Introduction to admissible representations of p-adic groups

Bill Casselman University of British Columbia cass@math.ubc.ca

Chapter III. Induced representations and the Jacquet module

In this chapter, let G be the \mathfrak{k} -rational points on a Zariski-connected reductive group defined over \mathfrak{k} . I'll introduce here representations induced from parabolic subgroups to G, as well as a related adjoint construction going from representations of G to those of parabolic subgroups.

These constructions will lead eventually to a rough classification of irreducible admissible representations of G. Parabolic induction is a classic technique in representation theory, but the adjoint construction has its origins in [Jacquet-Langlands:1970] and [Jacquet:1971].

Contents

- 1. Representations induced from parabolic subgroups
- 2. Admissible representations of parabolic subgroups
- 3. The Jacquet module
- 4. Iwahori factorizations
- 5. Admissibility of the Jacquet module
- 6. The canonical pairing
- 7. References

SUMMARY. If P = MN is a parabolic subgroup of G and V a smooth representation of G, its Jacquet module is its maximal N-trivial quotient V_N . This is a smooth representation of M = P/N, and if V is an admissible representation of G defined over a field the Jacquet module is an admissible representation of M. It is almost by definition that the Jacquet module controls equivariant maps from V into representations induced from P to G, but it also controls the asymptotic behaviour of matrix coefficients of V. This dual role originates in work of Harish-Chandra on representations of real reductive groups, and is the basis for harmonic analysis on G.

1. Representations induced from parabolic subgroups

Suppose *P* to be a parabolic subgroup of *G*, and (σ, U) an admissible representation of *P*. The (normalized) representation induced from σ is the right regular representation of *G* on the space

$$\operatorname{Ind}(\sigma|P,G) = \left\{ f \in C^{\infty}(G,U) \, \middle| \, f(pg) = \delta_P^{1/2}(p)\sigma(p)f(g) \text{ for all } p \in P, g \in G \right\}.$$

Here

$$\delta_P(p) = |\det_{\mathfrak{n}}(p)|$$

is the modulus character of *P*. Since $P \setminus G$ is compact, according to his representation is admissible.

Bruhat and Tits define a **good** compact subgroup of *G* to be a compact open *K* such that G = PK for all parabolic subgroups *P*. They prove that such exist. If *K* is good then the restriction of $Ind(\sigma|P, G)$ to *K* is a *K*-isomorphism of $Ind(\sigma|P, G)$ with $Ind(\sigma|K \cap P, K)$. From now on, assume *K* to be a good compact.

An **unramified character** of *P* is one that is trivial on $K \cap P$. It follows from the observation above that if χ is unramified then $\text{Ind}(\sigma|P, G)$ and $\text{Ind}(\sigma\chi|P, G)$ are canonically isomorphic as *K*-representations. Another way of putting this is that these representations may be defined on the same space.

If φ lies in $\operatorname{Ind}(\delta_P^{1/2} | P, G)$ the integral

$$\int_{K} \varphi(k) \, dk$$

defines a *G*-invariant linear functional. Since G/P is compact, mplies:

III.1.1. Proposition. The contragredient of $\operatorname{Ind}(\sigma|P, G)$ is isomorphic to $\operatorname{Ind}(\widetilde{\sigma}|P, G)$.

If *f* lies in the first and φ the second, then the product-pairing $\langle f(x), \varphi(x) \rangle$ lies in $\text{Ind}(\delta^{1/2}|P, G)$. The pairing can then be chosen to be

$$\int_{K} \langle f(k), \varphi(k) \rangle \, dk \, .$$

III.1.2. Proposition. The representation $Ind(\sigma|P, G)$ is unitary if σ is .

This choice of invariant integral is by no means canonical, and in other contexts other choices are natural.

There is a great deal more to be said about these representations, but first we need to investigate admissible representations of *P*.

2. Admissible representations of parabolic subgroups

Let $P = M_P N_P = MN$ be a parabolic subgroup of G, $A = A_P$ the split centre of M_P . There exists a basis of neighbourhoods of P of the form $U_M U_N$ where U_M is a compact open subgroup of M, U_N is one of N, and U_M conjugates U_N to itself.

