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Chapter III. Induced representations and the Jacquet module

In this chapter, let G be the krational points on a Zariskiconnected reductive group defined over k. I’ll intro
duce here representations induced from parabolic subgroups to G, as well as a related adjoint construction

going from representations of G to those of parabolic subgroups.

These constructions will lead eventually to a rough classification of irreducible admissible representations

of G. Parabolic induction is a classic technique in representation theory, but the adjoint construction has its

origins in [JacquetLanglands:1970] and [Jacquet:1971].
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SUMMARY. If P = MN is a parabolic subgroup of G and V a smooth representation of G, its Jacquet module
is its maximal N trivial quotient VN . This is a smooth representation of M = P/N , and if V is an admissible

representation of G defined over a field the Jacquet module is an admissible representation of M . It is almost

by definition that the Jacquet module controls equivariant maps from V into representations induced from
P to G, but it also controls the asymptotic behaviour of matrix coefficients of V . This dual role originates in

work of HarishChandra on representations of real reductive groups, and is the basis for harmonic analysis
on G.

1. Representations induced from parabolic subgroups

Suppose P to be a parabolic subgroup of G, and (σ, U) an admissible representation of P . The (normalized)

representation induced from σ is the right regular representation of G on the space

Ind(σ|P,G) =
{
f ∈ C∞(G,U)

∣∣ f(pg) = δ
1/2
P (p)σ(p)f(g) for all p ∈ P, g ∈ G

}
.

Here
δP (p) = |detn(p)|

is the modulus character of P . Since P\G is compact, according to his representation is admissible.

Bruhat and Tits define a good compact subgroup of G to be a compact open K such that G = PK for all
parabolic subgroups P . They prove that such exist. If K is good then the restriction of Ind(σ|P,G) to K is a

Kisomorphism of Ind(σ|P,G) with Ind(σ|K ∩ P,K). From now on, assume K to be a good compact.
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An unramified character of P is one that is trivial on K ∩ P . It follows from the observation above that if χ
is unramified then Ind(σ|P,G) and Ind(σχ|P,G) are canonically isomorphic as Krepresentations. Another

way of putting this is that these representations may be defined on the same space.

If ϕ lies in Ind(δ
1/2
P |P,G) the integral ∫

K

ϕ(k) dk

defines a Ginvariant linear functional. Since G/P is compact, mplies:

III.1.1. Proposition. The contragredient of Ind(σ|P,G) is isomorphic to Ind(σ̃|P,G).

If f lies in the first and ϕ the second, then the productpairing 〈f(x), ϕ(x)〉 lies in Ind(δ1/2|P,G). The pairing

can then be chosen to be ∫

K

〈f(k), ϕ(k)〉 dk .

III.1.2. Proposition. The representation Ind(σ|P,G) is unitary if σ is .

This choice of invariant integral is by no means canonical, and in other contexts other choices are natural.

There is a great deal more to be said about these representations, but first we need to investigate admissible

representations of P .

2. Admissible representations of parabolic subgroups

Let P = MPNP = MN be a parabolic subgroup of G, A = AP the split centre of MP . There exists a basis

of neighbourhoods of P of the form UMUN where UM is a compact open subgroup of M , UN is one of N ,

and UM conjugates UN to itself.

The group M may be identified with a quotient of P , and therefore the admissible representations of M may

be identified with those of P trivial on N . It happens that there are no others:

III.2.1. Proposition. Every admissible representation of P is trivial on N .

Proof. Let (π, V ) be an admissible representation of P over the (Noetherian) ring R, and suppose v in V . We
want to show that π(n)v = v for all n in N .

So suppose n in N , and suppose U = UMUN fixes v. We can find a in A such that a−1na ∈ UN as well as
a−1Ua ⊆ U . Then π(a) takes V U to itself, since for u in U we have

π(u)π(a)v = π(a)π(a−1ua)v = π(a)v .

The operator π(a) is certainly injective. I shall prove in a moment that it is bijective on V U . Assuming this,
we can find v∗ such that π(a)v∗ = v, and then:

π(n)v = π(n)π(a)π(a−1)v

= π(n)π(a)v∗

= π(a)π(a−1na)v∗

= π(a)v∗

= v .

If R is a field, the claim that π(a) is surjective is is trivial, since V U is finitedimensional and π(a) is injective.

But if R is an arbitrary commutative Noetherian ring, one has to be a bit more careful. The following will tell
us what is needed:
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III.2.2. Lemma. Suppose B to be a finitely generated module over the Noetherian ring R. If f :B → B is an
Rinjection with the property that for each maximal ideal m of R the induced map fm:B/mB → B/mB is
also injective, then f is itself an isomorphism.

