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The RobinsonSchensted correspondence is a bijection between permutations in Sn and pairs of Young
tableaux of the same shape and size n. What properties of a permutation can be read off from the corre

sponding tableaux?

It is largely expository in nature, but how I treat some aspects of Knuth equivalence in the last section is

apparently somewhat new.
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1. The Schensted process

The Schensted process starts with an input sequence σ of distinct positive integers and produces two tableaux
Pσ and Qσ. It does this by applying a basic insertion step to each item in the input sequence.

The process is most efficiently described in terms of recursion. If P is a tableau, let P1 be its first row and
P>1 the tableau made up of subsequent rows. I write P = P1/P>1. If σ is any array, I write σ1 for the first

element and σ>1 for the remainder, and write σ = σ1 · σ>1. I write [ . . . ] for a single row of a tableau.

There is one basic routine insert (P, σ) in which P is a Young tableau and σ a sequence of distinct positive
integers. It produces a new tableau.

insert (P, σ):
• If σ = ∅, return P .

• If σ 6= ∅ and P = ∅, set P = [σ1] and return insert (P, σ>1).
• Suppose that σ has one element and that P is not empty. There are two cases: (a) The element σ1 is

larger than all the elements in P1. Then set P ′
1 = P1 · σ1 and return P ′

1/P>1. (b) There exists an element

of P1 larger than σ1, and in fact a first one (reading left to right). Suppose it is s. Let P ′
1 be the result of

replacing s by σ1, and set P ′
>1 = insert (P>1, s). Return P ′

1/P ′
>1.

• If σ has more than one element, then set P = insert (P, (σ1)) and return insert (P, σ>1).

The original process then produces insert (∅, σ).

A slightly more complicated version produces a second tableau Qσ of the same shape. This is normally
constructed at the same time as P—when the mth item is taken from input, the integer m is placed at the

site on the second tableau corresponding to the newly occupied site on the first. There is also a remarkable

well known duality:

1.1. Lemma. If τ = σ−1, then the matrix Qσ is the same as as the tableau Pτ .

For example, with the input sequence (4, 2, 1, 3) we get (with modified entries marked):
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Step P Q Remaining input

4 2 1 3

1 2 1 34 1

2 1 32
4

1
2

3 31
2
4

1
2
3

4 1 3
2
4

1 4
2
3

2. Descents and tableaux

Items in Pσ are moved around as the input is read (whereas those in Qσ remain where they are placed
initially). How does the final placement in Pσ of an item in the input sequence σ relate to its initial one?

2.1. Proposition. The final position of an item in the tableau Pσ is either the same as its initial position, or
lies below and weakly to its left.

Proof. Suppose i bumps j at some position in Pσ . Consider the position just below that one. Either it is
empty, or holds k > j. Either way, j will be inserted weakly to its left. This continues, row after row. (In

effect, the proof is by induction on the number of rows.)

This is illustrated by the figure below.

In the rest of this section I want to explain the possible relative positions of the numbers i, i + 1 in the
Schensted tableau Pσ produced by a permutation σ.

I call attention first of all to some very general restrictions. In the figure below, it is shown that by the very
definition of a strict tableau that there are certain geometrical conditions on entries.

i

> i

< i

In considering how i and i + 1 are placed, there is the further restriction that there are no integers between i
and i + 1. In the figure on the left below the number i has been placed, and the illegal positions for i + 1 are

the shaded squares. In that on the right, it is i + 1 whose position is fixed, and the illegal positions for i are
shaded.
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i

< i

> i+1

i+1

< i

> i+1

Speaking roughly, we can say that i + 1 must lie either northeast or southwest of i. There is a very simple

criterion for which of these occurs. Every tableau T defines a linear order on its entries—a variation of

lexicographic. I say that i ≺T j if either (a) i lies in a row below that of j or (b) it lies in the same row but left
of it. (This is a matter only of location, not value.)

