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A geometric proof of Langlands’ Combinatorial Lemma
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Much of Arthur’s work on automorphic forms depends on a simple result in geometrical combinatorics
known as ‘Langlands’ Combinatorial Lemma’. It is not quite trivial to perceive, and in this note I’ll give a

short treatment explaining the geometry behind it.

Suppose ∆ to be a basis of a Euclidean space V , with α •β ≤ 0 for α 6= β in ∆. Let Π = {̟α} be the dual
basis. The elements of ∆ span an obtuse cone that contains the acute cone spanned by the ̟α. We shall be

interested in various cones spanned by elements of ∆,−∆, and Π.
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Most important are two partitions of V . The first is the coordinate partition. For each S ⊆ ∆ let C∆,S be
the vectors

v =
∑

cαα

with

cα > 0 for α ∈ S, cα ≤ 0 for α /∈ S .

In two dimensions, for example, these just partition the plane into quadrants.
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Another partition is associated to the open acute cone V ++

∅ = C∅,∅ spanned by Π. To each subset S ⊆ ∆ is

associated the cone CS,∅ of points in V for which the nearest face of C∅,∅ is the face V ++
S spanned by the ̟α

with α in the complement of S.
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Explicitly

CS,∅ =
{

∑

∆−S

cα̟α +
∑

S

cαα
∣

∣

∣
cα > 0 for α /∈ S, cα ≤ 0 for α ∈ S

}

.

This partition first appeared in representation theory in [Langlands:1972/1989]. Following the tradition of
attaching a mathematician’s name to his most trivial observation, it is often called the Langlands partition.

There is a large family of partitions of V interpolating these two extremes. I extend the notation I have used

so far—for T ⊆ S ⊆ ∆ define

CS,T =
{

∑

∆−S

cα̟α +
∑

S

cαα
∣

∣

∣
cα > 0 for α /∈ S, cα ≤ 0 for α ∈ S − T, cα > 0 for α ∈ T

}

.

Keep in mind that the subspace spanned by the ̟ in this definition is perpendicular to that spanned by the
α.

ForΘ ⊆ ∆, letVΘ be the subspace perpendicular to theα inΘ. It is spannedby the̟α forα in the complement
of Θ. To the cone V ++

Θ
spanned by these ̟α is associated a Langlands partition of VΘ. Corresponding to

this in turn is a partition of V itself obtained by perpendicular projection onto VΘ. It is parametrized by sets

S with Θ ⊆ S ⊆ ∆.

1. Lemma. Suppose Θ ⊆ S to be subsets of ∆. The inverse image in V of the subset of the Langlands
partition of VΘ parametrized by S is partitioned by the CS,T with T ⊆ Θ.

I’ll prove this in a moment. As an immediate consequence of this result and the Langlands partition of VΘ:

2. Proposition. For Θ ⊆ ∆ the sets CS,T with T ⊆ Θ ⊆ S partition V .

If Θ = ∆ we get the coordinate partition, and if Θ = ∅ we get the Langlands partition. Since the Langlands

partition of VΘ is parametrized by subsets of ∆ − Θ, each of these new partitions also has 2|∆| components.
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Proof of Lemma 1. Let | stand for orthogonal projection v 7→ v|VΘ onto VΘ. The kernel of this projection is

spanned by the α in Θ. The subset of VΘ in its Langlands partition corresponding to S is therefore the set

∑

α/∈S

cα̟α +
∑

α∈S−Θ

cα (α | VΘ)

where cα > 0 for α /∈ S, cα ≤ 0 for α ∈ S − Θ. The inverse image of this in V is the set of

∑

α/∈S

cα̟α +
∑

α∈S

cα

where now cα > 0 for α /∈ S, cα ≤ 0 for α ∈ S − Θ, and the cα are arbitrary for α ∈ Θ. Partition this

according to which of the cα with α ∈ Θ are positive.

The Proposition usually referred to as Langlands’ combinatorial lemma is now an easy consequence. For

T ⊆ S ⊆ ∆ let

charS,T = the characteristic function of CS,T .

3. Corollary. (Langlands’ combinatorial lemma) We have

∑

S⊆∆

(−1)|S|charS,S = 0 .

The assertion is deceptively simple when the dimension is two, since in that case

CS∩T,S∩T = CS,S ∩ CT,T

for all S, T .
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This ceases to be true

in higher dimensions, and indeed already for dimension three it is not easy to see why the result holds. The

following figure illustrates a slice through the relevant 3D diagram:
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Proof of the Corollary. Its proof follows a standard template for applying Proposition 2. The basic fact is that
(1 − 1)n = 0 if n > 0, but in the guise of the equation

∑

Θ⊆∆

(−1)|Θ| =
{

1 if ∆ = ∅
0 otherwise.

Proposition 2 tells us that for a fixed Θ
∑

S,T

T⊆Θ⊆S

charS,T = 1 .

If we then take an alternating sum over all Θ we obtain

∑

Θ

(−1)|Θ|
∑

S,T

T⊆Θ⊆S

charS,T = 0 .

This can be rearranged to give

∑

S,T

T⊆S

∑

Θ

T⊆Θ⊆S

(−1)|Θ|charS,T =
∑

S,T

T⊆S

charS,T

∑

Θ

T⊆Θ⊆S

(−1)|Θ| = 0 .

But the inner alternating sum vanishes unless T = S, and in that case gives

∑

Θ

(−1)|Θ|charΘ,Θ = 0 .

This is a special case of a more general result we shall need in a later section:
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4. Proposition. Suppose Θ ⊆ ∆. Then

∑

S⊆∆

(−1)|S∩Θ|charS,S∩Θ =
{

1 if Θ = ∅
0 otherwise.

Langlands’ combinatorial lemma is the case Θ = ∆.

Proof. This follows by rearrangement from the formula

∑

S⊆Θ

(−1)|S|
∑

T⊆Θ⊆S

charS,T =
{

1 if Θ = ∅
0 otherwise.

For example, when Θ = {α}:
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= 0

This seems to be equivalent to Lemma 6.3 of [Arthur:1978].

There appear to be two distinct roles for Langlands’ combinatorial lemma, and two different proofs. Another
proof is given in [Labesse:1984–85], and a generalization is given in [Casselman:2003]. The implicit starting

point is that the characteristic function of a simplicial cone is the alternating sumof the characteristic functions

of its faces’ exteriors. This is a special case of a similar result about arbitrary convex polyhedra. I do not see
how to fit Proposition 4 into this framework.

Interesting applications of the Lemma can be found in [Laumon­Rapoport:1996] and [Goresky­Kottwitz­
MacPherson:1997].
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