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Suppose g to be a complex Lie algebra with basis (xi). Then

[xi, xj ] =
∑

k
cki,jxk

for some numbers cki,j , called structure constants.

A standard technique for computing structure constants of semisimple Lie algebras, which has been used

in the computer program MAGMA, is described well by [CohenMurrayTaylor:2005]. It relies on the additive

structure of roots. Another method, that works only for simplylaced root systems and relies on associated
affine root systems, is explained in [FrenkelKac:1980]. A version of this for the remaining root systems can

be found in [Rylands:2000]. It uses the identification of these others as folded quotients of simply laced ones.

In [Casselman:2015b] I explained yet another way to compute these structure constants by implementing
an idea originally found in [Tits:1966a]. Tits’ idea was to replace the additive structure by features of the

normalizer of a maximal torus. This introduced some mathematical structure to the problem of computing

structure constants that was missing in the standard approach. In practice, computation based on this
method went fairly rapidly and seemed at least roughly comparable in efficiency to reported runs of the

standard computation. There were, however, a number of rather ugly and presumably inefficient formulas

involved in this new algorithm. A while ago, it was suggested by Robert Kottwitz (in May of 2014, with a
supplementary remark later that year), that an observation of his about choosing bases of semisimple Lie

algebras might make it possible to bypass the nastiest parts in a more elegant manner. In this paper, with
Kottwitz’ permission, I’ll explain how this goes.

Kottwitz’ observations can be briefly summarized. Suppose

G = a simple, connected, simply connected, complex group

g = Lie algebra of G

B = Borel subgroup

T = maximal torus in B

Σ = associated root system

∆ = associated simple roots

W= Weyl group.

Because G is simply connected, the coroot lattice X∗(T ) may be identified with the lattice spanned by the
simple coroots α∨.

The root spaces gγ all have dimension one. Fix for eachα in∆ an element eα 6= 0 in gα. The triple (B, T, {eα})
make up a frame for G. The set of all frames is a principal homogeneous space for the adjoint quotient of
G. (This notion originated in work of French mathematicians. In French the term is ‘épinglage’, which

some translate literally into the noun ‘pinning’. But ‘frame’ is the term adopted in the English translation of

Bourbaki’s treatise on Lie algebras.)

As I’ll recall later, Chevalley has defined integral structures on g and G. The map

{±1}∆ −→ T, (cα) 7−→
∏

α∈∆

α∨(cα)
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identifies T (Z) with a twotorsion group. If N (Z) is the group of integral points in the normalizer N =
NG(T ), it fits into a well understood extension

1 −→ T (Z) −→ N (Z) −→ W −→ 1 .

[Tits:1966b] defined a certain convenient sectionw 7→ w
•

of the last quotient map, and described this extension

precisely enough to enable computations in it. This extension certainly does not generally split (as it does,
perhaps deceptively, for GLn). But now let VZ be the direct sum of nontrivial root spaces in gZ. Let S(Z)
be the subgroup of transformations in GL(VZ) that act as ±1 on each root space. It may be identified with
Hom(Σ,±1) = (−1)Σ. The adjoint action of T defines a canonical homomorphism from T (Z) toS(Z): α∨(x)

goes to (x〈γ,α∨〉)γ∈Σ. The kernel is ZG. The homomorphism from T to S gives rise to an extension

1 −→ S(Z) = {±1}Σ −→ Next(Z) −→ W −→ 1 .

Although it does not act as automorphisms of g, the extension does act on VZ, compatibly with the adjoint
action of T (Z). Kottwitz’ notable observation is that this new extension splits, and he gives an explicit

splitting w 7→ w
△

. It has the property that if wλ = λ then w
△

acts as the identity on gλ. This allows one to

specify a natural choice of Chevalley basis invariant under this action. One consequence of the new method
is a very simple description of the action of N (Z) on g. This is especially important in applications to

computation in the group G rather than just its Lie algebra.

Some of the previous methods known have the virtue that they may be extended to all KacMoody root
systems (see [Casselman:2015b]). Some variant of the method I describe here will work for a large class of

these. I do not see how it can be extended to all of them, but one might hope that some variation of Kottwitz’

idea will work, taking into account some explicit obstruction. One promising prerequisite for extending the
method to KacMoody algebras can be found in [Carbone et al.:2015], which classifies conjugacy classes of

simple roots.

Curiously, it was in [LanglandsShelstad:1987] that an explicit formula for a defining 2cocycle of Tits’ sections
w 7→ w

•

first appeared. Recently Tasho Kaletha has found other applications of Tits’ construction and results

of this paper to related problems. I wish to thank him for comments on an earlier version.
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For g in G, x in g, I’ll write

g♦x = Ad(g)x .

Even though Next(Z) does not act by automorphisms of g, I’ll use this notation for its action on VZ as well.

