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Maass forms

Let
G = SL2(R)

K = SO(2)

P = group of upper triangular matrices

N = unipotent radical of P

H = {z | IM(z) > 0}
Γ = a proper discrete subgroup of G .

Let N(Z) be the subgroup of integral matrices in N .

The group G acts by fractional linear transformations onH. The isotropy subgroup of i is K , so thatH may
be identified with G/K . The condition on Γ means that Γ\H is the union of a compact subset and a finite

number of parabolic domains.

What is a parabolic domain? Suppose q to be either ∞ or a real number, and let Pq be its stabilizer in G. It

will be a conjugate in G of P = P∞. Let Nq be its unipotent radical, which will be a conjugate of N . The
point q is called a cusp if Γ∩Nq is an infinite cyclic group, and in this case its stabilizer Pq is called a cuspidal

parabolic subgroup. For example,∞ is a cusp of the group SL2(Z). Some conjugate of Γ∩Nq in SL2(R)will

be exactly N(Z), and the pull backs xq , yq of the functions x, y I call parabolic coordinates onH associated
to q. A parabolic domain associated to q is one of the regions HY

q where yq > Y , or its image in Γ\H. If

Y ≫ 0 the projection from (Γ ∩ Pq)\HY
q to Γ\H is an embedding.

The standard example is Γ = SL2(Z). In this case the region

{z | IM(z) > 0, |z| ≥ 1, RE(z) ≤ 1/2}
is a fundamental domain for Γ. It is the union of the parabolic domain where IM(z) > 1 and a small compact
subset. Suppose F to be a holomorphic automorphic form, say of weight k, with respect to Γ. Then it is

invariant under translation by N(Z), so may be expressed as a convergent series

F (z) = F (x + iy) =
∑

n≥0

Fne2πinz =
∑

n≥0

Fne−2πny e2πinx .

The difference between F (z) and its constant term F0 is evidently exponentially decreasing as a function of

y.

This essay will be concerned with analogous properties for certain other smooth functions on arithmetic

quotients Γ\H and to some extent related functions on Γ\G, for an arbitrary proper subgroup Γ. The basic

fact is that on a parabolic domain F (z) is asymptotic to its constant term at the corresponding cusp. But in
some applications the fine structure of this behaviour is important. In analyzing it, one may as well assume

that the cusp is∞with stabilizer P = AN , and that Γ∩N = N(Z). The function F (z) may be expanded in
a Fourier series

F (x + iy) =
∑

Z

Fn(y)e2πinx

with Fourier coefficients

Fn(y) =

∫ 1

0

F (x + iy)e−2πinx dx

that depend on y. There are several variations on the theme that F (z) ∼ F0(y) as y → ∞. One is that

in which F is an eigenfunction of the Laplacian ∆ of moderate growth as y → ∞ (i.e. it is a Maass form ),

another inwhichF satisfies a certain somewhat technical condition of uniformmoderate growth. Yet another
concerns the Laplacian as an unbounded operator on L2(Γ\H). In this essay, I’ll be mostly concerned with

Maass forms.

The relationship between constant terms and asymptotic behaviour is fundamental in the theory of automor

phic forms.



Maass forms 2

Contents

1. Maass forms
2. Asymptotic expansions for irregular singularities

3. Computing Whittaker functions

4. References

1. Maass forms

The Laplacian onH has the formula

∆ = ∆H = y2

(
∂2

∂x2
+

∂2

∂y2

)

and is invariant under G. A Maass form on Γ\H is a smooth function F on Γ\H such that

• ∆F = γF for some scalar γ;
• F is of moderate growth at every cusp q:

F (xq + iyq) = O(yM
q )

for some M , as y → ∞.

The nonEuclidean Laplacian∆ is an elliptic differential operator. Solutions of an elliptic differential equation
with locally smooth coefficients are smooth, soF is necessarily a smooth functionof z. Evenbetter, solutionsof
an elliptic differential equationwith analytic coefficients are real analytic, so that F is in fact real analytic. It is

also true, if not immediately apparent, that an equivalent definition of aMaass form is as an eigendistribution
of ∆ that is tempered in some sense.

