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When Ian Macdonald’s book Spherical functions on a group of p-adic type first appeared, it was one of
a very small number of publications concerned with representations of padic groups. At just about that

time, however, the subject began to bewidely recognized as indispensable in understanding automorphic

forms, and the literature on the subject started to grow rapidly. Since it has by now grown so huge,
in discussing here the subsequent history of some of Macdonald’s themes I shall necessarily restrict

myself only to things closely related to them. This will be no serious restriction since some of the most
interesting problems in all of representation theory—among others, those connected with Langlands’

‘fundamental lemma’—are concerned with padic spherical functions. Along the way I’ll reformulate

from a few different perspectives what his book contains. I’ll begin, in the next section, with a brief
sketch of the main points, postponing most technical details until later.

Throughout, suppose k to be what I call a padic field, which is to say that it is either a finite extension of
some Qp or the field of Laurent polynomials in a single variable with coefficients in a finite field. Further

let

• o = the ring of integers of k;
• p = the maximal ideal of o;

• ̟ = a generator of p;
• q = |o/p|, so that o/p ∼= Fq.

Let D be a field of characteristic 0, which will play the role of coefficient field in representations. The

minimal requirement on D is that it contain
√
q, but it will in the long run be convenient to assume that

it is algebraically closed. It may usually be taken to be C, but I want to emphasize that special properties
of C are rarely required.

In writing this note I had one major decision to make about what class of groups I would work with.
What made it difficult was that there were conflicting goals to take into account. On the one hand, I

wanted to be able to explain a few basic ideas without technical complications. For this reason, I did

not want to deal with arbitrary reductive groups, because even to state results precisely in this case
would have required much distracting effort—effort, moreover, that would have just duplicated things

explained very well in Macdonald’s book. On the other, I wanted to illustrate some of the complexities

that Macdonald’s book confronts. In the end, I chose to restrict myself to unramified groups. I will
suppose throughout this account that G is a reductive group defined over k arising by base extension
from a smooth reductive scheme over o. I hope that the arguments I present here are clear enough
that generalization to arbitrary reductive groups will be straightforward once one understands their fine

structure. I also hope that the way things go with this relatively simple class of groups will motivate

the geometric treatment in Macdonald’s book, which although extremely elegant is somewhat terse and
short of examples. I’ll say something later on in the section on root data about their structure.

Upon learning that I was going to be writing this essay, Ian Macdonald asked me to mention that Axiom
V in Chapter 2 of his book is somewhat stronger than the corresponding axiom of BruhatTits, and not

valid for the type C–B 2 in their classification. Deligne pointed this out to him, and made the correction:

Axiom V. The commutator group [Uα, Uβ] for α, β > 0 is contained in the group generated by
the Uγ with γ > 0 and not parallel to α or β.
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1. Introduction

Let P be a minimal parabolic subgroup of G arising from a minimal parabolic subgroup of G(o). The
group G(o) is a smooth scheme, and like its reduction modulo p it is quasisplit, which is to say that P
is a Borel subgroup. Let

• N = NP , its unipotent radical;

• M = MP , a copy in P of the Levi quotient P/N , which is a torus since P is a Borel subgroup;
• P = the parabolic subgroup opposite to P , with P ∩ P = M ;

• A = AP , the maximal split torus ofM ;

• T = M/M(o), a free Zmodule containing the sublatticeA = A/A(o);
• W = NG(A)/M , the Weyl group of the pair (G,A);
• K = G(o), a compact subgroup of G;
• I = the Iwahori subgroup ofK determined by P , the inverse image inK of the Borel subgroup of

G(o/p) associated to P ;

• δP = | detAdn|, the modulus character of P ;
• Σ = the roots of the pair (G,A), the nontrivial eigencharacters of the adjoint action of A on the Lie

algebra g;

• Σ+ = the subset of positive roots determined by P , so that

n =
⊕

α>0

gα ;

• ∆ = the basis of Σ+, so that every root λ in Σ+ is a sum of roots in ∆;
• Σ∧ = the coroots of the system, contained in the lattice

X∗(A) = Hom(Gm, A) ;

• for each Θ ⊂ ∆
AΘ =

⋂

α∈Θ

ker(α) .

• Γ will be the Galois group of the maximal unramified extension knr/k, generated topologically by

the Frobenius F

Thus A∅ = A itself and A∆ is the maximal split torus in the centre of G. Representatives of W may
always be chosen in K . The centralizer of AΘ is the reductive component MΘ of a unique parabolic
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subgroup PΘ containing P . Let M̃Θ be the simply connected cover of its derived group. The only case
we’ll really care about is when Θ is a singleton {α}.
A simple example that’s good to keep in mind is that of G = GLn(k), where P is the Borel subgroup
of upper triangular matrices, P the lower triangular matrices, W the symmetric group Sn, and K =

GLn(o). Here each of the groups M̃{α} is a copy of SL2.