Proof. Let C be the quotient B/f(B). The exact sequence

0 −→ B
f

−→ B −→ C −→ 0

induces for each m an exact sequence

0 −→ B/mB
fm
−→ B/mB −→ C/mC −→ 0 .

It is by assumption that the left hand map is injective. Since F = R/m is a field and B is finitely generated,

the space B/mB is a finitedimensional vector space over F , and therefore fm an isomorphism. Hence

C/mC = 0 for all m. The module C is Noetherian, which means that if C 6= 0, it possesses at least one
maximal proper submodule D. The quotient C/D must be isomorphic to R/m for some maximal ideal m.

But then C/mC 6= 0, a contradiction. Therefore C = 0 and f an isomorphism.

3. The Jacquet module

Suppose P = MN to be a parabolic subgroup of G. (π, V ) an admissible representation of G, and (σ, U)
one of P . Frobenius reciprocity ( tells us that

HomG

(
V, Ind(σ|P,G)

)
∼= HomP (V, U) ,

while the results of the previous section tell us that σ is trivial on N and factors through the canonical

projection P → M . In this section we explore the consequences of joining these two facts.

III.3.1. Lemma. If N is a padic unipotent group, it possesses arbitrarily large compact open subgroups.

Proof. It is certainly true for the group of unipotent upper triangular matrices in GLn. Here, if a is the

diagonal matrix with ai,i = ̟i then conjugation by powers of a will scale any given compact open subgroup
to an arbitrarily large one. But any unipotent group can be embedded as a closed subgroup in one of these.

Fix the parabolic subgroup P = MN . If (π, V ) is any smooth representation of N , define V (N) to be the
subspace of V generated by vectors of the form

π(n)v − v

as n ranges over N . The group N acts trivially on the quotient

VN = V/V (N)

It is universal with respect to this property:

III.3.2. Proposition. The projection from V to VN induces for every smooth Rrepresentation (σ, U) on which
N acts trivially an isomorphism

HomN (V, U) ∼= HomR(VN , U) .

III.3.3. Lemma. For v in V the following are equivalent:
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(a) v lies in V (N);
(b) v lies in V (U) for some compact open subgroup of N ;
(c) we have ∫

U

π(u)v du = 0

for some compact open subgroup U of N .

Proof. The equivalence follows immediately from . That of (b) and (c) follows from

III.3.4. Proposition. If
0 → U → V → W → 0

is an exact sequence of smooth representations of N , then the sequence

0 → UN → VN → WN → 0

is also exact.

Proof. That the sequence
UN → VN → WN → 0

is exact follows immediately from the definition of V (N). The only nontrivial point is the injectivity of

UN → VN . If u in U lies in V (N) then it lies in V (S) for some compact open subgroup S of N . According
to the space V has a canonical decomposition

V = V S ⊕ V (S) ,

and v lies in V (S) if and only if ∫

S

π(s)v ds = 0

But this last equation holds in U as well, since U is stable under S, so v must lie in U(S).

If σ is trivial on N , any P map from V to U factors through VN . The space V (N) is stable under P , and there

is hence a natural representation of M on VN . The Jacquet module of π is this representation twisted by the

character δ
−1/2
P . In other words, if u lies in V/V (N) and v in V has image u, then

πN (m)u is the image of δ
−1/2
P (m)π(m)v

for m in M . This is designed exactly to allow the simplest formulation of this:

III.3.5. Proposition. If (π, V ) is any smooth representation of G and (σ, U) one of M that is trivial on N ,
then evaluation at 1 induces an isomorphism

HomG

(
π, Ind(σ|P,G)

)
∼= HomM (πN , σ)

According to the hypothesis on σ holds in particular if it is admissible.

Proof. From
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4. Iwahori factorizations

Suppose P = MN to be a parabolic subgroup of G, P the corresponding opposite one, with P ∩ P = M .

If K is a compact open subgroup, it is said to have an Iwahori factorization with respect to P if (a) the
product map from NK ×MK ×NK to K is a bijection, where MK = M ∩K etc. and (b) aNKa−1 ⊂ NK ,

a−1NKa ⊂ NK for every a in A−−

P .

III.4.1. Lemma. Let P∅ be a minimal parabolic subgroup of G. There exists a basis {Kn} of neighbourhoods
of {1} in G such that

(a) each Kn is a normal subgroup of K0;
(b) If P is a parabolic subgroup of G containing P∅ then Kn has an Iwahori factorization with respect to

P ;
(c) if P = MN is a parabolic subgroup containing P∅ then M ∩ Kn has an Iwahori factorization with

respect to M ∩ P∅.