The group M may be identified with a quotient of P, and therefore the admissible representations of M may be identified with those of P trivial on N. It happens that there are no others:

III.2.1. Proposition. *Every admissible representation of P is trivial on N.*

Proof. Let (π, V) be an admissible representation of P over the (Noetherian) ring \mathcal{R} , and suppose v in V. We want to show that $\pi(n)v = v$ for all n in N.

So suppose n in N, and suppose $U = U_M U_N$ fixes v. We can find a in A such that $a^{-1}na \in U_N$ as well as $a^{-1}Ua \subseteq U$. Then $\pi(a)$ takes V^U to itself, since for u in U we have

$$\pi(u)\pi(a)v = \pi(a)\pi(a^{-1}ua)v = \pi(a)v.$$

The operator $\pi(a)$ is certainly injective. I shall prove in a moment that it is bijective on V^U . Assuming this, we can find v_* such that $\pi(a)v_* = v$, and then:

$$\pi(n)v = \pi(n)\pi(a)\pi(a^{-1})v = \pi(n)\pi(a)v_* = \pi(a)\pi(a^{-1}na)v_* = \pi(a)v_* = v.$$

If \mathcal{R} is a field, the claim that $\pi(a)$ is surjective is is trivial, since V^U is finite-dimensional and $\pi(a)$ is injective. But if \mathcal{R} is an arbitrary commutative Noetherian ring, one has to be a bit more careful. The following will tell us what is needed: **III.2.2. Lemma.** Suppose *B* to be a finitely generated module over the Noetherian ring *R*. If $f: B \to B$ is an *R*-injection with the property that for each maximal ideal \mathfrak{m} of *R* the induced map $f_{\mathfrak{m}}: B/\mathfrak{m}B \to B/\mathfrak{m}B$ is also injective, then *f* is itself an isomorphism.

Proof. Let *C* be the quotient B/f(B). The exact sequence

$$0 \longrightarrow B \xrightarrow{f} B \longrightarrow C \longrightarrow 0$$

induces for each m an exact sequence

$$0 \longrightarrow B/\mathfrak{m}B \xrightarrow{f_\mathfrak{m}} B/\mathfrak{m}B \longrightarrow C/\mathfrak{m}C \longrightarrow 0 .$$

It is by assumption that the left hand map is injective. Since $F = R/\mathfrak{m}$ is a field and B is finitely generated, the space $B/\mathfrak{m}B$ is a finite-dimensional vector space over F, and therefore $f_{\mathfrak{m}}$ an isomorphism. Hence $C/\mathfrak{m}C = 0$ for all \mathfrak{m} . The module C is Noetherian, which means that if $C \neq 0$, it possesses at least one maximal proper submodule D. The quotient C/D must be isomorphic to R/\mathfrak{m} for some maximal ideal \mathfrak{m} . But then $C/\mathfrak{m}C \neq 0$, a contradiction. Therefore C = 0 and f an isomorphism.

3. The Jacquet module

Suppose P = MN to be a parabolic subgroup of *G*. (π, V) an admissible representation of *G*, and (σ, U) one of *P*. Frobenius reciprocity (tells us that

$$\operatorname{Hom}_G(V, \operatorname{Ind}(\sigma | P, G)) \cong \operatorname{Hom}_P(V, U)$$

while the results of the previous section tell us that σ is trivial on N and factors through the canonical projection $P \to M$. In this section we explore the consequences of joining these two facts.

III.3.1. Lemma. If *N* is a p-adic unipotent group, it possesses arbitrarily large compact open subgroups.

Proof. It is certainly true for the group of unipotent upper triangular matrices in GL_n . Here, if *a* is the diagonal matrix with $a_{i,i} = \varpi^i$ then conjugation by powers of *a* will scale any given compact open subgroup to an arbitrarily large one. But any unipotent group can be embedded as a closed subgroup in one of these.