I’ll usually refer to [Tits:1966a] as [T].
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1. Chevalley bases

Fix once and for all a maximal torus T in G, with Lie algebra t. The associated roots are the nontrivial

characters by which T acts on eigenspaces, each of which has dimension one. For the moment, suppose γ to

be a root. If e 6= 0 lies in gγ , then for every f in g−γ the bracket h = [f, e] will lie in t. There will exist exactly
one f such that [h, e] = 2e. In these circumstances I’ll call (e, h, f) an SL2 triple. It is completely determined

by the choices of T and of e in gγ .

Given such a triple, there exists a unique embedding ιe of SL2 into G whose differential takes

[

◦ 1
◦ ◦

]

7−→ e

[

◦ ◦

−1 ◦

]

7−→ f

[

1 ◦

◦ −1

]

7−→ h .

If we change e to xe with x 6= 0, then f changes to x−1f , and ιe changes to its conjugate by

[√
x ◦

◦ 1/
√
x

]

.

The associated embedding of C× is the coroot γ∨, and is independent of the choice of e.

Now fix in addition a Borel subgroup B containing T . Let ∆ be the corresponding set of simple roots and

for each α in ∆ fix an element eα 6= 0 in gα. The triple (B, T, {eα}) makes up a frame for G. The set of all
frames is a principal homogeneous space for the group of inner automorphisms of G.

The frame determines embeddings ια of SL2 into G, one for each simple root. Let hα be the image under dια
of

[

1 ◦

◦ −1

]

.

The image e−α of
[

◦ ◦

−1 ◦

]

is the unique element of g−α such that
[e−α, eα] = hα .

This choice of sign is Tits’. It is not the common one, but it is exactly what is needed to make his analysis of

structure constants work. The point is that there exists an automorphism θ of g acting as −I on t and taking
each eα (α ∈ ∆) to e−α. It is uniquely determined by the choice of frame.

TITS’ SECTION. The group N (Z) fits into a short exact sequence

1 −→ T (Z) = (±1)∆ −→ N (Z) −→ W −→ 1 ,

and [Tits:1966b] shows how to define a particularly convenient section. Define

s
•

α = ια

([

◦ 1
−1 ◦

])

.

It lies in the normalizer of T . Suppose w in W to have the reduced expression w = s1 . . . sn. Then the

product
w
•

= s
•

1 . . . s
•

n
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depends only on w, not the particular product expression. The defining relations for this group, given those
for T and W , are

(xy)
•

= x
•

y
•

(when ℓ(xy) = ℓ(x) + ℓ(y))

s
• 2

α = α∨(−1) (α ∈ ∆) .

CHEVALLEY’S FORMULA. Suppose (eγ , hγ , e−γ) to form an SL2 triple, and suppose that eθγ = ce−γ . If

fγ = eγ/
√
c and f−γ =

√
ceγ , then (fγ , hγ , f−γ) also make up an SL2 triple, with fθ

γ = f−γ . Up to
sign—but only up to sign—fγ is unique with this invariance condition.

Any complete set {eγ} invariant under θ up to sign is often called a Chevalley basis (with respect to the given

frame). It determines an integral structure on the Lie algebra g.

1.1. Definition. I’ll call such a basis an integral basis. If it is actually invariant under θ, as it is here, I’ll call it
an invariant basis.

Remark. The integral structure on g is determined by the frame, and more directly from the involution θ it

defines. It is curious that θ also determines a maximal compact subgroup of G. Of course for padic groups,
there is a more immediate relation between integral structure and compact subgroups.

◦ ———— ◦

Given any integral basis (eλ)F, Chevalley proved that if λ, µ, ν are roots with λ+ µ+ ν = 0 then

(1.2) [eλ, eµ] = ±(pλ,µ + 1)e−ν .

Here pλ,µ is the least p such that µ− pλ is a root. This was the crucial result used to construct the Chevalley

groups over arbitrary fields.

The possible values for the string constants pλ,µ (associated to finite root systems) are shown in the following
figures:

λ

µ

pλ,µ = 0

λ
µ

pλ,µ = 0 1

λ

µ

pλ,µ = 0 1 2

λ

µ

pλ,µ = 0 1 2 3

The fourth figure occurs only in type G2. In practice, we shall be interested in computing pλ,µ only when

〈µ, λ∨〉 ≤ 0. Under this assumption, as the figures illustrate:

(1.3) pλ,µ =
{

0 if µ− λ is not a root

1 otherwise
(assuming 〈µ, λ∨〉 ≤ 0) .

I refer to [Chevalley:1955] or [Carter:1972] for the original proof of (1.2) and to [Casselman:2015a] for a proof

extracted from [T], which works uniformly for all KacMoody groups. Tits’ choice of the e−α (as opposed
to the more common choice with the opposite sign) introduces an elegant symmetry that greatly simplifies

both proofs and formulas.

Remark. Ultimately, Chevalley’s formula depends on the simple fact that for strings of length 2, as in the
second figure above, one always has ‖λ‖ ≥ ‖µ‖. That is to say, the following configuration never occurs.
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◦ ———— ◦

Determining the sign in (1.2) has always seemed rather mysterious. Of course there can be no simple
formula, since the choice of an integral basis is not canonical. But I don’t think it has ever been very clear

what is going on. Changing even one eγ to −eγ forces a lot of other sign changes without apparent pattern.

