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The curves defined by conic sections were apparently first analyzed in generality by the Greeks of classical
times, particularly Apollonius. The theory only became of great significance when it was discovered by

Kepler that

(First Law) within any error he could measure, the path of a planet is an ellipse with the Sun at its
focus;

(Second Law) there is a rule, at once simple theoretically and reasonably practical, for determining how
a planet moves along its ellipse, given its period;

(Third Law) the period of a planet is proportional to a3/2 if a is the semimajor axis of the orbit.

Half a century after Kepler, Newton discovered simple laws of dynamics that at once explained Kepler’s

laws as well as the deviations from it. He formulated the inversesquare law of gravitational force and the

rules that determinedmotion from this force. This implied that the orbit of essentially any planetsized object
in the Solar system followed a path which was, again up to a very small error, a conic section. That is to

say, parabolas and hyperbolas were also possible in addition to ellipses, at least for objects whose origins lay

outside the Solar system itself. In this essay, I’ll look only at elliptical orbits.
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1. The geometry of ellipses

This is just a quick summary. An ellipse is obtained from the unit circle by scaling horizontally and vertically.

If we have semimajor axis a and semiminor axis b its equation is

(x

a

)2

+
(y

b

)2

= 1 .

Its area A is πab.

There are two foci (±f, 0) wuth the property that the piecewise linear path from one to the other, bouncing
off the ellipse on the way, has a constant length. The eccentricity of the ellipse is the ratio e = f/a. Also

f =
√

a2 − b2. Since the orbit is an ellipse, e lies in the range [0, 1). It is 0 for circles, and tends to 1 as the

ellipse flattens out.
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a

b

f = ae

focus

Given a and e we have

b = a
√

1 − e2 .

Since
√

1 − e2 ∼ 1 − e2/2, the semiaxes b and a are very close for even moderately small e. Thus the shape
of the ellipse is close to a circle unless e is close to 1.

2. Conics and planetary motion

In a system of two massive bodies, the two bodies travel in similar elliptical orbits around their centre of
mass. The ratio of axes is inversely proportional to their masses. If one body is much larger than the other,

and the centre of mass is essentially fixed, and the smaller object travels around the larger one in an apparent

ellipse. This is in effect what happens in the solar system.

We shall begin by applying the second law to see how a planet’s motion varies with time. How the second

law tells us this turns out to be simple geometry. How the geometry determines the motion is, however,
somewhat complicated.

Consider an orbit with semimajor axis a and semiminor axis b. The focus is (f, 0) with f > 0. Suppose that
at time t = 0 the planet is at perihelion, that is to say the point in its orbit nearest to the Sun. Suppose that at

time t it is at location P on the ellipse. Let A be the area of the region traversed by the radius vector of the

planet from the Sun. Kepler’s Second Law tells us that

A = αt, (α = πab/tperiod) .

P

focus

A

We shall use a coordinate system with origin at the centre of the ellipse, and we shall describe points on the
orbit in terms of points in the circle one can inscribe around the ellipse with radius a. The ellipse is obtained
from this circle by compressing along the y axis by a factor b/a. Thus if Q = (a cosE, a sin E) is a point on

the circle, it corresponds to the point P = (a cosE, b sinE) on the ellipse.
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a

b

P

Q

E

A

We now want to relate the area A to the point P .

2.1. Lemma. In the above diagram

A =
ab

2
· (E − e sin(E) .

Proof. We can easily relate the analogous things on the circle, and we obtain the ones on the ellipse by scaling

vertically by the factor b/a.

P

Q

O F

The area A is the difference between the area of the elliptic sector with angle E, and the triangle OFP , which
has height b sin E and base f =

√
a2 − b2. Therefore

A =
b

a

(

πa2 E

2π
− a2e sinE

2

)

=
ab

2
E − b

√
a2 − b2

2
sin E

which we can rewrite as
A

ab/2
= E − e sinE .