The operator ∆ with domain C∞
c (Γ\H) is essentially selfadjoint, which means that it possesses a unique

extension to an unbounded selfadjoint operator on L2(Γ\H). It is nonpositive. Its spectrum contains the

interval (−∞,−1/4) contributed by Eisenstein series and a discrete part in (−∞, 0]. The eigenfunctions of

the discrete part comprise the constants and the cusp forms. The latter are the cuspidal Maass forms, and are
characterized by the vanishing of their constant terms at all cusps. As a consequence, as we shall see, they

are rapidly decreasing at infinity at all cusps. The cuspidal spectrum breaks up into two parts, the intervals
(−∞,−1/4] and (−1/4, 0]. For congruence subgroups the latter is conjectured to be empty, and in any case

it is only a finite set.

What can one say about the asymptotic behaviour of Maass forms near the cusps of Γ? As I have already
mentioned in the Introduction, by conjugating Γ in G if necessary, I may assume the cusp at hand to be ∞,

and Γ ∩ N∞ to be N(Z). In addition, that F is invariant under all of Γ will play no role in the discussion to
come. Therefore:

From now on, I assume only that F is an eigenfunction of ∆ on the

quotient N(Z)\H with F (x + iy) = O(yM ) for some M , as y → ∞.

This hypothesis, for example, applies to holomorphic forms F of even weight k > 0. What I am going to say
is trivial in this case, but it can serve as a simple model. Since F is smooth, it may be expanded in a Fourier

series
F (x + iy) =

∑∞

−∞
Fn(y)e2πinx

with smooth Fourier coefficients

Fn(y) =

∫ 1

0

F (x + iy)e−2πinx dx .
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If F is holomorphic, the condition of moderate growth implies that the expansion has no terms of negative

index and is therefore

F (z) =
∑

n≥0

Fne2πinz .

Since e2πinz = e2πinxe−2πny we have

∣∣F (z) − F0

∣∣ = O(e−2πy) (y → ∞) .

In this section and the next I’ll explain how this conclusion remains valid in general.

In general, since the Laplacian and N commute, the Fourier terms Fn(y) are also eigenfunctions of ∆. This

means that the coefficients Fn(y) satisfy an ordinary differential equation. The two cases in which n = 0 and
n 6= 0 are very different.

• n = 0. For the constant term F0 we get the differential equation

y2F ′′
0 = γF0 .

It is an Euler equation

D2F0 − DF0 − γF0 = 0

in which D is the multiplicative derivative y d/dy. This differential equation has a regular singularity at
∞. The operator y d/dy is invariant on the multiplicative group of real numbers, which is isomorphic to the

additive group of real numbers via the exponential map y = ex. If I set Φ(x) = F (ex) then Φ now satisfies
the equation

Φ′′ − Φ′ − γΦ = 0 .

This equation has constant coefficients, and for all but one value of γ it will have as basis of solutions es1x

and es2x where the si are solutions of the equation

s2 − s − γ = 0, hence s =
1 ±

√
1 + 4γ

2
.

The exception is when γ = −1/4, when a basis of solutions is made up of ex/2 and xex/2. Thus, the solutions

of the original equations are the linear combinations of ys1 and ys2 as long as γ 6= −1/4. If γ = −1/4, on the

other hand, the solutions are linear combinations of y1/2 and y1/2 log y.

• n 6= 0. For the Fourier coefficient Fn(y) we get the differential equation

y2
(
F ′′

n − 4π2n2Fn

)
= γFn, F ′′

n −
(
4π2n2 + γ/y2

)
Fn = 0 ,

which has an irregular singularity at ∞. As y → ∞ this differential equation has as limit the constant
coefficient equation

F ′′ − 4π2n2F = 0 .

with solutions F (y) = e±2πny, so one might expect some similarity between the behaviour of Fn and of the
functions e±2πny . Since one of these grows exponentially and the other decreases, the following is plausible:

1.1. Proposition. The space of solutions of the equation

F ′′ − 4π2n2F = (γ/y2)F

that are of moderate growth on (1,∞) has dimension one, and it has as basis the unique solution which is
asymptotic to e−2πny as y → ∞.
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This will take some work to explain. First we simplify by a scale change. Let λ = 2π|n|, and then set