The situation has now been cleared up somewhat by Kottwitz, who has explained to me how to choose an
almost canonical integral basis. I’ll discuss that in §3.

In §4 I’ll show how Kottwitz’ basis simplifies the computation of the signs in Chevalley’s formula. The

starting point, at least, is the same as it was in [Casselman:2015b], in which I have already outlined the
principal ingredients of a recipe for the constants. One of the troublesome points in the earlier approach was

a somewhat arbitrary choice of integral basis. Kottwitz’ basis eliminates this inconvenience.

2. Tits’ idea

In order to understand how Kottwitz’ basis makes calculation of structure constants simple, I must explain

how it fits into the scheme covered in [Casselman:2015b] for computing structure constants. I’ll do that in
this section and the next.

In this one I shall recall results of Tits alluded to at the beginning of §1. We have seen there that a choice of

root vector e determines an embedding ιe of SL2 into G, and in particular determines the element

σe = ιe

([

◦ 1
−1 ◦

])

.

Tits starts with a variation on this fact, an elementary observation about G = SL2. Let T be the subgroup of
diagonal matrices. Its normalizer in G is the union of T itself and the subset M of matrices of the form

[

◦ x
−1/x ◦

]

.

Let g+ be the Lie algebra of upper nilpotent matrices

[

◦ x
◦ ◦

]

,

g− that of lower nilpotent ones. The following is Proposition 1 of §1.1 of [Tits:1966a]:

2.1. Lemma. Suppose e in g+, f in g−, σ in M . The following are equivalent:

(a) exp(e) exp(f) exp(e) = σ ;

(b) exp(f) exp(e) exp(f) = σ .

If any one of these three matrices is specified, conditions (a) or (b) determine the other two uniquely.

Proof. An easy matrix calculation shows that if

[

1 x
◦ 1

] [

1 ◦

y 1

] [

1 x
◦ 1

]

lies in the normalizer of T , then y = −1/x, in which case the product is

[

◦ x
−1/x ◦

]

.
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This proves the last claim. The equivalence of (a) and (b) follows from the equation

[

◦ x
−1/x ◦

] [

1 x
◦ 1

] [

◦ −x
1/x ◦

]

=

[

1 ◦

−1/x 1

]

.

I’ll call the triplet (e, σ, f) compatible, and sometimes express the element in the normalizer as σe, which is

the same as σf . This is one place where Tits’ choice of f , rather then −f , is significant.

Now let G, T be arbitrary, as earlier. Suppose given some fγ generating gγ ∩ gZ. It is unique up to sign. As
we have seen, it determines an embedding of SL2(Z) into G(Z) and elements hγ , f−γ spanning a copy of

sl2. We also get then an element σγ in N (Z), the image of

[

◦ 1
−1 ◦

]

.

These also satisfy the equation

exp(fγ) exp(f−γ) exp(fγ) = σγ .

I’ll also call the triplet (fγ , σγ , f−γ) compatible. If γ = α and fα = eα for α in ∆, then σα = s
•

α, but I do
not assume this to hold. In any case the image of σγ in W will be sγ , the reflection corresponding to γ. The

basic observation of Tits ([T], Proposition 1) is that each of the objects f±λ, σλ determines the other two. The

choice of sign for any one of these determines a change of sign in the others.

In other words, the choice of an invariant basis is equivalent to a certain choice of elements in the normalizer

N (Z) = NG(T ) ∩G(Z).

• For the indefinite future, fix an invariant Chevalley basis (fγ).

I repeat that I do not assume that fα = eα for simple roots α. This determines also for each γ an element σγ ,
subject to the equations

σ−1
γ = γ∨(−1)σγ

σ−γ = σγ .

Let Mγ(Z) be the subset of NG(Z) in the image of M ⊂ SL2 determined by γ. It has two elements, and
contains precisely the γ∨(±1)σγ .

One practical consequence of Tits’ observation is this:

2.2. Lemma. Suppose ω to be in N (Z). Let w be its image in W , and assume that wλ = µ.

ω♦fλ = ε fµ

if and only if
ωσλω

−1 = µ∨(ε)σµ .

Here ε is necessarily ±1.

Proof. Since

exp(εfµ) exp(εf−µ) exp(εfµ) = µ∨(ε)σµ .

I remind you that the problem we are considering is this:

Given the integral basis (fγ), we want to figure out how to calculate the sign in Chevalley’s formula

[fλ, fµ] = ±(pλ,µ + 1)fλ+µ .

Tits has introduced a convenient symmetry into this problem by his choice of f−γ . For example, since this
basis is invariant under θ, the constants are now the same for −λ, −µ and λ, µ. Tits has introduced a second
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symmetry by another simple notion. I define a Tits triple to be a set of roots λ, µ, ν whose sum is 0. He makes
this choice instead of taking, more conventionally, λ+ µ = ν.