The quantity M = A/(ab/2) is also, by Kepler’s Law, equal to 2π(t/tperiod). Hence:

2.2. Proposition. At time t the angle E is the unique solution to the equation

M = 2π · t

tperiod

= E − e sin E .
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This is called Kepler’s equation. Remember that knowing E is equivalent to knowing P , since

P = (a cosE, b sinE) = a(cos E,
√

1 − e2 sin E) .

while knowing M is equivalent to knowing t. Thus Kepler’s equation asserts directly that if we know the
position P we can tell what t is. This is usually opposite to what we usually want to know, which is how to
determine P in terms of t. In order to do this we must solve Kepler’s equation for E in terms of M . This is
not so straightforward. In fact, there is no simple formula for E in terms of M (or P in terms of t), and we

must solve the equation numerically.

Sometimes the polar coordinates of P with respect to the focus are convenient. For radius ρ:

ρ2 = (a cosE − f)2 + (b sinE)2

= a2 cos2 E − 2af cosE + f2 + b2 sin2 E

= (a2 − b2) cos2 E − 2af cosE + f2 + b2(cos2 E + sin2 E)

= f2 cos2 E − 2af cosE + a2

= a2(1 − e cosE)2

ρ = a(1 − e cosE) .

As we’ll see in a moment, this has an approximation

ρ = a(1 − e cosM) + O(e2) .

3. Solving Kepler’s equation

The first thing to do is to get a rough idea of what the problems are. This we can do by graphing M as a

function of E for a few values of e.

E=0 2π
M =0

2π

e=0.2

E=0 2π
M =0

2π

e=0.5

E=0 2π
M =0

2π

e=0.8

It is seen in these figures, and verified easily by taking derivatives, that the function taking E to E − e sinE
is monotonic increasing, which means that as E increases so does M . This means that for any given value

of M there is a unique value of E for which M = E − e sin E. This is certainly reassuring. This remains true

as long as 0 ≤ e < 1, or in other words for all elliptical orbits, which is all we can expect. So the problem we
are trying to solve is at least well posed.

Therefore we now consider directly the question of how to find E given M . If e is small, the following trick
works well. We rewrite the equation

x = f(x) = M + e sinx

so that we are looking for a number x taken to itself by the transformation x 7→ M + e sinx. We start with

some initial approximation x0 for x. As long as e is small, E0 = M will be close enough, since M + e sinM
will not be too far from M . Then we calculate in succession

xn+1 = M + e sinxn
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I recall quickly how fixed point iteration performs. If

xn+1 = f(xn)

then
hn = xn+1 − xn = f(xn) − xn

and
hn+1 = f(xn+1) − fn+1 = f(xn + hn) − f(xn) ∼ hnf ′(xn)

so that if initial values are reasonably close to a fixed point x with |f(′(x)| < 1 we can expect geometric
convergence. In our case

f ′(x) = −e cosx .

which is always of absolute value≤ e.

Example. Set e = 0.1, say, and M = 1. We get values

E0 = 1

E1 = 1 + 0.1 sin 1

= 1.084147

E2 = 1.088390

E3 = 1.088588

E4 = 1.088597

E5 = 1.088598

E6 = 1.088598

. . .

so it does in fact converge quickly in this case. In order to calculate planet positions as a function of time it is

important to be able to solve Kepler’s equation efficiently, and this is promising.

4. Finding a better initial guess

The method I have suggested for solving Kepler’s equation proceeds by picking an initial guess E0 and then

repeating
En+1 = M + e sinEn

until convergence. The initial guess I have suggested is E0 = M . Using this initial guess amounts to
approximating the functionE− e sinE by E. But as these pictures show, this is not a very good guess except

for small values of e.

y = x − e sin(x)

e = 0.2

y = x − e sin(x)

e = 0.9
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So the method of solution we’ll use in practice is the fixed point iteration when e < 0.01, and otherwise

Newton’s method combined with a more sophisticated initial guess.

A better idea for the initial guess is to approximate the function E − e sinE near the three points 0, π, 2π and
use as an initial guess a solution for these approximations. Near E = 0 we have

E − e sinE ∼ E − eE + e
E3

3!

because of the series

sin x = x − x3

3!
+ · · · .

So as an approximate root of Kepler’s equation near y = 0 we have the root of

y = x(1 − e) +
e

6
x3 .

Near E = π we can write
E = π + h

E − e sinE = (π + h) − e sin(π + h)

= π + h + e sinh

∼ π + h + eh − e
h3

3!
.