F (y) = W(λy) = W(2π|n|y). This gives us

F ′′(y) − 4π2n2F (y) = λ2W ′′(λy) − λ2W(2λy) ,

so that if we set x = λy we see thatW satisfies the differential equation

W ′′(x) −W(x) = (γ/x2)W ,

which is now independent of λ. According to the standard formula found in Theorem 4.7 of [Brauer
Nohel:1967], there exist solutions of this equation with asymptotic series expansions

W(x) = e±x
(
1 +

c1

x
+

c2

x2
+ · · ·

)
,

which means that

W(x)/e±x −
(
1 +

c1

x
+

c2

x2
+ · · · + cn

xn

)
= O(x−n−1)

for each n as x → ∞, and that something similar remains true for all derivatives ofW .

Because of the condition of moderate growth on F as y → ∞, only the solution with leading term e−x is
relevant here. The coefficients ci of the formal series can be calculated by a recursion, but before doing that

it is probably easiest to make a slight change, settingW = e−xG. Then

W = e−xG

W ′ = −e−xG + e−xG′

W ′′ = G − e−xG′ + e−xG′′

W ′′ −W = e−xG′′ − e−xG′ ,

thus getting for G the differential equation

G′′ − G′ =
γ

x2
G .

Setting formally

G = 1 +
c1

x
+

c2

x2
+

c3

x3
+ · · · + cn

xn
+ · · ·

leads us to expansions

γG

x2 =
γ

x2 +
γc1

x3 +
γc2

x4 + · · · +
γcn−1

xn+1 + · · ·

−G′ =
c1

x2 +
2c2

x3 +
3c3

x4 + · · · +
ncn

xn+1 + · · ·

G′′ =
2c1

x3 +
3 ·2c2

x4 + · · · +
n(n − 1)cn−1

xn+1 + · · · .

giving us n(n − 1)cn−1 + ncn = γcn−1 and then recursion formulas

(1.2)
c1 = γ

cn =
γ − n(n − 1)

n
cn−1 (n ≥ 2) .

The numerator here growsmore rapidly than the denominator, so the series certainly does not converge. The
functionsW are a variant of Bessel functions called Whittaker functions .
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In thenext section I’ll followChapter 5of [CoddingtonLevinson:1955] in sketching theproof of the asymptotic

expansion. In the rest of this one I’ll just assume this to be so and prove:

1.3. Proposition. Suppose F to be an eigenfunction of ∆ on (Γ∩P )\H of moderate growth. Then as y → ∞
∣∣F (x + iy) − F0(y)

∣∣ ≪F e−2πy .

Here I use Serge Lang’s generalization of Onotation—≪F X means ≤ CX where C depends on F .

Proof. We start with
F (x + iy) − F0(y) =

∑

n6=0

e2πnixFn(y)

=
∑

n6=0

cne2πinxW(2π|n|y)

∣∣F (x + iy) − F0(y)
∣∣ ≤

∑

n6=0

∣∣cn

∣∣∣∣W(2π|n|y)
∣∣ .

Since for k > 0
∂kF (x + iy)

∂xk
=

∑

n6=0

(2πin)kcnW(2π|n|y)e2πinx

we have

cn(2πin)kW(2π|n|y) =

∫ 1

0

∂kF (x + iy)

∂xk
e−2πnix dx

cn =
1

(2πin)k

1

W(2π|n|y)

∫ 1

0

∂kF (x + iy)

∂xk
e−2πnix dx

for every k and y, as long asW(2π|n|y) 6= 0. But we also know thatW(t) ∼ e−t. Choose t0 large enough so
1/2 < W(t)/e−t < 2 for t > t0. Let y0 = t0/2π. Thus for y ≥ y0

cn =
1

(2πin)k

1

W(2π|n|y0)

∫ 1

0

∂kF (x + iy0)

∂xk
e−2πnix dx

|cn| ≤
2e2π|n|y0

|2πn|k
∫ 1

0

∣∣∣∣
∂kF (x + iy0)

∂xk

∣∣∣∣ dx

∑

n6=0

∣∣cn

∣∣∣∣W(2π|n|y)
∣∣ ≤ Ck

∑

n6=0

e−2π|n|(y−y0)

|n|k

≤ C∗
k e−2πy

( ∑

n>0

1

nk

)
.