Fix the parabolic subgroup P = MN. If (π, V) is any smooth representation of N, define V(N) to be the subspace of V generated by vectors of the form

$$\pi(n)v - v$$

as n ranges over N. The group N acts trivially on the quotient

$$V_N = V/V(N)$$

It is universal with respect to this property:

III.3.2. Proposition. The projection from *V* to V_N induces for every smooth \mathcal{R} -representation (σ , *U*) on which *N* acts trivially an isomorphism

$$\operatorname{Hom}_N(V, U) \cong \operatorname{Hom}_{\mathcal{R}}(V_N, U)$$
.

III.3.3. Lemma. For *v* in *V* the following are equivalent:

- (a) v lies in V(N);
- (b) v lies in V(U) for some compact open subgroup of N;
- (c) we have

$$\int_U \pi(u) v \, du = 0$$

for some compact open subgroup U of N.

Proof. The equivalence follows immediately from . That of (b) and (c) follows from

III.3.4. Proposition. If

$$0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$$

is an exact sequence of smooth representations of N, then the sequence

$$0 \to U_N \to V_N \to W_N \to 0$$

is also exact.

Proof. That the sequence

$$U_N \to V_N \to W_N \to 0$$

is exact follows immediately from the definition of V(N). The only non-trivial point is the injectivity of $U_N \to V_N$. If u in U lies in V(N) then it lies in V(S) for some compact open subgroup S of N. According to the space V has a canonical decomposition

$$V = V^S \oplus V(S) ,$$

and v lies in V(S) if and only if

$$\int_{S} \pi(s) v \, ds = 0$$

But this last equation holds in U as well, since U is stable under S, so v must lie in U(S).

If σ is trivial on N, any P-map from V to U factors through V_N . The space V(N) is stable under P, and there is hence a natural representation of M on V_N . The **Jacquet module** of π is this representation twisted by the character $\delta_P^{-1/2}$. In other words, if u lies in V/V(N) and v in V has image u, then

$$\pi_N(m)u$$
 is the image of $\delta_P^{-1/2}(m)\pi(m)v$

for m in M. This is designed exactly to allow the simplest formulation of this:

III.3.5. Proposition. If (π, V) is any smooth representation of G and (σ, U) one of M that is trivial on N, then evaluation at 1 induces an isomorphism

$$\operatorname{Hom}_G(\pi, \operatorname{Ind}(\sigma | P, G)) \cong \operatorname{Hom}_M(\pi_N, \sigma)$$

According to the hypothesis on σ holds in particular if it is admissible.

Proof. From

0

4. Iwahori factorizations

Suppose P = MN to be a parabolic subgroup of G, \overline{P} the corresponding opposite one, with $\overline{P} \cap P = M$. If K is a compact open subgroup, it is said to have an **Iwahori factorization** with respect to P if (a) the product map from $\overline{N}_K \times M_K \times N_K$ to K is a bijection, where $M_K = M \cap K$ etc. and (b) $aN_Ka^{-1} \subset N_K$, $a^{-1}\overline{N}_Ka \subset \overline{N}_K$ for every a in A_P^{--} .

III.4.1. Lemma. Let P_{\emptyset} be a minimal parabolic subgroup of G. There exists a basis $\{K_n\}$ of neighbourhoods of $\{1\}$ in G such that

- (a) each K_n is a normal subgroup of K_0 ;
- (b) If *P* is a parabolic subgroup of *G* containing P_{\emptyset} then K_n has an Iwahori factorization with respect to *P*;
- (c) if P = MN is a parabolic subgroup containing P_{\emptyset} then $M \cap K_n$ has an Iwahori factorization with respect to $M \cap P_{\emptyset}$.

Proof. Keep in mind that the statement depends only on the conjugacy class of the parabolic group. Assume first that *G* is split over \mathfrak{k} . According to [Iwahori-Matsumoto:1967], there exists a split group scheme $G_{\mathfrak{o}}$ defining *G* over \mathfrak{k} by base extension. We may choose P_{\emptyset} also to be obtained by base extension from a smooth parabolic subgroup defined over \mathfrak{o} . The sequence of congruence subgroups $G(\mathfrak{p}^n)$ for $n \ge 1$ satisfies the conditions of the Lemma.