So as an approximate root of Kepler’s equation near y = π we have x = π + h where h is the root of

(y − π) = h(1 + e) − e

6
h3 .

Near E = 2π we have
E = 2π + h

E − e sinE ∼ 2π + h(1 − e) +
e

6
h3 .

So as an approximate root of Kepler’s equation near y = 2π we have x = 2π + h where h is the root of

(y − 2π) = h(1 − e) +
e

6
h3 .

How good are these initial guesses? These pictures give an idea of how good, and also in what ranges to

choose the different approximations:

y = x − e sin(x)

e = 0.2

y = x − e sin(x)

e = 0.9

So we divide up the initial approximation cases into the xranges [0, 1/4), [1/4, 3/4), [3/4, 1]. Equivalently,
we make the breaks at x − e sin(x) where x = 1/4, 3/4.

In all cases, as a good initial guess we can take a root of a certain cubic equation. To find such a root is not
trivial, but it is not so difficult either.



Planetary motion and Kepler’s equation 7

5. Solving cubic equations

Finding roots of an arbitrary cubic polynomial reduces, through a change of variables, to solving an equation

x3 + ax = y .

There are two basic cases. The simplest is where a ≥ 0, in which case there is exactly one root for all y, since
x3 + ax has derivative 3x2 + a and is monotonic. If a < 0 then the slope at 0 is negative and there is a further
breakdown, illustrated in the following figure:

−
√

|a|/3

√

|a|/3

y = −2a3

y = 2a3

If |y| > 2|a|3 there is one root; if |y| = 2|a|3 there are two roots; and if |y| < 2|a|3 there are three.

The solution starts with the observations

(α + α−1)3 = α3 + α−3 + 3α + 3α−1

(α − α−1)3 = α3 − α−3 − 3α + 3α−1

so that if X = c(α + α−1)
X3 − 3c2X = c3(α3 + α−3)

and if X = c(α − α−1) then
X3 + 3c2X = c3(α3 − α−3) .

This leads to the following. Suppose we want to solve

x3 + ax = y

for x.

• Suppose a ≥ 0. We first solve

3c2 = a, (•) c =
√

a/3 .

Then we find α such that

y = c3 (α3 − α−3) .

If β = α3 this reads

y = c3 (β − β−1)



Planetary motion and Kepler’s equation 8

or
β − β−1 = y/c3

β2 − 1 = (y/c3)β

= 2zβ where (•) z = y/2c3

(β − z)2 = 1 + z2

(•) β = z +
√

1 + z2

and then write

(•) α = β1/3 .

Finally we get the unique solution
(•) x = c (α − α−1) .

•Now suppose a < 0. We first solve

−3c2 = a, (•) c =
√

|a|/3 .

Then we find α such that

y = c3 (α3 + α−3) .

If β = α3 this reads

y = c3 (β + β−1)

or
β + β−1 = y/c3

β2 + 1 = (y/c3)β

= 2zβ where (•) z = y/2c3

(β + z)2 = z2 − 1

(•) β = z +
√

z2 − 1

There are now essentially three different possibilities to be dealt with. (a) If |z| > 1, then we just take the

positive square root to get the real number β. We write

(•) α = β1/3 .

and finally get the unique solution

(•) x = c (α + α−1) .

(b) If |z| = 1, we have two roots x = ±c.

(c) Finally, suppose |z| < 1. In this case β is a complex number of absolute value 1, hence of the form β = eiθ.

We may as well start immediately with trigonometry for a solution. We have for any θ

cos 3θ = 4 cos3 θ − 3 cos θ

or

2c3 cos 3θ = T 3 − 3c2 T where T = 2c cos θ .

So we must solve

2c3 cos 3θ = y

for θ. This is possible because
∣

∣

∣

y

2c3

∣

∣

∣
< 1 .

There are three possible values of θ. For each one we get the root x = 2c cos θ. They are sorted according to

whether cos θ lies in (−1,−c), (−c, c), or (c, 1). In our case, looking for a solution of Kepler’s equation, we
want the middle one.
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6. Newton’s method

The most efficient way to solve

y = x − e sin(x)

is by Newton’s method. Here

xn+1 = xn + hn

where

hn = − f(xn)

f ′(xn)

with
f(x) = x − y − e sin(x), f ′(x) = 1 − e cos(x) .