2.2. Theorem. Suppose σ to be in Sn. If T = Pσ then i ≺T i + 1 if and only if i comes before i + 1 in the
array (σi).

Proof. • Suppose that i comes before i + 1 in the input sequence. It must be shown (i) that when i + 1 is first
inserted in a tableau that already contains i it will be placed either in a row above i, or in the same row but

to its right; and (ii) that subsequent insertions will not change the fact that i ≺T i + 1.

Claim (i) is immediate, since the initial insertion of i+1 will place it in the first row of the tableau. As for (ii),

subsequent insertions will never bounce i + 1 from its position as long as i is just to its left, since there are

no integers between i and i + 1. Otherwise, i + 1 might be bounced, but then it will be inserted in a lower
tableau that already contains i, in which case we are back facing (i).

• Suppose that i + 1 comes before i in the input sequence. It suffices to show that when i is inserted into a
tableau containing i + 1 it will be placed in a row strictly above i + 1, and that subsequent insertions will not

change this property.

Suppose i is inserted into a tableau containing i+1. Either it will be inserted into a row containing i+1, or it
will be placed in a row above i + 1. In the first case it will bounce i + 1, which will wind up in a row below i.

Now consider any subsequent insertion into a tableau in which i is placed in a row above i + 1. Such an
insertion may bounce i, in which case it will be inserted into the row just below. We can invoke induction on

the number of rows of the tableau.

Let si be the swap of i, i + 1. Recall that the length of a permutation is the number of the inversions in its

array—the number of pairs (i, j) with σ(i) < σ(j). Recall also:

Multiplying σ on the left by si swaps the symbols i, i + 1 in the array of σ, whereas multiplying on
the right swaps the entries in the locations i, i + 1.

Thus ℓ(siσ) = ℓ(σ) + 1 if i appears before i + 1 in the array of σ, and ℓ(siσ) = ℓ(σ)− 1 if it appears after it.

2.3. Corollary. If T = Pσ , then ℓ(siσ) > ℓ(σ) if and only if i ≺T i + 1.

The si such that ℓ(siσ) < ℓ(σ)make up the left descent set of σ. (This is a well defined notion in any Coxeter

group.) In other words, we can read off the left descent set of σ from the tableau Pσ . We can read off the

right descent set of σ, which is the same as the left descent set of σ−1, from Qσ.

Remark. These results suggest a natural question. Since there are no integers between i and i + 1, swapping

them in a tableau will produce a tableau unless i and i + 1 are next to each other in the same row or
column. Suppose we do this in Qσ but leave Pσ fixed. What is the permutation with this new tableau pair?
Experiments leadme to think there is no simple answer to this question in general, but later onwe shall see an
important case in which there is one. Sometimes, but not always, it is σsi, which amounts to an interchange

of i and i+1 in the array of σ. The problem is that there are only special circumstances in which the tableaux

of σsi have the same shape as those of σ. What are those circumstances?
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3. Knuth equivalence

Under what circumstances do two sequences (xi) and (yi) give rise to the same P ?

Some simple examples are instructive. Two possible tableau pairs with equal P are:

3
21

3
21

3
21

2
31

The first comes from insertion of 132, the second from 312. Similarly, 213 and 231 have the same left tableau.

These are the basic cases, in a precise sense. Suppose that a < b < c are three integers. The reasoning above
shows that if x = acb and y = cab then Px = Py . Similarly for bca and bac. Following Knuth, I define an

equivalence to be that generated by the relations

acb ≡κ cab

bac ≡κ bca .