Proof. Keep in mind that the statement depends only on the conjugacy class of the parabolic group. Assume

first that G is split over k. According to [IwahoriMatsumoto:1967], there exists a split group scheme Go

defining G over k by base extension. We may choose P∅ also to be obtained by base extension from a smooth
parabolic subgroup defined over o. The sequence of congruence subgroups G(pn) for n ≥ 1 satisfies the

conditions of the Lemma.

Now suppose G arbitrary. Let l/k be a finite Galois extension l/k over which G splits. Let Kl,n be a sequence

satisfying the Proposition for a minimal parabolic subgroup contained in P∅ ×k l, and let Kn = Kl,n ∩ G.

Galois theory together with uniqueness of the Iwahori factorizations allows us to conclude.

5. Admissibility of the Jacquet module

Now fix an admissible representation (π, V ) of G. Let P , P be an opposing pair of parabolic subgroups, K0

to be a compact open subgroup possessing an Iwahori factorization K0 = N0M0N0 with respect to this pair.
For each a in A−−

P let Ta be the smooth distribution µK0aK0/K0
on G. For any smooth representation (π, V )

and v in V K0 let τa be the restriction of π(Ta) to V K0 .

III.5.1. Lemma. For v in V K0

τav = π(a)
∑

a−1N0a/N0

π(n)v .

Proof. By definition

τa(v) = π(Ta) v

=
∑

K0aK0/K0

π(g) v

=
∑

K0/K0∩aK0a−1

π(k)π(a) v .

This is valid since the isotropy subgroup of a in the action of K0 acting on K0aK0/K0 is aK0a
−1∩K0, hence

k 7→ kaK0

is a bijection of K0/K0 ∩ aK0a
−1 with K0aK0/K0.

We also have K0 = N0M0N0 and aK0a
−1 = (aN0a

−1)M0(aN0a
−1). Since N ⊆ aNa−1, the inclusion of

N0/aN0a
−1 into K0/(aK0a

−1 ∩K0) is in turn a bijection. Since the index of aN0a
−1 in N0 or, equivalently,
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that of N0 in a−1N0a is δ−1

P (a):

τav =
∑

K0/aK0a−1∩K0

π(k)π(a)v

=
∑

N0/aN0a−1

π(n)π(a)v

= π(a)
∑

a−1N0a/N0

π(n)v .

Since π(n)v and v have the same image in VN , and [a−1N0a:N0] = δ−1

P (a):

III.5.2. Lemma. If v lies in V K0 with image u in VN , the image of τav in VN is equal to δ
−1/2
P (a)πN (a)u.

III.5.3. Lemma. For every a, b in A−−

P ,
τab = τaτb

Proof. We have
τaτbv =

∑

N0/aN0a−1

∑

N0/bN0b−1

π(n1)π(a)π(n2)π(b)v

=
∑

N0/aN0a−1

∑

N0/bN0b−1

π(n1)π(an2a
−1)π(ab)v

=
∑

N0/abN0b−1a−1

π(n)π(ab)v

= τabv

since as n1 ranges over representatives of N0/aN0a
−1 and and n2 over representatives of N0/bN0b

−1, the

products n1 an2a
−1 range over representatives of N0/abN0b

−1a−1.

III.5.4. Lemma. For any a in A−−

P the subspace of V K0 on which τa acts nilpotently coincides with V K0 ∩
V (N).

Proof. Since R is Noetherian and V K0 finitely generated, the increasing sequence

ker(τa) ⊆ ker(τa2) ⊆ ker(τa3) ⊆ . . .

is eventually stationary. It must be shown that it is the same as V K0 ∩ V (N).

Choose n large enough so that V K0 ∩ V (N) = V K0 ∩ V (a−nN0a
n). Let b = an. Since

τbv = π(b)
∑

b−1N0b/N0

π(n)v ,

and τbv = 0 if and only if
∑

b−1N0b/N0
π(n)v = 0, and again if and only if v lies in V (N).

The canonical map from V to VN takes V K0 to V M0

N . The kernel of this map is V ∩ V (N), which by is equal

to the kernel of τan for n ≫ 0. If R is a field, the Jordan decomposition asserts that there is a unique τastable

complement V K0

N on which τa is invertible. It is also the image of τan if n ≫ 0.
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From now on in this chapter, I assume R to be a field.

