞

c (R)
)
is the space of all f in L2(R) such that for some h in

L2(R)
〈h, ϕ〉 = 〈f,Dkϕ〉

for all ϕ in C∞
c (R)—in other words, all f such that the distributionDkf lies in L2(R).

It must be shown that all eigenvalues of T ∗ are real, which suffices by Lemma 6.3.

Suppose T ∗f = λf , f not identically 0. For ϕ in C∞
c (R) let

fϕ = Rϕf =

∫

R

ϕ(x)λxf dx

where
λxf(y) = f(y − x) .

Then fϕ will have these properties: (a) it is smooth on R and (b) all of its derivatives lie in L2(R)—it lies

in L2,∞(R). By choosing ϕ close to δ0, we may assume fϕ 6= 0. But since T commutes with translations,
fϕ is also an eigenvector of Dk. However, the eigenfunctions of Dk are exponentials, none of which are

square­integrable.

In the rest of this section I’ll look more closely at the domain ofDk. Here is the basic fact:

8.2. Proposition. If f andDkf both lie in L2(R) then so do allDℓf with 0 < ℓ < k.

Proof. I recall the Fourier transform. For f in the Schwartz space of R its Fourier transform is

f̂(s) =

∫

T

f(x)e−sx dx .

for s in iR. It induces an isomorphism of S(R) with S(iR), since the Fourier transform of f ′ is

∫

R

f ′(x)e−sx dx = s

∫

R

f(x)e−sx dx .

The Fourier transform on S(R) extends to a dual map of tempered distributions and also an isomorphism

of L2(R) with L2(iR). Thus DℓF will belong to L2(R) if and only if |s|ℓF̂ (s) does. If F̂ and |s|kF̂ are
square­integrable, then of course every |s|k with 1 < ℓ < k is as well (partition iR into regions where |s| ≤ 1
and |s| > 1).
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The space of all f in L2(R) such that every distributionDℓf for ℓ ≤ k lies in L2(R) is called the k­th Sobolev

space Hk(R). With the norm

‖f‖Hk :=
(∑

ℓ≤k

‖Dℓf‖2
)1/2

it becomes a Hilbert space. The domain in the previous Proposition turns out to be the Sobolev space.

8.3. Lemma. Every f in Hk(R) has continuous derivatives of order up to (k − 1). Furthermore, for all
ℓ ≤ k − 1, f (ℓ)(x)→ 0 as |x| → ∞.

Proof. By recursion, it suffices to show this for k = 1. Let

Φ(s) := lim
T→∞

∫ T

−T

e−sxf(x) dx (s ∈ iR)

be the Fourier transform of f . It lies inL2(R) as does also the Fourier transform sΦ(s) ofDf . Thus (1+s)Φ(s)
lies in L2(iR) and Φ(s) lies in fact in L1(iR). But f is the inverse Fourier transform of Φ. It is easy to see that

the inverse Fourier transform of a function in L1(R) is continuous. The Riemann­Lebesgue Lemma, which

I’ll recall in a moment, finishes off the proof.

Now for the Riemann­Lebesgue Lemma. Define C∞(R) to be the space of continuous functions on R

vanishing at∞. It is a Banach space with norm

‖f‖∞ = sup
R

|f(x)| .

It is a closed subspace in the space of all bounded continuous functions on R.

8.4. Proposition. (Riemann­Lebesgue Lemma) The Fourier transform of f in L1(R) lies in C∞(iR).

Proof. For f in S(R) the transform f̂ lies in C∞. Also

∥∥f̂
∥∥
∞
≤ ‖f‖1 .

By the extension theorem for quasi­complete spaces, it extends to a continuous map from L1 to C∞.

This Fourier transform of a function inL1 is the same as that of the same function considered as a distribution.

The spaceC∞
c (R) is dense in eachHk(R). The inclusion induces by duality an injection from the dualH−k(R)

of Hk(R) into the space of distributions on R. The Lemma amounts to the assertion that the δ functions δ
(ℓ)
x

for any ℓ ≤ (k − 1) lie in the image. It is at this point an exercise that these functionals are continuous in the
topology of Hk(R). Conversely:

8.5. Proposition. The linear combinations of the δ
(ℓ)
x with ℓ ≤ (k − 1) are the only distributions in H−k with

support at x.