In less formal terms, whenever an item to left or right of a neighbouring pair fits in between them, we may

swap the elements of this pair to obtain equivalent sequences. This can be extended to an equivalence relation

on arbitrary arrays: I’ll call x and y Knuth-equivalent and write x ≡κ y if x and y can be connected by a chain
of such elementary exchanges. For example, we have a sequence of exchanges

[6, 3, 1, 7 , 2̇, 5, 8, 4]

[6, 3, 7, 1, 2, 5̇, 8, 4]

[6, 3, 7, 1, 2, 5, 4̇, 8]

[6, 3, 7, 1, 5, 2̇, 4, 8]

[6, 3, 7 , 5̇, 1, 2, 4, 8]

[6, 7, 3, 5, 1, 2, 4, 8]

An easy computation will show that both (6, 3, 1, 7, 2, 5, 8, 4) and (6, 7, 3, 5, 1, 2, 4, 8) are associated by the

Schensted process to the tableau

(3.1)
1 2 4 8
3 5
6 7

.

The sequence of transformations above therefore illustrates one implication of the following basic result,

originally from §6 of [Knuth:1970].

3.2. Theorem. We have x ≡κ y if and only if Px = Py .

The proof will be long, and in several steps.

Step 1. To everyP corresponds its canonical sequence pP . It is the sequence obtainedby scanning the rowsof

P bottom to top, left to right. For example, to the tableau (3.1) corresponds the sequence [6, 7, 3, 5, 1, 2, 4, 8].

3.3. Lemma. If p is the canonical sequence of the tableau P , then Pp = P .

Proof. By induction on the number of rows in the tableau. The Lemma is trivial for a tableau of one row.

Let si be the sequence obtained from the ith row of T by reading it left to right. If T has n rows, the canonical

sequence of T is then the concatenation snsn−1 . . . s1. By induction, we may assume the Lemma to be true

for the tail of T , whose canonical sequence is sn . . . s2. Applying recursion, it suffices to show that inserting
s1 into the tail of T changes its first row to the first row of T , with extrusion s2. This is straightforward.
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Step 2. Next I’ll prove the easier half of the Theorem:

(a) If Px = Py then x ≡κ y.

Proof. This will involve a new interpretation of Schensted’s insertion algorithm, which itself amounts to a
basic connection between Knuth equivalence and Schensted’s algorithm.

To start the proof, let P = Px. It suffices to prove the claim in the special case that y is the canonical sequence
pP or, in other words, to prove that x can be connected by a chain of elementary exchanges to pP .

The basic point is this:

Schensted’s algorithm amounts to a succession of elementary exchanges.

If x is any array, let NF(x) (for normal form of x) be the canonical sequence of Px. There are three important
facts relating the normal form to Schensted row insertion.

3.4. Lemma. Suppose that insertion of the array x into an empty row produces the row r and extrudes the
sequence z.

(a) The normal form NF(r) is just r;
(b) the normal form NF(x) is equal to NF(z) ·r;
(c) the array x is Knuthequivalent to z ·r.

Here x ·y is the concatenation of the arrays x and y.

Proof. The first two of these is an immediate consequence of definitions.

The last amounts to the new interpretation of row insertion. Suppose we are inserting a single item c into a

row
x1 . . . xm .

There are two possibilities for how insertion proceeds. One is that xm < c, in which case we tack c onto the

end, and bounce nothing. In the other, we find i such that xi−1 < c < xi and the sequence x = (xj) changes
to

x1 . . . xi−1cxi+1 . . . xm ,

and we bounce xi. In this second case, I claim that the array

xi ·x1 . . . c . . . xm

is Knuthequivalent to x ·c.

To verify this, first of all set j = m, and as long as c < xj−1 < xj we can change xj−1xjc to xj−1cxj , and
decrement j. (Here and elsewhere I adopt the harmless convention that x−1 = 0.)

At the end of this phase we are looking at
xi−1xic

with xi−1 < c < xi. We leave c fixed in place (it has in effect just bounced xi) and now proceed similarly to
shift xi all the way to the left. This proves the claim, and by induction on the length of z proves (b) above.

But if we combine (a) and (b) with an induction hypothesis on the length of x for the Proposition, we get

x ≡κ z ·r ≡κ NF(z) ·r = NF(x) .