Remark. In general, an automorphic form is a function on Γ\G satisfying these conditions:

(a) it is of moderate growth on G;
(b) it is an eigenfunction of the Casimir operator Ω;

(c) it is an eigenfunction of K with respect to some character.

Choose for the basis of the Lie algebra sl2 the matrices

h =

[
1 0
0 −1

]

ν+=

[
0 1
0 0

]

κ =

[
0 −1
1 0

]
.
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The Casimir element of U(g) may be expressed as

h2

4
− h

2
+ ν2

+ − ν+κ .

IfF is an automorphic form, the third condition above says thatRκf = kiF for some integer k. Also because

of the third condition F is determined by its restriction to the connected component |P | of P . But this may
be identified withH, with coordinates x, y. If

RΩF = γF

then in this coordinate system the restriction satisfies

y2

(
∂2F

∂x2
+

∂2F

∂y2

)
− (ki)y

(
∂F

∂x

)
= γF .

This restriction will again be a sum of functions Fn(y)e2πnix, and Fn will satisfy the equation

y2F
′′

n − 4π2n2y2Fn + 2πknyFn = γFn .

Setting Fn(y) = Φ(2πny) we see that Φ satisfies the differential equation

(1.4) y2Φ′′ − y2Φ + kyΦ = γΦ .

2. Asymptotic expansions for irregular singularities

I now introduce standard notation. IfW ′′ −W = (γ/x2)W and W (x) = W(x/2) then

W ′′ − W

4
=

( γ

x2

)
W .

The differential equation

W ′′ +

(
−1

4
+

k

x
+

1/4 − m2

x2

)
W = 0 .

is called the Whittaker equation with parameters k, m. We are looking at the case k = 0, γ = −1/4 + m2,

but we can see from(1.4) that k 6= 0 arises when we look at more general automorphic forms.

The parameter m may be any complex number, but in interesting cases (related to the spectrum of ∆) its

values are restricted. Since ∆ on Γ\H is a negative operator, −1/4 + m2 ≤ 0, and m consequently must lie

either in [−1/2, 1/2] or in iR.

In general, there is exactly one solution of moderate growth at infinity, and in fact it decreases exponentially.

It has the asymptotic expansion

W ∼ xke−x/2

(
1 +

C1

x
+

C2

x2
+ · · ·

)
.

What we have seen in the last section is that with k = 0, after some minor adjustments to take into account
the scale change in x, the Ci here satisfy the recursion relations

C1 = 2γ

Cn =
2 (γ − n(n − 1))

n
Cn−1 (n ≥ 2)



Maass forms 7

This function is designated Wk,m, the Whittaker function with parameters k, m. As explained in §16.2 of

[WhittakerWatson:1952], Whittaker functions occur frequently in applied mathematics—the error function,

the incomplete Gamma function, the logarithmic integral, and Bessel functions all have simple expressions
in terms of certain Whittaker functions. What is important for our purposes is that they also occur as Fourier

coefficients of automorphic forms on arithmetic quotients and in the Whittaker models of representations of

real groups of rank one. Because of this, they play an important role in the zeta functions of automorphic
representations.

In the rest of this section I’ll take the opportunity to explain what happens more generally for irregular
singularities at ∞.

The Whittaker equation may be transformed into a system of first order equations by the usual trick of
introducing a new dependent variable V = W ′. The system we get is

[
W
V

]′

=

[
0 1

1/4 − k/x − (1/4 − m2)/x2 0

] [
W
V

]
.

The matrix can be expressed as

[
0 1

1/4 0

]
+

1

x

[
0 0

−k 0

]
+

1

x2

[
0 0

m2 − 1/4 0

]
.

This is therefore a special case of a system

y′′ = A(x)y

in which A(z) has a convergent expansion

A(x) = A0 +
A1

x
+

A2

x2
+ · · ·

satisfying the condition that the eigenvalues of A0 are distinct. We shall now look at this more general

situation.

2.1. Proposition. Suppose

A(x) = A0 +
A1

x
+

A2

x2
+ · · ·

to be a convergent expansion near∞, and that the eigenvalues of A0 are distinct. Then there exists a matrix
solution of

F ′ = A(x)F

which has an asymptotic expansion of the form

F (x) ∼ F̂ (x) = P (x)xReΛx ,

where R and Λ are complex matrices that commute with each other and with A0, and P is an asymptotic
series in nonnegative powers of 1/x.