Now suppose *G* arbitrary. Let $\mathfrak{l}/\mathfrak{k}$ be a finite Galois extension $\mathfrak{l}/\mathfrak{k}$ over which *G* splits. Let $K_{\mathfrak{l},n}$ be a sequence satisfying the Proposition for a minimal parabolic subgroup contained in $P_{\emptyset} \times_{\mathfrak{k}} \mathfrak{l}$, and let $K_n = K_{\mathfrak{l},n} \cap G$. Galois theory together with uniqueness of the Iwahori factorizations allows us to conclude.

5. Admissibility of the Jacquet module

Now fix an admissible representation (π, V) of G. Let P, \overline{P} be an opposing pair of parabolic subgroups, K_0 to be a compact open subgroup possessing an Iwahori factorization $K_0 = N_0 M_0 \overline{N}_0$ with respect to this pair. For each a in A_P^{--} let T_a be the smooth distribution $\mu_{K_0 a K_0/K_0}$ on G. For any smooth representation (π, V) and v in V^{K_0} let τ_a be the restriction of $\pi(T_a)$ to V^{K_0} .

III.5.1. Lemma. For v in V^{K_0}

$$\tau_a v = \pi(a) \sum_{a^{-1}N_0 a/N_0} \pi(n) v$$

Proof. By definition

$$\tau_a(v) = \pi(T_a) v$$

= $\sum_{K_0 a K_0 / K_0} \pi(g) v$
= $\sum_{K_0 / K_0 \cap a K_0 a^{-1}} \pi(k) \pi(a) v$.

This is valid since the isotropy subgroup of a in the action of K_0 acting on $K_0 a K_0 / K_0$ is $a K_0 a^{-1} \cap K_0$, hence

 $k \mapsto kaK_0$

is a bijection of $K_0/K_0 \cap aK_0a^{-1}$ with K_0aK_0/K_0 .

We also have $K_0 = N_0 M_0 \overline{N}_0$ and $aK_0 a^{-1} = (aN_0 a^{-1})M_0(aN_0 a^{-1})$. Since $\overline{N} \subseteq a\overline{N}a^{-1}$, the inclusion of N_0/aN_0a^{-1} into $K_0/(aK_0a^{-1} \cap K_0)$ is in turn a bijection. Since the index of aN_0a^{-1} in N_0 or, equivalently,

that of N_0 in $a^{-1}N_0a$ is $\delta_P^{-1}(a)$:

$$\tau_a v = \sum_{K_0/aK_0 a^{-1} \cap K_0} \pi(k)\pi(a)v$$

=
$$\sum_{N_0/aN_0 a^{-1}} \pi(n)\pi(a)v$$

=
$$\pi(a) \sum_{a^{-1}N_0 a/N_0} \pi(n)v .$$

Since $\pi(n)v$ and v have the same image in V_N , and $[a^{-1}N_0a:N_0] = \delta_P^{-1}(a)$: **III.5.2. Lemma.** If v lies in V^{K_0} with image u in V_N , the image of $\tau_a v$ in V_N is equal to $\delta_P^{-1/2}(a)\pi_N(a)u$. **III.5.3. Lemma.** For every a, b in A_P^{--} ,

$$\tau_{ab} = \tau_a \tau_b$$

Proof. We have

$$\tau_a \tau_b v = \sum_{N_0/aN_0 a^{-1}} \sum_{N_0/bN_0 b^{-1}} \pi(n_1) \pi(a) \pi(n_2) \pi(b) v$$

=
$$\sum_{N_0/aN_0 a^{-1}} \sum_{N_0/bN_0 b^{-1}} \pi(n_1) \pi(an_2 a^{-1}) \pi(ab) v$$

=
$$\sum_{N_0/abN_0 b^{-1} a^{-1}} \pi(n) \pi(ab) v$$

=
$$\tau_{ab} v$$

since as n_1 ranges over representatives of N_0/aN_0a^{-1} and and n_2 over representatives of N_0/bN_0b^{-1} , the products $n_1 an_2 a^{-1}$ range over representatives of $N_0/abN_0b^{-1}a^{-1}$.

III.5.4. Lemma. For any a in A_P^{--} the subspace of V^{K_0} on which τ_a acts nilpotently coincides with $V^{K_0} \cap V(N)$.