For example, if we insert 4 into (1, 2, 5, 8, 9) the 4 will bounce the 5. First we insert 4:

1 2 5 8 9 ·4

1 2 5 8 9 4

1 2 5 8 4 9

1 2 5 4 8 9

and then bounce 5:
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1 2 5 4 8 9

1 5 2 4 8 9

5 ·1 2 4 8 9 .

Step 3. Now the converse.

(b) If x is a sequence (pi). and y ≡κ x, then Py = Px.

Proof. The proof I’ll give here is straightforward if unilluminating. In the next section I’ll give an alternate
proof that I like better, but there is some virtue in the direct route outlined here, which amounts to the one

hinted at in the answer to exercise 5.1.4.5 of [Knuth:1975]. A rather different proof of the Lemma can be

found in Chapter 3 of [Fulton:1997].

It must be shown that if x and y are related by an elementary interchange then Px = Py . Applying an

induction argument, it suffices to show that inserting x and y into a single row produce (a) the same new
row as well as (b) extrusions that are Knuthequivalent. It even suffices to assume that x and y are one of the

Knuth triples acb etc.. The proof goes according to cases. There are several of these, and laying them all out

is somewhat tedious, if automatic.

I shall track the insertions of the triples acb, cab, bac, bca into the row x1 . . . xn. I shall allow n = 0 by

following the harmless convention that x0 = 0. I shall also use a trick suggested somewhere by Knuth—I
introduce several very, very large integers and assume an arbitrary number of them at the end of every row.

If I then perform the Schensted process, all of these will get placed again at the ends of rows. They can then
finally be removed, leaving exactly the same tableau we would have had without using them. The point of

this is to shrink the number of cases, since now every insertion will bounce something.

Define three integers i, j, k by the conditions

xi−1 < a < xi, xj−1 < b < xj , xk−1 < c < xk .

The different cases we have to consider are distinguished by how i, j, k relate to each other. Since a < b < c
we know at least that i ≤ j ≤ k.

I shall now look at inputs acb, cab.

CASE k = i
Here xi−1 < a < b < c < xi < xi+1.

Extrusion Row Input
x1 . . . xn acb

xi . . . axi+1 . . . cb
xixi+1 . . . ac . . . b
xixi+1c . . . ab . . .

x1 . . . xn cab
xi . . . cxi+1 ab
xic . . . axi+1 . . . b
xicxi+1 . . . ab . . .

Since c < xi < xi+1 the extruded triples are equivalent.

CASE k = i + 1
Here xi−1 < a < xi < c < xi+1 .

x1 . . . xn acb
xi . . . axi+1 . . . cb
xixi+1 . . . ac . . . b
xixi+1c . . . ab . . .
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x1 . . . xn cab
xi+1 . . . xic ab
xi+1xi . . . ac . . . b
xi+1xic . . . ab . . .

Again since xi < c < xi+1 the extruded triples are equivalent.

CASE k ≥ i + 2
Here xi−1 < a < xi < xi+1 ≤ xk−1 < c < xk .

x1 . . . xn acb
xi . . . axi+1 . . . cb
xixk . . . axi+1 ≤ xk−1c . . . b

x1 . . . xn cab
xk . . . xi . . . cxk+1 ab
xkxi . . . axi+1 ≤ xk−1c . . . b

But now b might bounce anything, call it y, from xi+1 through c. Since in all these cases xi < y < xk, the
extrusions are again equivalent.

We are through with inputs acb, cab. I’ll leave the pair bac, bca as an exercise.
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I am now going to rephrase Theorem 3.2. Let Xn be the set of all injective maps from [1, n] to the positive
integers. The group Sn acts on it on the right—the action is determined by the condition that si swaps the

items in positions i and i + 1. The space Xn becomes a principal homogeneous space for this action.