Proof. I’ll follow Chapter 5 of [CoddingtonLevinson:1955], in which a more general result about systems

F ′ = xrA(x) (r ∈ N)

is treated. The proof comes in two steps, the first explaining how to find the components P (x), R, and Λ of

the formal solution, and the second explaining how to relate the formal solution to an asymptotic expansion.



Maass forms 8

First of all, wemay reduce to the case whereA0 is diagonal, replacing F (x) byEF (x) ifEA0E
−1 is diagonal,

since from F ′ = AF we deduce EF ′ = EAE−1 ·EF . If F (x) = P (x)xReΛx then

F ′(x) = P ′(x)xReΛx + (1/x)P (x)RxReΛx + P (x)xRΛ eΛx

so we must solve

P ′(z)zReΛx + (1/x)P (x)RzReΛx + P (x)zRΛeΛx = A(x)P (x)zReΛx .

It will turn out that the matrices R and Λ can be chosen to be diagonal. Therefore they all commute, so we

may cancel zReΛx, leading to the equation

P ′(x) + (1/x)P (x)R + P (x)Λ = A(x)P (x) .

We now equate successively coefficients of the powers of 1/x.

Let the diagonal entries of A0 now be (ai).

Step 1. n = 0. The constant term gives us P0Λ = A0 so we set

P0 = I, Λ = A0 .

Step 2. n = 1. Equating coefficients of 1/x gives us

(2.2) R + P1A0 = A0P1 + A1, R = (A0P1 − P1A0) + A1 .

The following trivial observations will be applied again and again:

2.3. Lemma. (a) If D is a diagonal matrix and B an arbitrary one then DB − BD is a matrix with entries

Bi,j(di − dj) .

(b) If A is any matrix whose diagonal entries do not vanish and AB = C, then the diagonal entries of B may
be found in terms of the entries of A, the diagonal entries of C, and the offdiagonal entries of B.

Proof. The first claim is immediate. For the second:

ci,i = ai,ibi,i +
∑

j 6=i

ai,jbj,i .

Because of (a), equation (2.2) tells us that we may take R = d(A1). Here I write

A = d(A) + A∗

with d(A) the diagonal submatrix of A, A∗ its complement.

Equation (2.2) also tells us that

(P1)i,j =
(A1)i,j

ai − aj

for i 6= j. We therefore know P ∗
1 . We can deduce nothing, however, about the diagonal d(P1). It will be

determined in the next step.
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Step 3. n = 2. Equating coefficients of 1/x2, keeping in mind the assignments of R and Λ, we get

−P1 + P1R + P2A0 = A0P2 + A1P1 + A2

= A0P2 + RP1 + A∗
1P1 + A2

−P1 − (A0P2 − P2A0) = (RP1 − P1R) + A∗
1P1 + A2

(I + A∗
1)P1 − (A0P2 − P2A0) = −(RP1 − P1R) − A2 .

Equating diagonal and offdiagonal components, we deduce first of all that

d((I + A∗
1)P1) = −d(A2) ,

from which, according to (b) of the Lemma, we can find the diagonal entries of P1. Given this, we can then

apply (a) to find the offdiagonal component of P2.

Step 4. n ≥ 3. Suppose that we are given inductively all of the Pm with m < n − 1 and the offdiagonal

matrix P ∗
n−1 of Pn−1. Equating coefficients of 1/xn we get

−(n − 1)Pn−1 + Pn−1R + (PnA0 − A0Pn) = A1Pn−1 + · · · + An

= (R + A∗
1)Pn−1 + · · · + An

= RPn−1 + A∗
1Pn−1 + · · · + An

(−(n − 1)I − A∗
1)Pn−1 + (PnA0 − A0Pn) = (RPn−1 − Pn−1R) + A2Pn−1 + · · · + An .

As in the previous step, this equation determines at once the diagonal of Pn−1 and the offdiagonal of Pn.

This concludes the construction of a formal solution F̂ (x) of the Whittaker equation.