I recall here some elementary facts about reductive groups over padic fields. Such a group G possesses
as basis of open sets at 1 a sequence of compact open subgroups, which can be taken to be the congruence
subgroups

G(pn) = {g ∈ G(o) | g ≡ I (mod pn)} .
Suppose G(o) to be embedded in GLn(o), defined by polynomial equations Pi = 0. Since

P (I + εX) = P (I) + ε〈dPi(I), X〉 + O(ε2)

the Lie algebra of G(Fq) may be identified with the linear subspace of matrices X modulo p such that

all 〈dPi(I), X〉 vanish. Since G is a smooth group scheme over o, it follows from Hensel’s Lemma

that whenever n ≥ 1 the map taking X to I +̟nX induces an isomorphism of this Lie algebra with
G(pn)/G(pn+1).

The space C∞(G,D) of smooth functions onGwith values in D will be made up of those that are locally
constant.

Keep in mind that if S is any algebraic torus, then

X∗(S) = Hom(Gm, S), X∗(S) = Hom(S,Gm)

are both free Zmodules of finite rank, or what I’ll call lattices , canonically dual to each other through
the pairing into Hom(Gm,Gm) ∼= Z—for all x in k×

α(β∨(x)) = q〈α,β∨〉 .

I’ll generally use additive notation for both lattices, and write xλ for the image of x in Gm with respect

to λ inX∗(S).

For a split torus S defined over a padic field ℓ something special occurs—the group S(ℓ) is isomorphic

to (ℓ×)n and the map taking χ∧ to χ∧(̟) induces an isomorphism ofX∗(S) with S(ℓ)/S(oℓ).

Another thing thatmakes theunramifiedgroups simpler thanarbitraryones, as I have alreadymentioned,

is that the Levi componentM of the minimal parabolic subgroup is a torus. Yet another is this:

1.1. lattices. The embedding of A into M induces an isomorphism of the lattices A = A/A(o) and[Proposition]

T = M/M(o).

Proof. The torus M splits over the maximal unramified extension knr of k. Because A is the maximal
split ktorus inM , inclusion identifies the lattices

X∗(A) = X∗(M)Γ .

Therefore
A(k)/A(o) ∼= X∗(A)

∼= X∗(M)Γ

∼=
(
M(knr)/M(onr)

)Γ
.

The short exact sequence of Γ modules

1 −→M(onr) −→M(knr) −→M(knr)/M(onr) −→ 1
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leads to a long exact sequence

1 −→ M(o) −→M(k) −→
(
M(knr)/M(onr)

)Γ

−→ H1
(
Γ,M(onr)

)
−→ . . .

Explicitly, the final map takesm inM(knr) invariant moduloM(o) tomm−F. So the Proposition follows

from this:

1.2. langs. IfH is any unramified group over k thenH1
(
Γ, H(onr)

)
= 1.[Lemma]

Proof. Equivalently, it must be shown that the map x 7→ xx−F is surjective on H(onr). FilterH(onr) by
the kernels of the projections

H(onr) −→ H(onr/p
n
nr)

which are surjective byHensel’s Lemma. Each graded term of this filtration is an algebraic groupdefined

over the finite field o/p, and the classic result of Serge Lang ([Lang:1956]—see also Proposition 3, VI.4

of [Serre:1959] or [Müller:2003]—implies that x 7→ xx−F is surjective on the group of its points rational
over the algebraic closure of Fq. An induction argument concludes.

If χ is a character ofM with values in D× that’s trivial onM(o), it will induce one of T . It is said to be an
unramified character ofM . It also induces a character of P trivial onN . The representation Ind(χ |P,G)
ofG induced by χ is the right regular representation ofG on the space of all smooth functions f : G→ D

such that
f(pg) = δ

1/2
P (p)χ(p)f(g)

for all p in P , g in G. The factor δ
1/2
P is a useful normalization, as we’ll see later. Since G = PK , the

restriction of this representation toKmay be identifiedC∞(K∩P\K,D). In particular, the dimension of

the subspace of vectors fixed by an open compact subgroup is finitedimensional, and the representation
is admissible .

Its admissible dual is noncanonically isomorphic to Ind(χ−1 |P,G). Assign a Haar measure onGwith
K of measure 1. The duality then sets

〈f, f̃〉 =

∫

K

f(k)f̃(k) dk .

These representations of G are called the unramified principal series .

1.3. vK. The subspace of vectors in Ind(χ) fixed by elements ofK has dimension one.[Proposition]

Proof. Again since G = PK .

Conversely, if (π, V ) is any irreducible admissible representation of G with V K 6= 0, in which case π is

said to be an unramified representation of G, then π embeds into some Ind(χ). Let ϕχ be the unique
function in Ind(χ) fixed byK with ϕχ(1) = 1.

Unramified representations are important for global arithmetical reasons. If
⊗̂
πv is a representation

of an adèlic group G(A) then for all but a finite number of valuations v both the group G(kv) and the
representation πv will be unramified. That each unramified πv embeds into an unramified principal

series is where the application of representation theory to automorphic forms begins.

The Hecke algebra H(G//K) is that of all left and rightKinvariant functions of compact support on

G, with convolution as its multiplication. If (π, V ) is any admissible representation of G then every

function in this Hecke algebra becomes an operator on V K according to the formula

π(f)v =

∫

G

f(g)π(g)v dg .
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When V K is onedimensional, the Hecke operators act as scalars. Hence:

1.4. unramifiedchi. If χ is an unramified character of M and π = Ind(χ), there exists a unique ring[Proposition]

homomorphism cχ fromH(G//K) to D such that

π(f)ϕχ = cχ(f)ϕχ

for every f inH(G//K).