Proof. Since \mathcal{R} is Noetherian and V^{K_0} finitely generated, the increasing sequence

$$\ker(\tau_a) \subseteq \ker(\tau_{a^2}) \subseteq \ker(\tau_{a^3}) \subseteq \dots$$

is eventually stationary. It must be shown that it is the same as $V^{K_0} \cap V(N)$.

Choose *n* large enough so that $V^{K_0} \cap V(N) = V^{K_0} \cap V(a^{-n}N_0a^n)$. Let $b = a^n$. Since

$$au_b v = \pi(b) \sum_{b^{-1} N_0 b / N_0} \pi(n) v$$

and $\tau_b v = 0$ if and only if $\sum_{b^{-1}N_0 b/N_0} \pi(n)v = 0$, and again if and only if v lies in V(N).

The canonical map from V to V_N takes V^{K_0} to $V_N^{M_0}$. The kernel of this map is $V \cap V(N)$, which by is equal to the kernel of τ_{a^n} for $n \gg 0$. If \mathcal{R} is a field, the Jordan decomposition asserts that there is a unique τ_a -stable complement $V_N^{K_0}$ on which τ_a is invertible. It is also the image of τ_{a^n} if $n \gg 0$.

From now on in this chapter, I assume ${\mathcal R}$ to be a field.

III.5.5. Proposition. The canonical projection from $V_N^{K_0}$ to $V_N^{M_0}$ is an isomorphism.

Proof. It suffices to show that it is surjective. Suppose given u in $V_N^{M_0}$. Since M_0 is compact, we can find v in V^{M_0} whose image in V_N is u. Suppose that v is fixed also by \overline{N}_* for some small \overline{N}_* . If we choose b in A_P^{-1} such that $b\overline{N}_0b^{-1} \subseteq \overline{N}_*$, then $v_* = \delta^{1/2}(b)\pi(b)v$ is fixed by $M_0\overline{N}_0$. Because $K_0 = N_0M_0\overline{N}_0$, the average of $\pi(n)v_*$ over N_0 is the same as the average of $\pi(k)v_*$ over K_0 . This average lies in V^{K_0} and has image $\pi_N(b)u$ in V_N . But then $\tau_a v_*$ has image $\delta^{1/2}(a)\pi_N(ab)u$ in V_N and also lies in $V_N^{K_0}$. Since τ_{ab} acts invertibly on $V_N^{K_0}$, we can find v_{**} in $V_N^{K_0}$ such that $\tau_{ab}v_{**} = \tau_a \tau_b v_{**} = \tau_a v_*$, and whose image in V_N is u.

As a consequence:

III.5.6. Theorem. If (π, V) is an admissible representation of G then (π_N, V_N) is an admissible representation of M.

Thus whenever K_0 is a subgroup possessing an Iwahori factorization with respect to P, we have a canonical subspace of V^{K_0} projecting isomorphically onto V^{M_0} . For a given M_0 there may be many different K_0 suitable; how does the space $V_N^{K_0}$ vary with K_0 ?

III.5.7. Lemma. Let $K_1 \subseteq K_0$ be two compact open subgroups of G possessing an Iwahori factorization with respect to P. If v_1 in $V_N^{K_1}$ and v_0 in $V_N^{K_0}$ have the same image in V_N , then $\pi(\mu_{K_0/K_0})v_1 = v_0$.

Remark. Does the Theorem remain true if \mathcal{R} is assumed only to be a Noetherian ring? An earlier version of this chapter had an incorrect proof of this claim. The error was caught by Guy Henniart.

6. The canonical pairing

Continue to let K_0 be a compact open subgroup of G possessing an Iwahori factorization $\overline{N}_0 M_0 N_0$ with respect to the parabolic subgroup P, (π, V) an admissible representation of G.

III.6.1. Lemma. For v in $V_N^{K_0}$, \widetilde{v} in $\widetilde{V}^{K_0} \cap \widetilde{V}(\overline{N})$, $\langle \widetilde{v}, v \rangle = 0$.