I’ll not include here the proof that F̂ (x) is an asymptotic approximation to a fundamental solution to the
differential equation, except in the special case of Whittaker’s equation with k = 0. Details are to be found

in §5.4 of [CoddingtonLevinson:1955]. The example I shall look at closely has at least a few of the features
to be found in the general case.
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2.4. Proposition. The differential equation

W ′′ −
(

1

4

)
W =

( γ

x2

)
W

has solutions with asymptotic expansions

W ∼ e±x/2
(
1 +

c1

x
+

c2

x2
+ · · ·

)

The solution asymptotic to e−x/2 is unique, but that asymptotic to ex/2 is not, since the sum of it and any

exponentially decreasing solution will have the same asymptotic behaviour.

Proof. The proof will make a couple of applications of the technique called ‘variation of constants’ in

elementary courses on differential equations. Suppose ϕ to be a function which (a) is on each of the positive

and negative axes a solution to the differential equation

W ′′ − (1/4)W = 0 ;

(b) is continuous at 0, but at 0 its first derivative jumps by 1. For example:

ϕ(x) =

{
0 if x < 0;

2 sinh(x/2) otherwise.

Such a function is a solution of the distributional equation

ϕ′′ − ϕ/4 = δ0 ,

as can be easily verified applying integration by parts. Hence the function

F (x) = Ae−x/2 + Bex/2 +

∫ b

a

ϕ(x − s)G(s) ds = Ae−x/2 + Bex/2 + 2

∫ x

a

sinh

(
x − s

2

)
G(s) ds

is a solution of F ′′ − F/4 = G in the interval (a, b). This can also be seen by applying the formula

H ′(x) = h(x, x) +

∫ x

a

∂h

∂x
(x, s) ds

if

H(x) =

∫ x

a

h(x, s) ds .

The first application of this idea, or at least a mildmodification of it, will be to construct a solution asymptotic

to e−x/2. More explicitly, it will construct a solution of the integral equation

F (x) = e−x/2 + 2

∫ ∞

x

sinh

(
s − x

2

)
F (s)

s2
ds

for x > 0 by a sequence of approximate solutions. We set F0(x) = 0, and then in succession

Fn+1(x) = e−x/2 + 2

∫ ∞

x

sinh

(
s − x

2

)
Fn(s)

s2
ds .
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Thus F1(x) = e−x/2. It will turn out that

|Fn(x)| ≤ e−x/2e1/x ,

whichguarantees that every integral converge absolutely. I shall nowshow that the sequenceFn(x) converges
to a solution of the integral equation F (x) e−x/2. By induction, I’ll assume Fn(x) ≤ e−x/2. This is an
argument standard at the very beginning of the theory of differential equations. We have

Fn+1(x) − Fn(x) = +2

∫ ∞

x

sinh

(
s − x

2

)
Fn(s) − Fn−1(s)

s2
ds

which implies that
∣∣Fn+1(x) − Fn(x)

∣∣ ≤
∫ ∞

x

e
s−x
2 · |Fn(s) − Fn−1(s)|

s2
ds .

Thus

|F2(x) − F1(x)| ≤
∫ ∞

x

e
s−x
2 · e−s/2

s2
ds = e−x/2

∫ ∞

x

1

s2
ds =

e−x/2

x

and by induction one can prove that

∣∣Fn+1 − Fn(x)
∣∣ ≤ e−x/2

n! xn
,

leading to ∣∣Fn(x)
∣∣ ≤ e−x/2e1/x, F (x) ∼ e−x/2 .

Integration by parts will lead to a proof that the entire asymptotic series is valid.

The second application of the idea will use

ϕ(x) =

{
−ex/2 if x < 0;
−e−x/2 otherwise.

Again we start off with F0(x) = 0 and set

Fn+1(x) = ex/2 +

∫ ∞

1

ϕ(x − s)
Fn(s)

s2
ds .

Thus F1(x) = ex/2, and Fn(x) = O(e−x/2), as a similar argument will show. The sequence converges to a

solution of the integral equation

F (x) = ex/2 +

∫ ∞

1

ϕ(x − s)
F (s)

s2
ds

which is asymptotic to ex/2.