These operators originated in work of Ramanujan as interpreted by Mordell, but were then taken up

with muchmore care by Hecke. In this classical work the global Hecke operators T (1, p) and T (p, p) act
on automorphic forms on quotients of the upper halfplane by congruence subgroups of SL2(Z). In this
environment, the local nature of these operators was disguised by the fact that Z possesses strong unique

factorization. This confusion extended at first to GLn, but local operators were introduced when the

methodsofTate’s thesiswere introduced todivision algebras (avoidinguntil later theproblems in analysis
that arise withmatrix algebras). The expositions in [Tamagawa:1963] and in §3.2 of [Shimura:1971] show

some of this development.

For a given f the function cχ(f) is in some sense a polynomial function of χ. The best way to see this is

to look at the ‘generic’ or ‘tautologous’ unramified character χ of M , which takes m inM to its image

moduloM(o) in the group algebraR = H(M//M(o)). For example, ifG = GLn thenA ∼= (k×)n andR
is isomorphic to D[x±1

i ]. This tautologous character induces a representation ofG on the space of locally

constant functions on G with values in R such that

f(pg) = δ
1/2
P (p)χ(p)f(g)

for all p in P , g in G. The submodule of functions in this fixed by K is free of rank one over R, and we

get therefore a ring homomorphism S = cχ from H(G//K) to R. Any character χ ofM with values in

D× is a specialization of the generic one, and cχ(f) then a specialization of S(f).

If w is an element of the Weyl group W , then generically Ind(χ) and Ind(wχ) are isomorphic, which

implies that for any f inH(G//K) the image of f inH(M//M(o)) isW invariant. Theorems going back
toHecke, Tamagawa, Satake, and BruhatTits, with contributions fromothers, assert that thismap, which

is commonly called the Satake transform to acknowledge the nice axiomatic treatment in [Satake:1963],
induces an isomorphism of H(G//K) with H(M//M(o))W . When G = GLn, for example, the ring

H(M//M(o)) is D[x±1
1 , . . . , x±1

n ] and the Weyl group is Sn, so every f is mapped onto a polynomial in

the variables x±1
i invariant under permutation of the variables.

Let A−− be the a in A such that |α(a)| ≤ 1 for all ∆, and let T −− be its image in T . The cone T −− is

a fundamental chamber forW in the lattice T . The Cartan decomposition asserts that G is the disjoint
union of cosets KtK where t ranges over T −−. The Hecke algebra therefore has as linear basis the

characteristic functions charKtK , t in T −−. When G = GLn the quotient G/K can be interpreted as

olattices in kn, sinceK is the stabilizer of on, and this is just the principal divisor theorem.

The usual proof of the Satake isomorphism, which we’ll see later on, is not constructive since it does not

say which element ofH(M//M(o))W is the image of charKtK . Although special cases had been known
previously, a general recipe was first found by Langlands and Macdonald, independently. Langlands’

version was announced in his 1967 lectures on Euler products (published first as notes in mimeographed

form, later by the Yale Mathematics Department in [Langlands:1971]), in which he applied his result to
deduce the convergence of certain Lfunctions. His reasoning was valid only for certain nondegenerate

asymptotic values of t and only for Chevalley groups. Unitarity of cusp forms implied that matrix

coefficients of local factor representations were bounded, and his asymptotic formula was good enough
to allow him to deduce bounds on χ. The first version announced in [Macdonald:1968] was also valid

only for Chevalley groups, but good for all t. His more precise result wasmore difficult to prove, but also
more elegant. In his book, Macdonald deals with arbitrary simply connected groups, applying results
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of BruhatTits on the fine structure of G. Extending Macdonald’s formula to all reductive padic groups

was apparently done first in [Casselman:1980].

The first step in explaining Macdonald’s result is a slight reformulation of the problem. If f = charKtK

we can write

π(f)ϕχ =

∫

G

f(g)R(g)ϕχ dg

=
∑

x∈KtK/K

Rxϕχ

=
∑

k∈K/K∩tKt−1

Rktϕχ

and since cχ(f) is π(f)ϕχ evaluated at 1, this leads to

cχ(f) = |KtK/K|
∫

K

ϕχ(kt) dk

= |KtK/K|
∫

K

ϕχ(kt)ϕχ−1(k) dk

= |KtK/K| 〈Rtϕχ, ϕχ−1 〉 .

In other words

cχ(f) =
meas(KtK)

meas(K)
Φχ(t)

where Φχ(g) is the spherical function associated to Ind(χ), that is to say the matrix coefficient

〈Rgϕχ, ϕχ−1 〉 =

∫

K

ϕχ(kg) dk .

One merit of working with Φχ, as we’ll see in a moment, is that it has a more uniform expression than

cχ(f). Another is that it introduces the more general question of how to evaluate matrix coefficients
explicitly. But before I exhibit that expression, I’ll first say something about the volume factor.