Let Si,i+1 be the subgroup of Sn generated by si and si+1. It is isomorphic to S3. Let [Xn/Si,i+1] be the

set of arrays x with xi < xi+1 < xi+2.

3.5. Lemma. Suppose i ≤ n − 2. Every element x in Xn can be expressed uniquely as x = y · s, with y in
[Xn/Si,i+1] and s in Si,i+1.

Proof. Since multiplication on the right by elements of Si,i+1 permutes (xi, xi+1, xi+2).

There is hence a dictionary between subsequences of neighbouring a, b, c with a < b < c and elements of

Si,i+1.

(3.6)

pattern in xi,i+1,i+2 factor s in Si,i+1

abc 1

acb si+1

cab sisi+1

bac si

bca si+1si

cba sisi+1si = si+1sisi+1 .

The point for us now is that Knuth exchanges in positions i through i + 2 can be interpreted in terms of these
factorizations. I’ll say that an array x is eligible for a Knuth exchange in positions [i, i + 2] if and only if the

factor s in Si,i+1 lies in {si, si+1, sisi+1, si+1si}. Or, conversely, if it is not either 1 or sisi+1si.

This can also be interpreted in terms of the following graph of Bruhat order of Si,i+1, in which Knuth
equivalent permutations are linked by doubled edges. I call them twins . The identity and the involution at

the top do not have twins.

(3.7)

sisi+1si = si+1sisi+1

1

sisi+1

sisi+1si+1si

.

Let DR(i, i + 1) be the subset of σ in Sn whose right factor in Si,i+1 is eligible. For each eligible array x, let
TW(x) be its twin. Ther map x 7→ TW(x) is an involution of DR(i, i + 1).

The eligible arrays in X can also be characterized by the requirement that

{si, si+1} ∩Rx

be a singleton.

3.8. Proposition. Let x = yw with y in [Xn/Si,i+1] and s in Si,i+1. A Knuth exchange at sites i to i + 2
replaces s by its twin, if it exists.
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To summarize, there is a right Knuth exchange x 7→ x|i,i+1 defined on a certain subset DR(i, i + 1) of W for
every 1 ≤ i ≤ n−2. Suppose i to be in this range, and suppose x to be a permutationwith xi < xi+1 < xi+2,

Then the Knuth exchange swaps

xsi ←→ xsisi+1

xsi+1 ←→ xsi+1si .

One can also define a left Knuth exchange x 7→ i,i+1|x with domain DL(i, i + 1), those x for which

{si, si+1} ∩ Lx

is a singleton.

4. More about Knuth equivalence

In this section I’ll analyze Knuth equivalence more closely, offering among other things a second proof of
Theorem 3.2.

Thematerial in this section seems to bewell known, but details appeared only recently. There is an interesting
discussion of the history of this topic in mathoverflow at

http://mathoverflow.net/questions/139432/

has-reifegerstes-theorem-on-rsk-and-knuth-relations-received-a-slick-proof-by-n

There is also a separate thread in the literature more directly related to KazhdanLusztig cells. The earliest
reference I am aware of is [BarbaschVogan:1982] (p. 172), although their account is a bit vague about precise

effects. Later accounts include [Ariki:2000] and [Du:2005], but the relevant discussions there are rather

sketchy.

Theorem 3.2 asserts that x and y are permutations and if y = x|i,i+1 then Px = Py (as I’ll reprove in a little

while). Theorem 2.2 applied to x−1, in conjunction with the well known symmetry, tells us that we can
determine from Qx alone whether x is in DR(i, i + 1). I’ll summarize here what we know.