In any finite irreducible root system there are at most two lengths. Hence if λ+µ+ ν = 0, two of them must

be of the same length. As I have already mentioned, the common length cannot be greater than the third.

Therefore any Tits triple can be cyclically permuted to satisfy the condition

‖λ‖ ≥ ‖µ‖ = ‖ν‖ .

In this case, I shall call it an ordered triple.

2.3. Proposition. ([T], Lemme 1 of §2.5) Suppose (λ, µ, ν) to be a Tits triple. The following are equivalent:

(a) it is an ordered triple;
(b) sλµ = −ν;
(c) 〈µ, λ∨〉 = −1.

The upshot of the discussion so far is that there exists a function ε(σλ, σµ, σν), defined on all products

Mλ(Z)×Mµ(Z)×Mν(Z) whenever (λ, µ, ν) is a Tits triple, such that

[fλ, fµ] = ε(σλ, σµ, σν) (pλ,µ + 1)f−ν .

Of course I am assuming that the σ and f are compatible. The following is the basis of computation of
structure constants by Tits’ method.

2.4. Proposition. ([T], §2.9) The function ε(σλ, σµ, σν) satisfies these basic properties

(εa) replacing σλ by σ−1
λ changes its sign;

(εb) it is skewsymmetric in any pair;
(εc) it is invariant under cyclic rotation of the arguments;
(εd) if λ, µ, ν are an ordered triple with σλσµσ

−1
λ = σν then

ε(σλ, σµ, σν) = (−1)pλ,µ .

The first two are immediate, but the third is not quite so. Together, these mean that we can apply a permutation
to any triple to reduce to a special case, but what is now needed is one explicit formula in that special case—i.e.

to pin down signs. That is what the last does. It follows from an analysis (in [T], §1.3) of the action of copies
of SL2(Z) on the spaces in g determined by root strings in g.

For an ordered triple, because of Lemma 2.2 and the equality of σγ and σ−γ :

σλσµσ
−1
λ = ν∨(±1)σν .

2.5. Theorem. Suppose (λ, µ, ν) to be an ordered Tits triple, ε = ±1. The following are equivalent:

(a) σλσµσ
−1
λ = ν∨(ε)σν ;

(b) σλ ♦fµ = ε f−ν ;
(c) [fλ, fµ] = ε (−1)pλ,µ (pλ,µ + 1) f−ν .

Combining these two propositions:

2.6. Corollary. Suppose (λ, µ, ν) to be an ordered triple, ε = ±1. Assume that

σλ ♦fµ = εf−ν .

If
c = ε(−1)pλ,µ

then
[fλ, fµ] = c(pλ,µ + 1)f−ν

[fµ, fν ] = c(pµ,ν + 1)f−λ

[fν , fλ] = c(pν,λ + 1)f−µ .
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This will be the basis of computations, once we have figured out how to calculate σλ ♦fµ for ordered triples.

One more thing we’ll find useful is due to Tits, but formulated more explicitly in Chapter 4 (Theorem 4.1.2

(ii)) of [Carter:1972] and as Lemma 2.5 in [Casselman:2015]:

2.7. Proposition. If (λ, µ, ν) is a Tits triple then

pλ,µ + 1

‖ν‖2 =
pµ,ν + 1

‖λ‖2 =
pν,λ + 1

‖µ‖2

In other words, pλ,µ satisfies a twisted cyclic symmetry.

3. Computation I

How do results in the previous section apply to practical computation of structure constants?

The ultimate goal is to come up with a procedure to determine brackets [fλ, fµ] easily, given an invariant basis

(fλ). There are three possibilities. (1) If λ = −µ, the bracket is hµ. We can express it as a linear combination
of basis elements hα:

hµ =
∑

α

cαhα ,

in which the coefficients cα are found in the course of constructing the roots, since this equation is equivalent

to

µ∨ =
∑

α

cαα
∨ .

(2) The sum λ+ µ is not a root, and the bracket is 0. (3) We have an equation

[fλ, fµ] = Nλ,µfλ+µ

for some constant Nλ,µ of the form ±(pλ,µ + 1). So we would be given a Tits triple (λ, µ, ν). We can rotate it

to make it an ordered triple. According to Corollary 2.6 and , our problem is thus reduced to finding just the
values Nλ,µ when (λ, µ, ν) is an ordered triple. Since N−λ,−µ = Nλ,µ, we may restrict to the case λ > 0.

It is quite reasonmable to store all values of Nλ,µ for ordered Tits triples. The amount of storage required

is roughly proportional to the number of Tits triples. As reported in [CohenMurrayTaylor:2005], this is of
order r3, where r is the rank of the system, so this procedure is entirely feasible, and noticeably better in

storage use than storing all the Nλ,µ, since there are roughly r4 such pairs. (Of course using the smaller table

involves more computation. The tradeoff of time versus memory that we see here is a basic problem in all
programming.)

There are three steps to this computation.