We have put onG aHaar measure withmeas(K) = 1, but there is another equally natural way to choose
one. According to what is often called the Bruhat decomposition , the group G is covered by disjoint

double cosets PwP = PwN as w ranges over W , and PwℓN is the unique one of these that’s open,

where wℓ is the longest element ofW . If we put on P and N the Haar measures with P (o) and N(o) of
measures 1, then there is a unique Haar measure on G such that the integral of f overG is

∫

P

dℓp

∫

N

f(pwℓn) dn

whenever f has support on PwℓN . These two Haar measures on G must be proportional to each
other—there exists a rational constant µG such that

∫

G

f(g) dg = µG

∫

P

dp

∫

N

f(pwℓn) dn

where the integral on the left is with respect to that with meas(K) = 1. It is not difficult to evaluate this

constant explicitly. We start with the following, which will be useful later on.

1.5. langs. (Iwahori factorization) We can factor the Iwahori subgroup as[Lemma]

I = N(o)M(o)N(p)
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whereN(p) is the subgroup of elements ofN(o) reducing to 1 modulo p.

Proof. This can be found as 2.6.4 in Macdonald’s book, but it’s easy enough to prove directly for

unramified groups. If g lies in I , then modulo p it lies in P (Fq), and because P (o) is smooth there exists
g in P (o) with the same image (Hensel’s Lemma). From now on we work by induction to prove that g
has the factorization we want. This means we might as well assume g to be in N(o)M(o)N(p) modulo
pn, and try to factor it similarly modulo pn+1. But this follows from the conclusion of the previous

paragraph, and the decomposition

gFq = nFq + mFq + nFq .

As a consequence of the lemma, the coset IwℓI is completely contained in PwℓN , so to compare the two
measures we can integrate over it. This gives us

µG =
meas(IwℓI)

meas(K)
.

The Bruhat decomposition for G(Fq) tells us that K is the disjoint union of the cosets IwI as w ranges

overW . For each w inW let q(w) = |IwI/I|. Thus

µG =
q(wℓ)∑
w q(w)

.

If ℓ(xy) = ℓ(x) + ℓ(y) then q(xy) = q(x)q(y). Also q(w−1) = q(w). Hence q(w)q(wwℓ) = q(wℓ) and

µG =
1∑

W q(w)q(wℓ)−1
=

1∑
W q(wwℓ)−1

=
1∑

W q(w)−1
.

It is not difficult to compute individual q(w), since if w has a reduced expression w = s1 . . . sn then

q(w) = q(s1) . . . q(sn). If G is split, then q(s) = q for all s in S, and q(w) = qℓ(w). If G = GLn, for
example, the quotientK/I may be identified with a flag manifold over o/p, and has size

(1 + q)(1 + q + q2) . . . (1 + q + q2 + · · · + qn−1)

giving

µG =
1

(1 + q−1)(1 + q−1 + q−2) . . . (1 + q−1 + q−2 + · · · + q−(n−1))
.

The analogous problem arises with real reductive groups as well, and was first dealt with by Harish
Chandra. A formula for µG arises naturally in the context of Tamagawa measures, for example in

Langlands’ paper [Langlands:1966] at the Boulder conference. In view of the occurrence of the constant

so often in Macdonald’s book, it is of interest that he wrote later the short paper [Macdonald:1980] on
the analogous question for certain real groups.

This same constant occurs in many contexts, not always for transparent reasons. So it is here. Suppose
t to be an element of T , and let a be an element of A equivalent to it modulo M(o). The centralizer

of a is a reductive group Mt, and if t lies in T −− this is the Levi component of a parabolic subgroup
containing P . For t = 1 this will be G itself, and for a generic t it will just be T . An equivalent way to

classify elements of T is by the subgroup ofW fixing them, which will be the Weyl group of the group

Mt. At any rate, we can partition T −− into subsets T −−
M in this way, essentially by the walls of the Weyl

chamber T −−. The formula for the volume ofKtK depends on which of these sets t belongs to.

1.6. volume. For all t in T −−
M[Proposition]

|KtK/K| =
(
µM

µG

)
δ−1
P (t) .
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This is proven in §3.2 of Macdonald’s book for simply connected groupsG, but the same proof is valid in

general. The basic idea is to decomposeKtK into double cosets IxI where now x runs through certain
elements of an affine Weyl group we’ll meet later on.

A simple example will make the nature of this result clearer, perhaps. Let G = GL2 and take

t =

[
̟r 0
0 1

]

with r > 0. Then
|KtK/K| = |K/K ∩ tKt−1| .

NowK ∩ tKt−1 is the group of matrices

[
a1,1 ̟ra1,2

a2,1 a2,2

]

with all ai,j integral. The quotientK/K ∩ tKt−1 therefore factors over P1(Fq) with a fibre of cardinality
qk−1, so that in this case

|KtK/K| = qr−1(q + 1) = (1 + q−1) qr ,

which agrees with the Proposition. It is instructive to do a similar calculation for various t inGL3.

For each root α, recall thatA{α} is the subgroup of a inAwith α(a) = 1,M{α} its centralizer, a reductive

group of semisimple split rank one, and M̃{α} the simply connected covering of the derived group of

M{α}. The group M̃{α} is an unramified, simply connected, simple group of split rank one. It is not too

difficult to see that there are very few such groups. Indeed, any of them must be isomorphic to one of

two kinds:

• SL2(F ) where F is an unramified finite extension of k;
• an unramified unitary group SU3(E/F ) of dimension 3 defined over an unramified finite extension
F .