As I have mentioned earlier, each tableau T determines an order on its entries, in terms of their locations. We
have i ≺T j if either (1) i lies in a row below j or (2) i lies in the same row as j but to its left. Thus Theorem

2.2 says that if T = Px then i comes before i + 1 in the array (xj) if and only if i ≺T i + 1. If x is replaced by

x−1 then P is replaced by Q. Translating this accordingly:

4.1. Proposition. Suppose 1 ≤ i ≤ n− 2, x in Sn, T = Qx. Then x lies in DR(i, i + 1) if and only if one of
the following is valid:

1(a) i + 1 ≺T i ≺T i + 2;
1(b) i + 2 ≺T i ≺T i + 1;
2(a) i ≺T i + 2 ≺T i + 1;
2(b) i + 1 ≺T i + 2 ≺T i.

These are just the different cases required by Theorem 2.2. For example, xsi < x, xsi+1 > x requires

i + 1 ≺T i, i + 2 .

Since ≺T is a linear order, we must then have either i ≺T i + 2 or i + 2 ≺T i. This gives cases 1(a) and 2(b).

These cases are illustrated in the following diagrams.



Knuth equivalence 10

i

i+ 1
(i+ 2)

i+ 2
(i+ 1)

i+2

i
(i + 1)

i + 1
(i)

The next natural question is, how is Qy related to Qx? It should not surprise us that Qx and Qy differ only
in the locations of some of the indices i, i + 1, i + 2.

4.2. Theorem. Suppose 1 ≤ i ≤ n− 2, x in Sn, and suppose x is in DR(i, i + 1). In these circumstances, let
y = x|i,i+1. Then Px = Py , and the tableau Qy is derived from Qx by swapping the two extreme items in
the relevant list of Proposition 4.1.

Thus 1(a) and 1(b) are swapped, as are 2(a) and 2(b).

Before the proof, I’ll look at some examples. Suppose the input sequence is x = [4, 1, 6, 2, 5, 3]. In the

following list, b is ḃ, a and c in bold face.

[4, 1, 6, 2, 5, 3]

1 3 5
2 4
6

[4̇, 6, 1, 2, 5, 3]

1 2 5
3 4
6

[4, 6, 1, 2̇, 5, 3]

1 2 5
3 4
6

[4, 1, 2, 6, 5̇, 3]

1 3 4
2 5
6

[4, 1, 6, 5, 2, 3̇]

1 3 6
2 4
5

There is something slightly subtle about this result—the swap in Qx is not necessarily the same as the swap

in x. If x contains bac at positions i, i+1, i+2with a < b < c, and y replaces this by bca, then in all cases Qy

is obtained from Qx by swapping i + 1 and i + 2. But if x contains acb at the same positions and y replaces
this by cab, then it can happen that either i and i + 1 or i + 1 and i + 2 are swapped. These phenomena can

be seen in the figures above.

What is going on reflects a fundamental difference between configurations of type (1), in which i is in the

middle, and those of type (2), in which i + 2 is in the middle. The first are stable, in the sense that successive
insertions to thos eof i, i + 1, i + 2 will not change the type of the configuration. But the second can change

(necessarily permanently) to a type (1) configuration. This happens when either i is bounced and reinserted

into a row in which i + 1, i + 2 occur, in which case i + 1 is bounced, or i + 1 is bounced and reinserted into
a row in which i, i + 2 occur, in which case i + 2 is bounced.
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Proof of Theorem 4.2. Notation will be simpler if I interpret the result as an assertion about the inverse of
x. Lemma 1.1 tells us that if y = x−1 then Py = Qx and Qy = Px. This allows us an easy translation. For

example, if the Knuth triple acb occurs in positions i, i + 1, i + 2 of x then

x−1:

{

a 7→ i
c 7→ i + 1
b 7→ i + 2 .

In the Schensted process for x−1 the indices a, b, c are met in that order, so in x we first encounter i, then
i + 2, and then i + 1.

Replacing x by x−1, we now have two things to prove.

(1) Suppose x to contain in order i + 1, i, i + 2 while y differs from x only in swapping i + 2 and i + 1. We

wish to show that Qx = Qy and that Py is obtained from Px by swapping i + 1 and i + 2.