Step 1. In the first, we construct the root system, without reference to a Lie algebra. This includes (i) root
lengths ‖λ‖, (ii) values of 〈λ, α∨〉, (iii) root reflection tables sαλ, (iv) an expression for each root as a linear

combination of the α in ∆, and (v) a corresponding expression for each λ∨ as a sum of α∨. We can also

construct a table recording whether or not a given array of coordinates is that of a root or not.

Step 2. In some way specified in the next sections, we then find an invariant basis (fλ). It is here where
Kottwitz’ contribution appears. It will give us also the associated Tits section w

◦

from W to NG(T ), in which

s
◦

α for α in ∆. Miraculously:

Constructing the invariant basis (fλ) will give at the same time formulas for the constants c(sα, λ)
(with α simple) such that

(3.1) s
◦

α
♦fµ = c(sα, λ)fsαλ .



Computing structure constants 9

I repeat: we start with a frame (eα), but the new basis elements fα) will be different, and the elements s
•

α will
be different from the s

◦

α.

We shall now have a simple recipe for computing any w
◦

♦ fλ, since if

w
◦

♦fλ = c(w, λ)fwλ

then
c(xy, λ) = c(x, yλ)c(y, λ) .

Remark. This can be somewhat inefficient, since the element w can have length up to the number of positive

roots. There is a possible improvement, however, offering a trade of memory for time. Choose an ordering

of ∆, and let Wi be the subgroup of W generated by the sαj
for j ≤ i. As Fokko du Cloux pointed out, every

w in W can be expressed as a unique product

w = w1w2 . . . wr

with each wi a distinguished representative of Wi−1\Wi. The sizes of these cosets are relatively small, and
it is perhaps not infeasible to store values of the wλ and the c(w, λ) for w a distinguished element in one of

them.

◦ ———— ◦

Step 3. Given the results of the previous step, we want now to tell how to compute the constants Nλ,µ when

(λ, µ, ν) make up an ordered Tits triple with λ > 0.

We can do this by a kind of induction on λ. Every positive root λ = wα for w in W and α simple. The depth

n of λ is the minimal length of a chain

α = λ0 − λ1 − · · · − λn = λ

in which each λi+1 = sαi
λi for some simple αi. Finding such chains for all positive roots is part of the

natural process for constructing the set of roots in the first place. If

[fλ, fµ] = Nλ,µ f−ν

then

[s
◦

α
♦fλ, s

◦

α
♦fµ] = Nλ,µ(s

◦

α
♦f−ν) ,

and hence

Nsαλ,sαµ = c(sα, λ)c(sα, µ)c(sα,−µ)Nλ,µ .

Reflections transform ordered triples to ordered triples. Hence if we know how to deal with the case in which

λ = α is simple we can compute all the constants for ordered triples in which λ > 0 by following up the
chain. Furthermore, according to Proposition 2.3 it is very easy to list ordered triples (α, µ, ν).

Now according to Theorem 2.5 we have

[fα, fµ] = c(sα, µ)(−1)pα,µ(pα,µ + 1)f−ν .

Since 〈µ, α∨〉 = −1 we know that pα,µ is 0 if µ − α is not a root, and is 1 otherwise (in which case we are
dealing with G2).

At the end we have the structure constants for all ordered Tits triples with λ positive.
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4. Kottwitz’ splittings

It remains to explain how to construct an invariant basis (fλ) and give formulas for the constants c(sα, λ)
appearing in (3.1) .

In any method of computation in Lie algebras, the first—and perhaps most important—step is to specify

an integral basis of the algebra. [CohenMurrayTaylor:2005] specifies such a basis in terms of an ordered
decomposition of a given root as a sum of simple ones. First of all, they assign an order to the simple roots.

Every positive root may be expressed uniquely as µ = α + λ in which the height of λ is less than that of µ,
and α is least with this property. One then defines the elements eµ by induction:

[eα, eλ] = (pα,λ + 1)eµ .

In effect, such a basis is determined by a choice of spanning tree in a graph whose nodes are the positive

roots, with a link between each pair λ and α+ λ.

The method I described in [Casselman:2015a] and [Casselman:2015b] chooses a basis in terms of paths in a

spanning tree in a different graph whose nodes are again the positive roots. The simplest implementation

starts also with an ordering of simple roots. Every positive root may be expressed as µ = sαλ, with λ of
smaller height and α minimal. Then define by induction

eµ = s
•

αeλ .

There is a great deal of arbitrariness in both methods, since they depend on a somewhat arbitrary choice of

spanning tree in a graph. Kottwitz’ contribution is to remove nearly all this annoying ambiguity. A basis
chosen directly by his method will not be invariant under θ, but it will be easy to determine from it one that

is.

The original choice of frame gives us Tits’ map w 7→ w
•

from W back to N (Z), and then to the extended group
Next(Z). How can it be modified to become a homomorphism?

We are looking for a splitting of the sequence

1 −→ S(Z) −→ Next(Z) −→ W −→ 1 .

This will be of the form
w 7−→ w

△

= w
• ·τw ,

with each τw in S(Z). Thus for each root β we are looking for a factor τw(β) = ±1. The map w 7→ w
△

will be

a homomorphism if and only if (for α in ∆)

(a) 1
△

= 1

(b) s
△

αx
△

= (sαx)
△

if sαx > x

(c) s
△

αs
△

α = 1 .