Any group G over F , of course, determines an algebraic group G over k by restriction of scalars. In
functorial terms, if R is any ring containing k thenG(R) = G(F ⊗k R).

In the second case, letE/F be the unramified quadratic extension of F , and letH be the Hermitian form
x1x3 + x2x2 + x3x1 on E3, where x is the quadratic conjugate of x in E. The group I call SU3(E/F ) is
the special unitary group ofH , that of all matricesX in GL3(E) of determinant 1 such that

tXJ X = J or J tX−1J = X

where

J =




1
−1

1


 .

The map X 7→ J tX−1J is an involutory automorphism of SL3 taking the group of upper triangular

matrices to itself. If

X =



a

b
c




then

J tX−1J =



c−1

b−1

a−1
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so the diagonal matrices in SU3 are the matrices



x

x/x
x−1


 .

If

X =




1 x y
1 z

1




then

J tX−1J =




1 z xz − y
1 x

1




so the unipotent ones are the 


1 x y
1 x

1




with y + y = xx.

In either case, let α be the unique indivisible positive root, and let aα = α∧(̟). It is the image of an

element ãα in M̃α, namely

ãα =





[
̟

̟−1

]
if M̃α = SL2(E)



̟

1
̟−1


 if M̃α = SU3(E)

For each α in Σ define

cα,χ =





1 − q−1
E χ(aα)

1 − χ(aα)
if M̃α = SL2(E)

(
1 − q−2

E χ(aα)
)(

1 + q−1
E χ(aα)

)

1 − χ2(aα)
if M̃α = SU3(E)

and then set
γχ =

∏

α>0

cα,χ−1 .

If w is inW and χ is a character ofM , then wχ is the character defined by

wχ(m) = χ(w−1mw) .

A regular or non-singular character is one not fixed by any w inW . Macdonald’s formula for Φχ asserts
that

1.7. regular. If χ is a regular unramified character ofM and t in T −− then[Proposition]

Φχ(t) = µG δ
1/2
P (t)

∑

w∈W

γwχ wχ(t) .
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There is also a version for singular characters, obtained by taking the limit of the one above (a variation

of de l’Hôpital’s rule). This formula is in some sense the analogue for padic groups of theWeyl character

formula for real reductive groups, and indeed there is a subtle relationship between the two.

The constant µG is, as we have seen, a ratio of measures on G. The proof of Macdonald’s formula to be

given later will make this role clear.

The proof of the formula for Φχ given in Macdonald’s book has many admirable features, but I think it

is fair to say that subsequent results on admissible representations of reductive padic groups allow one
to understand it better. The proof I presented in my 1980 paper had the virtue that it extended without

trouble to generic Hecke algebras, in which q becomes simply a variable and the group has disappeared.

This is shown particularly in [Kato:1982], which used also results from [Matsumoto:1977]. It has become
more or less the standard proof; it is the one presented, for example, in [HainesKottwitzPrasad:2004]. In

retrospect, however, I find this proof unsatisfactory. The trouble with it, as with all the proofs that work

with a generic variable q, is that it doesn’t distinguish between quite different groups where the value of
q is the same. That is to say, SL2(Qp) and SL2(Fp(T )) are equivalent as far as this technique is concerned.
Of course this is a virtue in many ways, but it doesn’t tell you how to deal, for example, with ramified
representations. This is part of a recent trend that has indeed made clearer much of the representation

theory of padic groups, but at the cost of obscuring what I think of as the core of the subject. For that

reason, I’d like to think that the argument I sketch later on in this account is in several ways preferable.
It is based on an idea that first occurs in Langlands’ original exposition, and its relevance to the present

question is more explicitly formulated in [Waldspurger:1989]. The point of this argument will be to place

the formula in a larger context, so that one understands to what extent such a result holds for arbitrary
matrix coefficients on G, and to what extent the spherical function itself is special.

Example. Let G = SL3(k) and χ = δ
−1/2
P . The induced representation Ind(χ) is that on C∞(P\G),

which contains the trivial representation of G. The spherical function itself in this case is identically 1.
What expression does the formula produce? There are three coroots α and their coroot images aα are



̟

̟−1

1


 ,




1
̟

̟−1


 ,



̟

1
̟−1




mapped by δ
1/2
P to q, q, and q2. So the formula tells us that

1

1 + 2q−1 + 2q−2 + q3
(1 − q−2)(1 − q−2)(1 − q−3)

(1 − q−1)(1 − q−1)(1 − q−2)

=
(1 + q−1)(1 + q−1 + q−2)

1 + 2q−1 + 2q−2 + q3
= 1 .

For every simply connected split group G, say of rank n, one obtains a similar result when χ is δ
−1/2
P .

The well known result of [Kostant:1956] (reproved by more algebraical methods in [Macdonald:1972])

implies that
∏

α>0

1 − q−1δ
−1/2
P (aα)

1 − δ
−1/2
P (aα)

=

n∏

i=1

1 − q−mi−1

1 − q−1

where the mi are the Coxeter exponents of W . That this in turn is equal to
∑

w∈W q−ℓ(w) as was
proven in general first in [Solomon:1966], and reproven many times subsequently. This is also related

to the computation of the number of points on the flag manifold in terms of its cohomology and to the
calculation of Tamagawa numbers in [Langlands:1966].
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Example. LetG = PGL2(k). Let

ω =

[
̟

1

]
modulo the centre, X = χ(ω) .