(2) Suppose x to contain in order i, i + 2, i + 1 while y differs from x only in swapping i and i + 1. The first
thing we wish to show is that Qx = Qy. As for Px and Py , I apply Lemma 1.1, applied to x. Depending on
whether (1) or case (2) of of that Proposition occurs, we wish to show that either i + 1 and i + 2 or i and i + 1
are swapped.

The basic idea in both cases is the same. Let x≤m be the sequence of xi for i ≤ m, and similarly for y≤m.

Also, let Px,n be the tableau corresponding to x≤n, and similarly Py,n, Qx,n, Qy,n. By convention, any of

these is an empty tableau for n = 0.

First, case (1). Suppose i+1, i, and i+2 to occur in x at positions k, ℓ, m, so y holds i+2, i, and i+1 at those

same positions. We read in x and y item by item. I claim that as we do this Qx,n is always equal to Qy,n, and
that Px,n differs from Py,n only in that where Px,n holds i + 1 (resp. i + 2) and Py,n holds i + 2 (resp. i + 1).

These claims are certainly true for n < k. What happens for n = k? For x we insert i + 1 into the top row
of Px,k−1 and for y we insert i + 2 into the top row of Py,k−1. But these top rows are the same, say r, and
rj < i + 1 < rj+1 if and only if rj < i + 2 < rj+1 since r does not intersect [i, i + 2]. Therefore i + 1 is

inserted in the top row of Px,k−1 at the same location as i + 2 is inserted in that of Py,k−1, and the same item
is bounced into the common lower rows of both. Thus Px,k differs from Py,k only in that i + 2 is located in

Py,k where i + 1 is located in Px,k and Qx,k = Qy,k. Since xn = yn for n in [k + 1, ℓ− 1], this remains true
up through n = ℓ− 1.

This illustrates the basic principle: inserting j into a tableau that does not contain j + 1 has the same effect

as inserting j + 1 into one that does not contain j.

What happens at n = ℓ? Well, i will bounce i + 1 from Px,ℓ−1 if and only if it bounces i + 2 from Py,ℓ−1, and

it will bounce it to the same location. So our claim remains valid for n = ℓ. In effect, i + 1 and i + 2 behave
exactly the same as input, and Theorem 2.2 may be applied to both. This guarantees that our claim remains

valid for n < m.

What happens for n = m? Well, i is located NE of i + 1 in Px,m−1 and it is located NE of i + 2 in Py,m−1,

so inserting i + 1 in Py,m−1 has exactly the same effect as inserting i + 2 into Px,m−1, and the claim remains

valid for n = m. The remaining input does not affect this.

Case (2) is essentially the same, except that in the final insertion of n = m something new can happen, if the

first row of Px,m−1 contains i, i + 2. In this case, i + 1 bumps i + 2, which is then inserted in a lower tableau,
leaving i, i + 1 in the first row. What happens for y? Since the claim is valid for n = m− 1, the first row of y
contains i + 1, i + 2, and i bumps i + 1, leaving i, i + 2 in the first row. We are now back in case (1).

There is an important consequence—one can tell just from the tableau Qx what right Knuth transforms are

possible, and how to determine Qy if y is such a transform. Equivalently, one can tell from Px what left

Knuth transforms are possible, and how to effect them.
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If c is a chain of pairs (si, si+1), we can define the domainDL(c) as well as the operator x 7→ c|x from DL(c)
to W by induction—if c is the juxtaposition of (i, i + 1) and d then DL(c) is the subset of DL(i, i + 1) such
that i,i+1|x lies in DL(d), and then c|x = i,i+1|d|x.

Define≡r to mean right Knuthequivalence.

4.3. Corollary. If x and y are two permutations such that x ≡r y, then x is in DL(c) if and only if y is, and
then c|x ≡r

c|y.

This is relevant in understanding that for Sn the Knuth equivalence classes coincide with the cells defined
by [KazhdanLusztig:1979].
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