III.5.5. Proposition. The canonical projection from V K0

N to V M0

N is an isomorphism.

Proof. It suffices to show that it is surjective. Suppose given u in V M0

N . Since M0 is compact, we can find v in

V M0 whose image in VN is u. Suppose that v is fixed also by N∗ for some small N∗. If we choose b in A−−

P

such that bN0b
−1 ⊆ N∗, then v∗ = δ1/2(b)π(b)v is fixed by M0N0. Because K0 = N0M0N0, the average

of π(n)v∗ over N0 is the same as the average of π(k)v∗ over K0. This average lies in V K0 and has image

πN (b)u in VN . But then τav∗ has image δ1/2(a)πN (ab)u in VN and also lies in V K0

N . Since τab acts invertibly

on V K0

N , we can find v∗∗ in V K0

N such that τabv∗∗ = τaτbv∗∗ = τav∗, and whose image in VN is u.

As a consequence:

III.5.6. Theorem. If (π, V ) is an admissible representation of G then (πN , VN ) is an admissible representation
of M .

Thus whenever K0 is a subgroup possessing an Iwahori factorization with respect to P , we have a canonical

subspace of V K0 projecting isomorphically onto V M0 . For a given M0 there may be many different K0

suitable; how does the space V K0

N vary with K0?

III.5.7. Lemma. Let K1 ⊆ K0 be two compact open subgroups of G possessing an Iwahori factorization with
respect to P . If v1 in V K1

N and v0 in V K0

N have the same image in VN , then π(µK0/K0
)v1 = v0.

Remark. Does the Theorem remain true if R is assumed only to be a Noetherian ring? An earlier version of
this chapter had an incorrect proof of this claim. The error was caught by Guy Henniart.

6. The canonical pairing

Continue to let K0 be a compact open subgroup of G possessing an Iwahori factorization N0M0N0 with

respect to the parabolic subgroup P , (π, V ) an admissible representation of G.

III.6.1. Lemma. For v in V K0

N , ṽ in Ṽ K0 ∩ Ṽ (N), 〈ṽ, v〉 = 0.

Proof. Fix a in A−− for the moment and choose v0 in V K0

N with τav0 = v. Then

〈v, ṽ〉 = 〈τav0, ṽ〉 = 〈v0, τa−1 ṽ〉 .

According to τa is nilpotent on Ṽ K0 ∩ Ṽ (N), so if we choose a suitably the righthand side is 0.

III.6.2. Theorem. If (π, V is an admissible representation of G, then there exists a unique pairing between

VN and ṼN with the property that whenever v has image u in VN and ṽ has image ũ in ṼN , then for all a in
A−−

P near enough to 0

〈ṽ, π(a)v〉 = δ
1/2
P (a)〈ũ, πN (a)u〉 .

Similarly with the roles of V and Ṽ reversed.

Proof. Let u in VN and ũ in ṼN be given. Suppose that u and ũ are both fixed by elements of M0. Let v be a

vector in V K0

N with image u, and similarly for ṽ and ũ. Define the pairing by the formula

〈ũ, u〉can = 〈ṽ, v〉 .

It follows from and that this definition depends only on u and ũ, and not on the choices of v and ṽ. That

〈ṽ, π(a)v〉 = δ
1/2
P (a)〈ũ, πN (a)u〉can

also follows from and . That this property characterizes the pairing follows from the invertibility of τa on

V K0

N .

This pairing is called the canonical pairing.
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III.6.3. Corollary. If R is a field, the canonical pairing defines an isomorphism of (πN , ṼN ) with the contra
gredient of (πN , VN ), as a representation of MP .

Proof. The canonical pairing is invariant under M because for m in M the pairing 〈πN (m)u, πN (m)ũ〉can
also satisfies the conditions characterizing the canonical pairing.

For nondegeneracy, suppose u in VN such that 〈u, ũ〉can = 0 for all ũ ∈ ṼN . Let v be a canonical lift of u.

Let ṽ be arbitrary in Ṽ K0 . Suppose v = τav0 for v0 also in V K0

N . Then

〈v, ṽ〉 = 〈τ(a)v0, ṽ〉 = 〈v0, τ(a)
−1ṽ〉 .

But if we choose a suitably then τa−1v lies in ṼN , so this last is a canonical a pairing, hence 0. Therefore

〈v, ṽ〉 = 0 for all ṽ in Ṽ K0 , and v = 0.

Remark. What I call the ‘canonical pairing’ has been extended in a remarkable fashion in what [Bernstein:1987]

calls ‘second adjointness’.
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