Here aα = ω2 and

δ
1/2
P (ω) = q−1/2 .

Thus ω generates A−−/A(o), and Macdonald’s formula tells us that

Φχ(ωm) =
δ
1/2
P (ωm)

1 + q−1

[
1 − q−1χ−1(aα)

1 − χ−1(aα)
χ(ωm) +

1 − q−1χ(aα)

1 − χ(aα)
χ−1(ωm)

]

=
q−m/2

1 + q−1

[
1 − q−1X−2

1 −X−2
Xm +

1 − q−1X2

1 −X2
X−m

]

=
q−m/2

1 + q−1

[(
Xm+1 −X−(m+1)

X −X−1

)
− q−1

(
Xm−1 −X−(m−1)

X −X−1

)]

This leads to a formula for cχ(f), the image of f under the Satake homomorphism. Ifm = 0 then

cχ(charKωmK) = cχ(charK) = 1

and otherwise

cχ(charKωmK) = qm/2

[(
Xm+1 −X−(m+1)

X −X−1

)
− q−1

(
Xm−1 −X−(m−1)

X −X−1

)]
.

Following an earlier suggestion, let χ be the tautologous character, with every element of T mapping to

its image in T . In this caseX is just the image of ω in T . It is legitimate then to write the formula above
as

S(charKωmK) = qm/2

[(
ωm+1 − ω−(m+1)

ω − ω−1

)
− q−1

(
ωm−1 − ω−(m−1)

ω − ω−1

)]

= qm/2
(
ωm + ωm−2 + · · · + ω−m

)
− qm−2/2

(
ωm−1 + ωm−3 + · · · + ω−(m−1)

)

whichmakes the connectionwithH(M//M(o)) inescapable. In any event, this is a fascinating expression
if you are addicted to qology, and we’ll look at it again later on to see if we can understand what it’s

trying to tell us.

Example. LetG = SL2,

ω =

[
̟

̟−1

]
.

Here aα = ω and

δ
1/2
P (ω) = q−1 .

Form > 0

S(charKωmK) = qm

[(
1 − q−1ω−1

1 − ω−1

)
ωm +

(
1 − q−1ω

1 − ω

)
ω−m

]

= qm
(
ωm + ωm−1 + · · · + ω−m

)
− qm−1

(
ωm−1 + ωm−2 + · · · + ω−(m−1)

)
.

Example. LetG = SU3,

ω =



̟

1
̟−1


 .
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Here ω = aα and

δ
1/2
P (ω) = q−2 .

Form > 0

S(charKωmK)

= q2m

[
(1 − q−2ω−1)(1 + q−1ω−1)

1 − ω−2
ωm +

(1 − q−2ω)(1 + q−1ω)

1 − ω2
ω−m

]

= q2m

[
(ω − q−2)(1 + q−1ω−1)

ω − ω−1
ωm − (ω−1 − q−2)(1 + q−1ω)

ω − ω−1
ω−m

]

= q2m

[
ωm+1 − ω−(m+1)

ω − ω−1

]
− q2m−2

[
ωm − ω−m

ω − ω−1

]

+ q2m−1

[
ωm − ω−m

ω − ω−1

]
− q2m−3

[
ωm−1 − ω−(m−1)

ω − ω−1

]
.

This formula is a bit more puzzling than the ones for PGL2 and SL2.

In the next few sections I’ll fill in some details of things I have only sketched here. The principal aim of
these sections will be to sketch proofs of the principal results concerning unramified representations:

1.8. satakeiso. (Satake isomorphism) If χ takes t to its imagemoduloM(o), then themap taking f in the[Theorem]

Hecke algebraH(G//K) to cχ(f) induces an isomorphism of this Hecke algebra withH(M//M(o))W .

1.9. embeds. Any unramified admissible representation (π, V ) of G embeds into some Ind(χ).[Theorem]

The character χ will generally not be unique, but itsW orbit will be. In any case, the subspace V K will

consequently have dimension 1, and there exists a ring homomorphism cπ fromH(G//K) toD such that

π(f)v = cπ(f)v

for all f inH(G//K) and v in V K . I call this the characteristic homomorphism of π.

1.10. heckemap. If c is any ring homomorphism from H(G//K) to D, there exists up to isomorphism[Theorem]

exactly one irreducible admissible representation (πc, V ) of G whose characteristic homomorphism is
c.

1.11. macformula. Macdonald’s formula for the spherical function:[Theorem]

Φχ(t) = µG δ
1/2
P (t)

∑

w∈W

γwχ wχ(t) .

This discussion will include a very brief introduction to admissible representations. After these things

have been dealt with in this Part I, I’ll take up more briefly in Part II some questions discussed in
Macdonald’s book aswell as a fewmore recent developments concernedwith unramified representations

that were only dimly foreshadowed there. Some of these questions are:

• What is the explicit inverse of the Satake transform?
• Which unramified representations are unitary?
• Which unramified representations are expected to occur globally on arithmetic quotients?
• What are the characters of unramified representations?
• Are unramified representations for different groups related?
• How do things change if G is ramified?
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2. The unramified principal series

There has been one deceptively simple but farreaching change since Macdonald’s book first appeared
in how representations of padic groups are dealt with. Real analysis (should I say instead ‘authentic’

analysis?) has largely disappeared from the subject, to be replaced by algebra. Recall that D is an

arbitrary field of characteristic 0 containing
√
q. An admissible representation π ofG over the field D is

a representation of G on a Dvector space V with these two properties:

• (Smoothness) The isotropy group of every v in V is open in G;
• (Admissibility) ifK is any compact open subgroup of G, then the subspace of vectors in V fixed by

K has finite dimension.