At the next step we can calculate

f(xn+1) = f(xn + hn) .

Here we have

f(x + h) = (x + h) − y − e sin(x + h)

= x − y + h − e sin(x) cos(h) − e cos(x) sin(h)

=
(

x − y − e sin(x)
)

+ h + e sin(x)
(

1 − cos(h)
)

− e cos(x) sin(h)

= f(x) + h + e sin(x)
(

1 − cos(h)
)

− e cos(x) sin(h)

and the significance of this formula is that the incremental term

h + e sin(x)
(

1 − cos(h)
)

− e cos(x) sin(h)

is small if h is. This eliminates some cancellation problems in practical calculations, and at least reduces these

to the relatively simple problem of computing 1− cosh for small h, which can be well estimated by a Taylor
series.

7. Angular velocity

One natural question: what is the angular velocity of an orbiting body at time t? This is easily reduced to the

case where time τ progresses from 0 to 2π in one revolution,which I’ll called the normalized parametrization.

We start with a well known result in calculus:

7.1. Lemma. If
t 7−→ (x(t), y(t))

is any parametrized path in R
2, then

arg′(t) =
−yx′(t) + xy′(t)

x2 + y2
.

For example, if the path is a circle of radius r given the parametrization (r cos(t), r sin(t)) then arg′(t) = 1.

This implies immediately:

7.2. Lemma. In an elliptical orbit given the normalized parametrization

arg′(τ) = E′ ·ab · 1 − e cos(E)

r2
(r2 = a2(cos(E) − e)2 + b2 sin2(E) .
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Proof. We have

x = a cos(E) − f

x′ = −a sin(E) ·E′

y = b sin(E)

y′ = b cos(E) ·E′

−yx′ + xy′ = E′ · ((−b sin(E))(−a sin(E)) + (a cos(E) − f)(b cos(E))

= E′(ab sin2(E) + ab cos2(E) − bf cos(E))

= E′ ·b · (a − f cos(E))

= E′ ·ab · (1 − e cos(E)) .

In our case E(τ) is given implicitly by the equation

τ = E − e sin(E) .

This tells us that

E′(τ) =
1

1 − e cos(E)
,

which we can plug into the formula of Lemma 7.2. This gives us finally

(7.3) α′(τ) =
ab

r2
.

In the language of physics, this is a formula for the (constant) angular velocity of the system.

For example, if a = 1, e = 0.6 here is the graph of arg′(τ):

τ = 0 π 2π

y = α′(τ) e = 0.6
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8. A curious application

The Earth rotates around the Sun in an orbit of ellipticity 0.0167. As it goes around it rotates on its own axis,
essentially at a constant rate–at a constant rate, that is to say, relative to the (relatively) fixed stars. The length

of time it takes to do this is a sidereal day. One earth orbit is known to take T = 366.2422 sidereal days.

But for those living on the planet, a day—a solar day—is the length of time from one noon time to the next.

Now at any point on Earth, the meridian is an imaginary arc running overhead in the sky from south to

north, and noon is when the Sun crosses this arc—when it makes a meridian transit. Because the Earth is
rotating around the Sun as it is rotating around its axis, the number of solar days in a year is exactly one less

than the number of sidereal days, or T − 1 = 365.2422. A solar day is a bit longer than a sidereal day. To be

precise, an average solar day is equal to T/(T − 1) sidereal days.

But in fact the length of a true solar day varies during the year. The principal reason for this is that the orbital

speed of every planet varies, as we have seen, in its orbit—it goes faster at perihelion, slower at aphelion. I
want to investigate here the effect of orbital speed on the length of solar day.

To do this, in order to make things slightly simpler, I’ll look at an artificial Earth, one whose equatorial plane
is the same as the ecliptic. There is a basic technique that tells how to compute the length of solar days, which

I’ll explain in a moment.

But in order to make things even simpler, I’ll make things slightly more abstract. Suppose we are looking at

some ‘planet’ that moves in a Kepler orbit, rotating at a sidereal rate of θ radians per unit time. I’ll assume

that both the planet in its orbit and the planet around its axis rotate counterclockwise. In the following
diagram, the position is plotted at equal time intervals. The planet undergoes six sidereal rotations in the

course of traversing the orbit. The numbers keep track of the elapsed number of sidereal days from the start
at perihelion.