Proof. Choose an integer r ≥ 0 and let

F =
r∑

ℓ=0

aℓδ
(ℓ)
x

with ar 6= 0. Let f in C∞
c (R) be such that f (ℓ)(x) = 0 for ℓ < r, but f (r)(x) 6= 0. For any n > 0 let

fn(y) = n−rf
(
x+ n(y − x)

)
.

Then for r > k, fn → 0 in Hk(R) but 〈F, fn〉 does not tend to 0.

As a last topic in this section, I’ll consider the differential operators Dk with domain C∞
c (0,∞) in L2(0,∞).

8.6. Proposition.The domain of the adjoint of the operator (Dk, C∞
c (0,∞)) inL2(0,∞)may be characterized

in two ways:
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(a) those f in L2(0,∞) obtained as the restriction of a function g in Hk(R) to (0,∞);
(b) those f in L2(0,∞) which when extended to all of R as null in (−∞, 0) satisfy the condition that for

some h in L2(0,∞)

Dkf = h+ a linear combination of δ
(ℓ)
0 (ℓ ≤ k − 1) .

These two descriptions are connected by the relation that the restriction ofDkg to (0,∞) is h.

Proof. A function f in L2(0,∞) lies in the domain of the adjoint of (Dk, C∞
c (0,∞)) if and only if for some h

in L2(0,∞)we have
〈h, ϕ〉 = 〈f,Dkϕ〉

for all ϕ in C∞
c (0,∞)—i.e. if and only if the restriction of the distributionDkf to (0,∞) lies in L2(0,∞). The

distribution (−1)kDkf − h then has support at 0. But it also lies in H−k(R) (as can be seen by exhibiting it as

a functional) so that (b) follows from Proposition 8.5. To prove (a), it must be shown that given an f as in (b)

there exists an extension of it to all of R which lies in Hk(R). If ϕ lies in C∞
c (R) and χ for the moment is the

characteristic function of (−∞, 0), then as a distribution

D(ϕχ) =

k∑

0

(−1)k−ℓ

(
k

ℓ

)
Dℓϕδ

(k−ℓ−1)
0 .

Choose ϕ so that this is the same asDkf , and then f − ϕχ is the extension necessary.

9. Consequences of the spectral theorem

The main theorem of this section will be:

9.1. Theorem. If T is a self­adjoint operator and c lies in the resolvent set of T , then

‖T − cI‖−1 ≤ 1

dist
(
c, σ(T )

) .

This an extremely useful result. Its proof depends on one of the avatars of the spectral theorem. I’ll not prove

the spectral theorem itself, but just explain how it works. I begin with:

9.2. Proposition. Suppose (M,dµ) to be a finite measure space, ϕ(m) a measurable real­valued function
on M . Let Φϕ be multiplication by ϕ, with domain the space of f in L2(M,dµ) such that ϕf is again in
L2(M,dµ). The operator Φϕ is self­adjoint, and its spectrum is the essential range of ϕ.

The essential range of ϕ is the set of c for which the measure of ϕ−1(c− ε, c+ ε) is positive for all ε.

Proof. The proof of the first part is almost word for word the same as that of Proposition. 5.2, except that

now χN is the characteristic function of the m with |f(m)| ≤ N . That of the second is almost exactly the
same as that of Proposition 6.8.

The spectral theorem itself asserts that the operators defined in this result are universal models.

9.3. Theorem. If T is any self­adjoint operator on a Hilbert space H , then it is isomorphic to some Φϕ.

How does Theorem 9.1 follow from it?

Proof of Theorem 9.1. Because
∫

M

∣∣∣∣
f(m)

ϕ(m)− c

∣∣∣∣
2

dµ ≤ sup
supp(dµ)

1
∣∣ϕ(x) − c

∣∣2
∫

M

∣∣f(m)
∣∣2 dµ .

As for the proof of the spectral theorem, it is rather long, and well explained in [Reed­Simon:1972]. The

first step is to prove it for bounded self­adjoint operators (221–227 in Chapter VII of [Reed­Simon]); then for
bounded normal ones—i.e. ones that commute with their adjoints— (problems 3,4, 5 of Chapter VII); and

finally unbounded ones (259–261 of [Reed­Simon]).
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