This elementary innovation was introduced rather casually in the book [JacquetLanglands:1971] and

simplified the subject enormously.

If (π, V ) is an admissible representation of G then the space of smooth Dlinear functions on V makes

up its admissible dual (π̃, Ṽ ), withG acting contragrediently:

〈v, π̃(g)ṽ〉 = 〈π(g−1)v, ṽ〉 .

The original representation is itself the admissible dual of Ṽ . Asssociated to π is the Dvector space of

its matrix coefficients , the smooth functions in C∞(G,D) of the form 〈π(g)v, ṽ〉 for v in V , ṽ in Ṽ . This

is acted on byG on both right and left.

One simple way to construct admissible representations is by parabolic induction . Here, we’ll look only

at induction from the minimal parabolic subgroup P . If

χ: M → D×

is a smooth multiplicative character ofM , it induces a character of P trivial onN . The representation of

G induced by χ from P is the right regular representation of G on

Ind(χ |P,G)

= {f ∈ C∞(G,D) | f(pg) = δ
1/2
P (p)χ(p)f(g) for all p ∈ P, g ∈ G} .

This is an admissible representation of G since P\G is compact.

If χ = δ
−1/2
P then Ind(χ) is just C∞(P\G). If χ = δ

1/2
P then Ind(χ) will be the space of smooth

one-densities on P\G. Let me explain.

The groupG is unimodular, but the parabolic subgroupP is not. This implies that there is noGinvariant

measure on the quotient P\G. Instead, we have the following situation. Fix a Haar measure dg on G
such that meas(K) = 1, and fix a leftinvariant Haar measure dℓp on P such that meas(P ∩ K) = 1.
Because G = PK and G andK are both unimodular

∫

G

f(g) dg =

∫

P

dℓp

∫

K

f(pk) dk .

The function

f(x) =

∫

P

f(px) dℓp
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satisfies

f(p0x) =

∫

P

f(pp0x) dℓp

=

∫

P

f(px) dℓpp
−1
0

= δP (p0)

∫

P

f(px) dℓp

= δP (p0)f(x) ,

or in other words lies in Ind(δ
1/2
P ). The integral formula just above therefore implies that integration

∫

K

f(k) dk

defines on Ind(δ
1/2
P ) aGinvariant functional, which I’ll write as integration

∫

P\G

f(x) dx .

The pairing

〈f, f〉P\G =

∫

P\G

f(x)f(x) dx

identifies Ind(δ
1/2
P )with the smooth dual of Ind(δ

−1/2
P ) = C∞(P\G), which is why it is called the space

of onedensities on P\G.

For explicit calculation it is useful to know that

∫

P

f(p) dℓp =

∫

M

δ−1
P (m) dm

∫

N

f(nm) dn .

If f lies in Ind(χ) and f̃ in Ind(χ−1) then the product f · f̃ lies in Ind
(
δ
1/2
P

)
, and the pairing that can be

formally expressed as

〈f, f̃〉 =

∫

P\G

f(x)f̃(x) dx

defines an isomorphism of Ind(χ−1) with the admissible dual of Ind(χ)—this simple formulation of

duality is the one of the principal reasons for normalization by the factor δ
−1/2
P . (There are others we

shall see later.) If D = C and χ is unitary, then χ−1 = χ and Ind(χ) is therefore a unitary representation
of G.

If χ is trivial onK ∩ P or equivalently onM ∩K = M(o) it is called unramified . SinceM/M(o) ∼= Zn,
the unramified characters ofM are in bijection with a product of n copies of D×. These are theDrational

points on a split torus defined over D. This peculiar fact is not an unimportant accident, as we shall see.

When χ is unramified, since G = PK the subspace of elements fixed by K has dimension one over D.

Let ϕχ be the unique element of this module with ϕχ(1) = 1.
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3. The Iwahori Hecke algebra

What are the consequences for the Iwahori Hecke algebra of the discussion in the preceding section?

Any ω in Ω normalizes the Iwahori subgroup I . The groupG is the disjoint union of the cosets IwI with

w inW , and if w = ωw̃ then IwI = IωI · Iw̃I . The subalgebra ofH(G//I) generated by the IsI with s

in S̃ is isomorphic toH(G̃//Ĩ), that described by Macdonald. For s in S̃, τs = charIsI satisfies a relation

(τs − qs)(τs + 1) = 0

for some positive integer constant qs and is hence invertible. The length ℓ(w) of w inW is the length of

its minimal expression as a product of elements of S; if ℓ(xy) = ℓ(x) + ℓ(y) then IxyI = IxI · IyI . The
operators IωI with ω in Ω are trivially invertible since ω normalizes I . Hence:

3.1. iwahori. If I is an Iwahori subgroup of G then each of its basis elements τx = charIxI is invertible.[Lemma]

We know that I possesses a factorization I = N(o)M(o)N(p). Form inM−−

mN(o)m−1 ⊆ N(o), N(p) ⊆ mN(p)m−1 .