Proof. Fix *a* in A^{--} for the moment and choose v_0 in $V_N^{K_0}$ with $\tau_a v_0 = v$. Then

$$\langle v, \tilde{v} \rangle = \langle \tau_a v_0, \tilde{v} \rangle = \langle v_0, \tau_{a^{-1}} \tilde{v} \rangle.$$

According to τ_a is nilpotent on $\widetilde{V}^{K_0} \cap \widetilde{V}(\overline{N})$, so if we choose *a* suitably the right-hand side is 0.

III.6.2. Theorem. If $(\pi, V \text{ is an admissible representation of } G$, then there exists a unique pairing between V_N and $\widetilde{V}_{\overline{N}}$ with the property that whenever v has image u in V_N and \widetilde{v} has image \widetilde{u} in $\widetilde{V}_{\overline{N}}$, then for all a in A_P^{-} near enough to 0

$$\langle \widetilde{v}, \pi(a)v \rangle = \delta_P^{1/2}(a) \langle \widetilde{u}, \pi_N(a)u \rangle$$
.

Similarly with the roles of V and \tilde{V} reversed.

Proof. Let u in V_N and \tilde{u} in \tilde{V}_N be given. Suppose that u and \tilde{u} are both fixed by elements of M_0 . Let v be a vector in $V_N^{K_0}$ with image u, and similarly for \tilde{v} and \tilde{u} . Define the pairing by the formula

$$\langle \widetilde{u}, u \rangle_{\operatorname{can}} = \langle \widetilde{v}, v \rangle$$
.

It follows from and that this definition depends only on u and \tilde{u} , and not on the choices of v and \tilde{v} . That

$$\langle \widetilde{v}, \pi(a)v \rangle = \delta_P^{1/2}(a) \langle \widetilde{u}, \pi_N(a)u \rangle_{\text{can}}$$

also follows from and . That this property characterizes the pairing follows from the invertibility of τ_a on $V_N^{K_0}$.

This pairing is called the **canonical pairing**.

Π

III.6.3. Corollary. If \mathcal{R} is a field, the canonical pairing defines an isomorphism of $(\pi_{\overline{N}}, \tilde{V}_{\overline{N}})$ with the contragredient of (π_N, V_N) , as a representation of M_P .

Proof. The canonical pairing is invariant under M because for m in M the pairing $\langle \pi_N(m)u, \pi_{\overline{N}}(m)\tilde{u} \rangle_{\text{can}}$ also satisfies the conditions characterizing the canonical pairing.

For non-degeneracy, suppose u in V_N such that $\langle u, \tilde{u} \rangle_{can} = 0$ for all $\tilde{u} \in \widetilde{V}_{\overline{N}}$. Let v be a canonical lift of u. Let \tilde{v} be arbitrary in \widetilde{V}^{K_0} . Suppose $v = \tau_a v_0$ for v_0 also in $V_N^{K_0}$. Then

$$\langle v, \tilde{v} \rangle = \langle \tau(a)v_0, \tilde{v} \rangle = \langle v_0, \tau(a)^{-1}\tilde{v} \rangle$$

But if we choose *a* suitably then $\tau_{a^{-1}}v$ lies in $\widetilde{V}_{\overline{N}}$, so this last is a canonical a pairing, hence 0. Therefore $\langle v, \tilde{v} \rangle = 0$ for all \tilde{v} in \widetilde{V}^{K_0} , and v = 0.

Remark. What I call the 'canonical pairing' has been extended in a remarkable fashion in what [Bernstein:1987] calls 'second adjointness'.

7. References

1. Joseph Bernstein, 'Second adjointness for representations of *p*-adic groups', 1987. Available at

http://www.math.tau.ac.il/~bernstei/Unpublished_texts/ unpublished_texts/Bernstein87-second-adj-from-chicago.pdf

2. H. Jacquet, 'Représentations des groupes linéaires p-adiques', in **Theory of group representations and Fourier analysis** (proceedings of a conference at Monecatini), C. I. M. E. Edizioni Cremonese, Rome, 1971.

3. — and R. P. Langlands, **Automorphic forms on GL(2)**, *Lecture Notes in Mathematics* **114**, Springer, 1970.