These translate directly to properties of τw :

(a′) τ1 = 1

(b′) τsα(yβ)τy(β) = τsαy(β) for all β if sαy > y

(c′) (−1)〈β,α
∨〉 = τsα(sαβ) ·τsα (β) .

We shall see a bit later a fourth useful condition on w
△

and hence also on τw .

At any rate, here is Kottwitz’ solution of the problem. For w in W set

Rw = {λ > 0 |wλ < 0} .
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Thus ℓ(xy) = ℓ(x) + ℓ(y) if and only if

(4.1) Rxy = Ry ⊔ y−1Rx ,

and in particular

R1 = ∅
Rsα = {α}

Rsαw = Rw ⊔ {w−1α} (w−1α > 0) .

According to Kottwitz’ recipe, we have

(4.2) τw(β) = (−1)F (w,β) with F (w, β) =
∑

γ∈Rw

〈〈β, γ〉〉 .

The summands are yet to be specified, and everything in this formula is to be taken modulo 2.

• Since R1 = ∅ and an empty sum is 0, condition (a) above is immediate.

• What about condition (b)? Suppose x = sαy > y. It must be shown that the cocycle condition

F (sαy, β) = F (sα, yβ) + F (y, β)

holds. First of all, note that

F (sα, β) = 〈〈β, α〉〉
since Rsα = {α}. Also

F (x, β) =
∑

γ∈Rx

〈〈β, γ〉〉 = 〈〈β, y−1α〉〉+
∑

γ∈Ry

〈〈β, γ〉〉

whereas

F (sα, yβ) + F (x, β) = 〈〈yβ, α〉〉 +
∑

γ∈Ry

〈〈β, γ〉〉 .

Therefore (b) will be satisfied if W invariance holds:

〈〈wβ,wγ〉〉 = 〈〈β, γ〉〉 for all w in W .

• Condition (c)? We have
s
△

α
♦eβ = (−1)〈〈β,α〉〉s

•

α♦eβ .

Since s
•2
α = α∨(−1) we thus require that

〈〈sαβ, α〉〉+ 〈〈β, α〉〉 = 〈β, α∨〉 .

This last condition suggests what comes now. If 〈β, α∨〉 = 0 and hence sαβ = β this imposes no condition

(since everything is modulo 2). Otherwise 〈β, α∨〉 and 〈sαβ, α∨〉 will be of different signs. It is therefore
natural to set

(4.3) 〈〈β, γ〉〉 =
{

〈β, γ∨〉 if 〈β, γ∨〉 > 0
0 if 〈β, γ∨〉 < 0.

One good sign:

4.4. Lemma. The function 〈〈β, γ〉〉 is Weylinvariant.

Proof. Since the pairing 〈β, γ∨〉 is W invariant.
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The requirement that w 7→ w
△

be a homomorphism imposes no extra condition in the case that 〈β, γ∨〉 = 0,
but one more requirement will do so. I ask now, for reasons that will become apparent in a moment, that

w
△

♦eβ = eβ

if wβ = β. To guarantee that this occurs, it suffices to assume that β lies in the closed positive Weyl chamber.

Then the w fixing β are generated by simple root reflections, so we need to require only that s
△

αvβ = vβ
(vβ ∈ gβ) for simple roots α with 〈β, α∨〉 = 0. Consideration of the representation of SL2 corresponding to

the root string tells us that

s
•

α ♦eβ = (−1)pα,βeβ .

Therefore

s
△

α
♦eβ = (−1)〈〈β,α〉〉(−1)pα,βeβ

and so we set

(4.5) 〈〈β, γ〉〉 = pγ,β if 〈β, γ∨〉 = 0 .

Equations (4.3) and (4.5) define the terms 〈〈β, γ〉〉 completely. In summary:

4.6. Theorem. (Kottwitz) Let

〈〈β, γ〉〉 =











〈β, γ∨〉 if this is positive

pγ,β if 〈β, γ∨〉 = 0

0 otherwise.

F (w, β) =
∑

γ∈Rw

〈〈β, γ〉〉

τw =
(

(−1)F (w,β
)

β∈Σ
.

Then
w
△

= w
• ·τw

is a splitting homomorphism of Next(Z). In addition, if wγ = γ then Ad(w
△

) is the identity on gγ .

If the root system is simply laced or equal to G2 then sλβ = β implies that pλ,β = 0. Therefore the nontrivial

case occurs only for systems Bn, Cn, or F4.

Remark. Lemma 2.1A of [LanglandsShelstad:1987] exhibits the 2cocycle defining the extension N (Z)
determined by Tits’s splitting w 7→ w

•

. Explicitly,

x
•

y
•

= κ(x, y)(xy)
•

with κ(x, y) =
∏

γ>0

x−1γ<0

y−1x−1γ<0

γ∨(−1) .

Does Kottwitz’ splitting allow arguments of Langlands and Shelstad to be simpler?