We shall see later that all partial derivatives of F also decrease exponentially.
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3. Computing Whittaker functions

We know what the asymptotic behaviour of W near ∞ is, but what does it look like on all of (0,∞)? This
is not at all a trivial question, and the problems involved in answering it arise often when discussing the

classic ‘special functions’ It turns out that there are roughly three regions in which it behaves very differently.
One of the three is near ∞, in which the asymptotic exponential decay decribes it in a satisfactory manner.

Another is near 0. The Whittaker differential equation has a regular singularity there. This provides us with

a converging series that oscillates wildly near 0. The most interesting region is in between the other two,
where it switches from oscillation to exponential decay.

WHAT HAPPENS NEAR 0. Whittaker’s equation (with k = 0) is

W ′′ +

(
−1

4
+

1/4 − m2

x2

)
W = 0 .

Let γ = 1/4 − m2. Multiplying through by x2, keeping in mind that W ′′ = D2W − DW , I can rewrite this

as

D2W − DW + (γ − x2/4)W = 0 (D = xd/dx) .

Near x = 0 this looks like the Euler’s equation

D2W − DW + γW = 0 ,

A basis of solutions is made up of functions xr where r is a root of

r2 − r + γ = 0, hence r = 1/2 ±
√

1/4 − γ ,

and in this case

x1/2±m ,

as long as m 6= 0. The singularity is regular, and for the original equation, as long as m − (−m) /∈ N, we

have solutions in converging series, expressed conventionally as

Mm(x) = x1/2±m(1 + c1x + c2x
2 + · · · ) .

In the exceptional cases (including m = 0, after all) there are some log x factors present. I shall ignore these
cases.

Coefficients in this series can be found by recursion. For simplicity I set W = x1/2w, so that

DW = (1/2)x1/2w + x1/2w′

D2W = (1/4)x1/2w + x1/2w′ + x1/2w′′

D2W − DW = x1/2w′′ − (1/4)x1/2w .

We obtain the equation

D2w = m2w + (x2/4)w = 0 .

Set
w = xr + c1x

r+1 + c2x
r+2 + · · · (r = ±m) .

w = xr + c1x
r+1 + c2x

r+2 + c3x
r+3 + · · ·

m2w = r2xr + r2c1x
r+1 + r2c2x

r+2 + r2c3x
r+3 + · · ·

(x2/4)w = (1/4)xr+2 + (c1/4)xr+3 + · · ·
Dw = rxr + (r + 1)c1x

r+1 + (r + 1)c2x
r+2 + (r + 3)c3x

r+3 + · · ·
D2w = r2xr + (r + 1)2c1x

r+2 + (r + 2)2c2x
r+2 + (r + 3)2c3x

r+3 + · · ·
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This gives equations

(2r + 1)c1 = 0

(2r + k)k ck =
ck−2

4

ck =
ck−2

4k(2r + k)
for k > 1 .

As long as 2r is not a negative integer, we see that all c2m+1 = 0, and that all c2m are uniquely determined.
In computation, it is slightly more convenient to work with the series

∑

0

aℓ(x/4)2ℓ .

Since

c2ℓ =
c2(ℓ−1)

16ℓ(r + ℓ)
for k > 1 ,

we have

a0 = 1, aℓ =
aℓ−1

ℓ(r + ℓ)
.

The series converges for all x > 0, but it is not practical to work it with over all of (0,∞). Besides, it does
tell fairly well how the function behaves near 0, but gives no clue as to what happens away from it. In this,

of course, it is much like the series

cosx = 1 − x2

2
+

x4

4!
− · · ·

which certainly does not suggest periodicity, or that for e−x, which does not suggest rapid decay as x → ∞.

It is in fact impractical to use for explicit calculation when |x| ≫ 0.

There is one interesting question that arises naturally. We have a unique solution Wm of Whittaker’s

differential equation that decreases exponentially, and two solutions M±m well defined near 0, with leading
terms x1/2±m. How can W (x) be expressed as a linear combination of Mm and M−m?

This is not at all an easy question to answer. For the moment, I just quote [WhittakerWatson:1941]:

(3.1) Wm =
Γ(−2m)

Γ(1/2 − m)
·Mm(x) +

Γ(2m)

Γ(1/2 + m)
·M−m(x) .