0

0.2

0.4

0.6

0.8
11.2

1.4
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4
4.6

4.8 5
5.2

5.4

5.6

5.8

Suppose that at time t0 the focus (i.e. ‘sun’) of the orbit is directly overhead at a particular location on the
body. An apparent day is the length of time ∆t = t1 − t0 it takes for that to occur again for the first time.
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In the diagram above, ’noons’ (i.e. aka ‘meridian transits’) occur when the little radius points towards the

focus, and there are (as there should be) five apparent days in the cycle, as you can surmise from the diagram.

But they do not occur at regular intervals—the length of apparent days is not constant.

How can we find these times of apparent noon? This reduces to a slightly more precise question: Given a
particular time, how can we find the next apparent noon time?

This presupposes that we know how to calculate the location of the overhead meridian at that given time.

There is a very simple method that the diagram above suggests. The idea is illustrated more exactly in the
following:

0

0.2

0.4

0.6

0.8
11.2

1.4
1.6

What this shows is that the first ‘noon’ occurs between sidereal times 1.2 and 1.4. A closer look suggests a

more exact guess at a time around 2/3 of the way from 1.2 to 1.4, or about t = 1.33. We can now check how

things are at this time, with a different mode of illustration:

0

1.2
1.41.33

So now we see that this first noon occurs between times 1.33 and 1.4, about 1/10 of the way along. So we

can repeat with a new guess between 1.33 and 1.40, say roughly 1.34 . . .

But now let me set up the problemmore precisely. Fix a ray in the orbital plane, that running from the planet

at perihelion towards the Sun. Given this base line, associate to every time t two angles. One is the direction
α(t) of the Sun with respect to that ray. This is the same as the direction of the planet as seen from the Sun,

the argument of the planet’s position.
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The other is the angle θ(t) between this ray and the meridian at time t. If θ0 is the value of this angle at time

t = 0, then θ(t) = θ0 + ωt, in which ω is the rate of rotation of the planet around its axis. This is the same as

2πn, if there are n sidereal days in a year. (This n need not be an integer.) I’ll take both these angles to lie in
the interval [0, 2π).

to Sun

α
θ

diurnal rotation

I’ll assume time normalized, so that one orbit takes 2π units of time. Suppose we start at time t = 0, with

the planet at perihelion. As t runs from 0 to 2π the planet rotates, say n times, so that θ runs through an
accumulated angle of 2πn. At time t

θ(t) = θ0 + nt ( modulo 2π) .

In the example above n = 6, while for Earth n = 366.2422. In the same period, α(t) runs from 0 to 2π. Here

are the relevant graphs for the example above:

t = 0 t = 2π
0

2π

y = α(t):
y = θ(t):

e = 0.4

The graph of α is straightforward to plot from Kepler’s equation. The graph of θ is made up of a number of

line segments, each of slope n starting at points θ0 + 2πk/n on the taxis with 0 ≤ k ≤ n. More explicitly:

θ(t) = (θ0 + 2πk/n) + n(t − 2πk/n) (2πk/n ≤ t < 2π(k + 1)/n, 0 ≤ k ≤ n) .

The following figure suggests how to locate the moments of noon time:
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t = 0 t = 2π
0

2π

y = α(t):
y = θ(t):

e = 0.4, θ0 = 0.0

First locate the intersections of the tangent line to the graph ofα at themidpoint (π, π)with the line segments

makingup the graphof θ. The slope of this tangent isab/(a+f)2, and its equation is y = π+ab(t−π)/(a+f)2.
To the left of the midpoint, the noon marks will be below these intersections, and to the right they will be

above. The method of secants will locate them easily.

t = 0 t = 2π
0

2π

y = α(t):
y = θ(t):

e = 0.9, θ0 = 0.4

There will generally be either n − 1 or n noons in one orbital revolution. However, there will be sometimes
n + 1. When the derivative of α near 0 is greater than n—which happens when e is large—and θ0 is small

enough, there will be an extra noon close to perihelion to find. This happens in the figure above.