◦ ———— ◦

The W orbits in Σ are the sets of all roots of the same length. Pick one simple root α in each orbit, and let

eα = eα be the corresponding element in the frame chosen at the beginning. If λ = wα is root with α equal

to one of these distinguished choices, define

eλ = w
△

♦eα .

The definition ofF (sα, β) in the case when 〈β, α∨〉 = 0 insures that this is a valid definition. As a consequence
of Theorem 4.6:
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4.7. Corollary. The integral basis (eγ) of VZ is such that w
△

♦eγ = ewγ for all roots γ and w in W .

4.8. Definition. I’ll call such a basis semicanonical.

There are several possibilities, two for each W orbit in Σ.

In practice, we shall want to compute τw explicitly only when w = sα for α in ∆. In this case, there is a

simplification, since Rsα is a singleton.

F (sα, λ) =

{ 〈λ, α∨〉 if it is positive

pα,β if 〈λ, α∨〉 = 0
0 otherwise.

Example. For a simply laced root system, if 〈β, α∨〉 = 0 then pα,β = 0. Therefore

τsα(λ) =

{

(−1)〈β,α
∨〉 if 〈λ, α∨〉 > 0

1 otherwise.

This applies in particular to G = SL3. Take α, β as the standard simple roots, and let γ = α+ β. Recall that

ei,j is the matrix with a single nonzero entry 1 at (i, j). Choose e1,2 and e2,3 to define the frame, spanning

the root spaces for α, β. The corresponding elements of N (Z) are

s
•

α =





◦ 1 ◦

−1 ◦ ◦

◦ ◦ 1



 , s
•

β =





1 ◦ ◦

◦ ◦ 1
◦ −1 ◦



 .

And here is a table of the ♦ actions:

λ eλ s
•

α♦eλ 〈λ, α∨〉 〈〈λ, α〉〉 s
•

β ♦eλ 〈λ, β∨〉 〈〈λ, β〉〉
α e1,2 −e2,1 2 0 −e1,3 −1 0
β e2,3 e1,3 −1 0 −e3,2 2 0
γ e1,3 −e2,3 1 1 e1,2 1 1

−α e2,1 −e1,2 −2 0 −e3,1 1 1
−β e3,2 e3,1 1 1 −e2,3 2 0
−γ e3,1 −e3,2 −1 0 e2,1 −1 0

Recall that 〈α, β∨〉 < 0 while 〈γ, α∨〉 > 0. If we start with eα = e1,2 we get

eα = e1,2 = eα

eγ = s
△

βeα

= (−1)0s
•

β ♦e1,2

= −e1,3

eβ = s
△

αeγ

= (−1)1s
•

α♦(−e1,3)

= −e2,3 = −eβ .

Thus:

4.9. Proposition. If G = SL3 and eα = eα, then eβ = −eβ .

This example has consequences for arbitrary root systems.

Something similar is true for SLn. Here, choose the base point of the Dynkin diagram to be the end
corresponding to the simple root ε1 − ε2. Then

ei,j = (−1)jei,j .

◦ ———— ◦
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A semicanonical basis will not be invariant under θ, but it is easy to see how it fails, and then how to modify
it to be so. Recall that the height of a root is defined by the formula

ht
(

∑

∆
λαα

)

=
∑

∆
λα .

4.10. Theorem. For any root γ and semicanonical basis (eγ )

eθγ = (−1)ht(γ)−1e−γ .

In particular, if α is simple then
eθα = e−α .

This particularly simple formulation is due to Kottwitz.

Proof. In a number of short steps.

Step 1. The following is straightforward:

• For all β, γ
〈〈β, γ〉〉+ 〈〈−β, γ〉〉 = 〈β, γ∨〉

This is to be interpreted modulo 2, of course.

Step 2. Now let

h(w, β) =
∑

γ∈Rw

〈β, γ∨〉 .

• For v in gβ

(4.11) (w
△

♦v)θ = (−1)h(w,β)w
△

♦vθ .

This is because s
•θ

α = s
•

α.

Step 3. Induction on the length of w together with (4.1) will prove:

• For w in W and root λ
ht(wλ) − ht(λ) = h(w, λ) .

In order to specify the eγ , given a frame (eα), we fix one simple root α in each W orbit, and set eα = eα.
Fixing the eβ for other simple roots β is then very easy. For finitedimensional Lie algebras, W orbits of roots

are in correspondence with possible root lengths. For irreducible systems, there are at most two possible
lengths, and the simple roots of a given length make up a connected segment Ξ in the Dynkin diagram. It is

only systems B, C, F , and G that there are two lengths, and only for system F is there more than one simple

root of each length.

Choose, somewhat arbirarily, one special root αΞ on each segment Ξ. For every simple root α, let

d(α) = the distance from α to the special root αΞ in its segment.

Any two neighbours in the Dynkin diagram of the same length lie in the simple root system of a copy of SL3.