I will come back to this matter in a later version. We shall be most interested in the case that m = iν with ν
real, 0 < x < ∞, in which case Wm(x) is real. The function x−1/2Mm doesn’t vary much in size. Stirling’s

formula tells us that for large t and fixed σ

|Γ(σ + it)| ∼
√

2πe−πt/2 .

so a rough estimate of |Wm(x)| is√x 2e−3πt/4.

What does this function look like?

THE TURNING POINT. The differential equation

W ′′ +

(
−1

4
+

1/4 − m2

x2

)
W = 0

behaves curiously when the coefficient of W vanishes, which happens when

1 − 4m2 − x2 = 0, x =
√

1 − 4m2 .
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Thsi value of x is called the turning point . I’ll consider only the case that m = iν is pure imaginary, in which

case 1 − 4m2 = 1 + 4ν2 is positive. The turning point is then approximately 2ν for ν ≫ 0. In the theory of

automorphic forms, this is the interesting case. I am about to discuss it, but in order to match notation in the
literature I’ll now make yet another change of variables.

Define
Km(x) =

√
π/2xWm(2x) .

It is a kind of Bessel function. Dividing W by the factor
√

z will turn out to have one great advantage in

understanding behaviour—we shall be most interested in the case m = iν, in which case the function Kiν

behaves in a rather intelligible way, whereas the factor x1/2 causes various phenomena to be masked.

To start things off, I’ll exhibit in a moment the graphs of K4i, K12i, and K20i. There is one thing about these
graphs that has to be explained. As we have seen, the rough size of Kiν is

µν = e−3πν/4 .

This decreases rapidly as ν grows, so I shall scale the vertical axis to take this into account. Before I show the
graphs, let me summarize what we already know about Kiν .

(3.2) Kiµ(x) = C−iνxiν + Ciνx−iν + O(x2) (Cm =
√

π/2 ·Γ(2m)/Γ(1/2 + m), for x near 0.

(3.3) Kiν(x) ∼ x−1/2e−x/2 as x → ∞.

Since xiν = eiν log x, the first tells us that Kiν oscillates wildly near 0. The second says it vanishes rapidly at
∞. The interesting question is, how do these two features merge?

ν

y = 2
√

πµν

y = K4i(x) (scaled vertically)

ν

y = 2
√

πµν

y = K12i(x) (scaled vertically)
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ν

y = 2
√

πµν

y = K20i(x) (scaled vertically)

The answer lies in the approximation formula

K⊂ν(x) ∼ πe−πν/2(x/2)−1/3Ai(−(x/2)−1/3(ν − x) .

(From [MagnusOberhettingerSoni:1966], §3.14.3.) Here Ai is the Airy function, which I recall in the next

subsection. It is this that explains the similarities among the graphs in the regions clustering around ν.

AIRY FUNCTIONS. The Airy function Ai(x) is defined by the formula

Ai(x) =
1

2π

∫ ∞

−∞

cos(t3/3 + xt) dt .

It is also a solution of the differential equation

y′′ = xy ,

which is surely the simplest equation that exhibits a turning point (here, x = 0), and serves as a genericmodel
for all differential equations with turning points of order 1. It was discovered by the English astronomer

and mathematician George Biddell Airy, in connection with diffraction phenomena occurring in rainbows.

He computed tables of Ai(x), but only with an extraordinary amount of trouble, by numerical integration.
A bit later, Augustus De Morgan suggested to Airy, albeit against some resistance, how he could use Taylor

series instead of his laborious numerical method. This was certainly an improvement, but this technique

failed for |x| larger than about 4 or 5, because of increasingly large oscillations in the series that tended to
cancel one another. Even today this remains a difficulty, because computers operate with limited precision

(whereas Airy operated with limited time and energy). This problem was eliminated by George Gabriel
Stokes’ introduction of asymptotic but nonconverging series, which had hitherto been scorned. This was

not only quite practical, but explained perfectly the asymptotic behaviour one could guess at, but without

rigourous justification, from Airy’s calculations.

Because of new interest in computingMaass forms, the computation ofWhittaker functions has had a revival.

[BookerStrömberssonThen:2011] explains a good algorithm to compute Kiν , and [TemplierBrumley:2014]
discusses what happens for analogues of Maass forms for the groups GLn.
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