The choice of eα determines an element σα. The following is a consequence of Proposition 4.9:
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4.12. Corollary. For α in ∆ let cα = (−1)d(α). Then

eα = cα eα

σα = α∨(cα) s
•

α .

Here, I recall, σα is the element of NZ(T ) associated by Tits’ scheme to the choice of eα as basis of gα (or of

e−α for g−α).

Remark. I have mentioned the ’root graph’ without being precise, and I should say something more about
it. It is a graph whose nodes are the positive roots, and its base is made up of the simple roots. There is

an oriented edge from λ to sαλ if and only if sαλ has greater height than λ, or equivalently if and only if
〈λ, α∨〉 < 0. This is very useful, since in these circumstances 〈〈λ, α〉〉 is always 0. One consequence is an

easy construction of the basis (eλ). Following upward links in the root graph, one represents every root as

an increasing chain
α = λ0 ≺ . . . ≺ λn = λ (λi+1 = sαi

λi)

and then

eλ = s
•

n−1 . . . s
•

0♦eα .

This is very useful for debugging programs, since for the classical root systems one can construct Kottwitz’

basis in terms of explicit matrices, for which one can calculate Lie brackets in terns of matrix products.

5. Computation II

Define

γ(λ) =

{

1 if λ > 0
(−1)ht(−γ)−1 if λ < 0.

As an immediate consequence of Theorem 4.10:

5.1. Proposition. Given the Kottwitz basis (eλ), the elements

fλ = γ(λ)eλ

form an invariant integral basis.

Remark. I emphasize: we start with a given frame, then find a new frame that is rarely the same as the

original. It is this new frame that we extend to an integral basis in a uniquely determined way.

◦ ———— ◦

Let w
◦

be the corresponding Tits section.

The following result encapsulates the basic reason why Kottwitz’ basis makes computation simple. Recall

that

cα = (−1)d(α) ,

where d(α) measures distance along the Dynkin diagram from the nearest simple root αΞ.

5.2. Theorem. For α in ∆ and λ > 0 let

mα,λ = (−1)〈〈λ,α〉〉c〈λ,α
∨〉

α .

Then for every root λ
s
◦

α
♦fλ = c(sα, λ)fsαλ

with

c(sα, λ) =

{

mα,λ if λ > 0
mα,−λ if λ < 0 .



Computing structure constants 16

Proof. Since λ(α∨(x)) = x〈λ,α∨〉:

s
△

α
♦eλ = eµ

= (−1)〈〈λ,α〉〉 s
•

α♦eλ (definition)

s
•

α ♦eλ = c〈λ,α
∨〉

α s
◦

α
♦eλ (Corollary 4.12)

s
◦

α
♦eλ = c〈λ,α

∨〉
α (−1)〈〈λ,α〉〉eµ

= mα,λ · eµ .

This concludes when λ > 0, even if λ = α and σα ♦ fα = f−α. When not, apply the involution θ to this
equation, noting that s

◦

α commutes with it.

Example. Look at SL3 again. What is [eα, eβ ]?

cα = 1

〈β, α∨〉 = −1

〈〈α, β〉〉 = 0

pα,β = 0

c(sα, β) = 1

Hence s
◦

αe = eγ .

Example. Say G = Sp(4). Let α = ε0 − ε1 and β = 2ε1 be the simple roots. Since there are two lengths of

roots, we may set as frame

eα = eα =







0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0






, eβ = eβ =







0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0






.

Then

s
•

β =







1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1






.

Since 〈α, β∨〉 = −1, sβα = α+ β = (say) γ. Also, 〈〈β, α〉〉 = 0 and hence

eγ = s
•

βeαs
•−1

β =







1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1













0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0













1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1






=







0 0 −1 0
0 0 0 −1
0 0 0 0
0 0 0 0






.

One calculates directly that

[eα, eβ ] =







0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0






= −eγ .

But it is instructive to trace how the computations in this paper would go. We are looking at the triple
(α, β,−γ). Since ‖β‖ = 2 while ‖α‖ = 1, the associated ordered triple is (β,−γ, α). Since −sβγ = −α, we

must next compute the constant ε such that

s
•

βf−γ = εf−α .
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This is c(sβ ,−γ), which according to Theorem 5.2 is

mβ,γ = (−1)〈〈γ,β〉〉 = −1 .

Remark. It is not difficult to compute any pλ,µ by finding directly the maximum value of n such that µ− nλ
is a root. But this is more expensive in time than necessary. The circumstances in which we have to compute

pλ,µ are in fact somewhat limited: (1) when λ = α is simple and 〈µ, α∨〉 = −1; (2) when α is simple and

〈µ, α∨〉 = 0; (3) (λ, µ, ν) form a Tits triple. In case (1) or (2), we just have to check whether µ − α is a root.
But if α is simple, computing µ − α is trivial, a matter of decrementing one coordinate. In case (3), we can

apply Proposition 2.7 in order to reduce to the case in which (λ, µ, ν) is an ordered triple. These are dealt

with in the process of ascending the root graph that is mentioned at the end of §3, since psαλ,sαµ = pλ,µ.
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