In these circumstances

δP (m) =
1∣∣N(o)/mN(o)m−1

∣∣ .

3.2. anym. Form inM−−, v in V I[Proposition]

π(τm)v = π(m)
∑

m−1N(o)m/N(o)

π(n)v .

Proof. Essentially by definition

π(τm)v =
∑

y∈ImI/I

π(y)v .

The maps taking x to xmI induces a bijection of I/I ∩mIm−1 with ImI/I . So we can write

π(m)v =
∑

x∈I/I∩mIm−1

π(xm)v .

Because of the Iwahori factorization, inclusion induces a bijection of the quotientN(o)/mN(o)m−1 with
I/I ∩mIm−1. We can again rewrite

π(τm)v =
∑

N(o)/mN(o)m−1

π(n)π(m)v ,

which leads to the Proposition in one step.

From this follows immediately:

3.3. jacquet. Form1,m2 inM−−[Lemma]

τm1
τm2

= τm1m2
.

From these Lemmas, at least a rough version of Macdonald’s formula follows.

3.4. function. The function Φχ restricted toM−− isM finite.[Proposition]
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That is to say that it is contained in a finitedimensionalM stable space of functions onM .

Proof. Supposem to be inM−−. Let v = ϕχ, ṽ = ϕχ−1 . Then

〈π(τm)v, ṽ〉 =
∑

y∈ImI/I

π(y)v

=
∑

x∈I/I∩mIm−1

π(x)π(m)v

〈π(m)v, ṽ〉 =
1

|ImI/I| 〈π(τm)v, ṽ〉 .

Let V = Ind(χ). Because τm is an invertible operator andM−− generatesM , the representation of the

operators τm extends to one ofM on V I . At any rate, this proves the Proposition.

The next step is to determine precisely whichM finite functions occur in the formula for Φχ. We shall
do this by interpreting the representation ofM on V I more satisfactorily.

4. Measures and forms

On k all translationinvariant measures are determined by the measure of a single open subset. Usually
this is taken to be o, and one common normalization is to assume its measure to be 1, but other choices
are possible and not infrequent. At any rate, I’ll pick this one once and for all, and write it as dx. For a
in k× and an open subset Ω of k

meas(aΩ) = |a|meas(Ω)

defines the normalized absolute value. We can also write this as d ax = |a| dx. For this choice, |̟| = q−1

since̟o = p and |o/p| = q.

On kn the product measure is then dx = dx1 dx2 . . . dxn.

Lemma. If T is a linear transformation then d Tx = | detT | dx.
In other words, for an open Ω

∫

TΩ

dx1 dx2 . . . dxn = | detT |
∫

Ω

dx1 dx2 . . . dxn .

Proof. For diagonal matrices this is clear. For an arbitrary T it follows from a factorization T = γ1δγ2

with each γi in GLn(o) and δ diagonal.

If ω is now any differential form on an open subsetΩ of kn, we can associate to it a measure |ω| according
to which ∫

U

|ω| =

∫

U

|ω(x)| dx

if ω = ω(x)dx1 . . . dxn in local coordinates. Because of the transformation formula, any everywhere
nondegenerate form ω of degree n (called a gauge form ) on any kanalytic manifoldM of dimension n
also defines a measure |ω| onM which is expressed locally in this way.
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5. The affine root system

There are two particular Hecke algebras of importance to the theory of spherical functions. The first is

H
(
G//G(o)

)
—the one the Satake isomorphism is concerned with—and the second is the Iwahori Hecke

algebra H(G//I). It is the second that we’ll be concerned with in this and the next section. Macdonald

explains its structure whenG is simply connected, and the general case derives from that. In this section

I’ll look at the geometry that underlies properties of this Hecke algebra, and in the next derive algebraic
consequences.

Associated to the group G, as Macdonald brings out clearly, is the affine root system determined by a
certain reduced linear root system. I’ll now recall more about this.

Suppose at first G to be split and simply connected. Recall that Σ is the root system it determines, and
that ∆ is a particular choice of simple roots. The affine root system associated to Σ is the set of affine

functions λ + k with λ in Σ. and k in Z. The associated affine Weyl group W̃ is that generated by the

simple root reflections S̃ associated to elements of ∆ together with reflection in the affine space α̃ = 1
where α̃ is the dominant root of Σ+. It contains orthogonal reflections wλ+k in all the affine subspaces

λ+ k = 0. If λ is any affine root then the product of reflections

aλ = wλ−1wλ = wλwλ+1

is a translation, and the normal subgroup of all translations in W̃ has as basis the aα for α in ∆.

RR R

λ = 0 λ = 1

Figure 1. wλ−1wλ is a translation

The fundamental domain for W̃ is the alcove where α ≥ 0 for α in ∆ and also α̃ ≤ 1.

Figure 2. Coroots and affine roots for SL3

Now suppose G to be quasisplit. Over the maximal unramified extension knr of k the maximal torus T
of G is split, and the Frobenius stabilizes it. The sublattice X∗(A) is that of elements of X∗(T ) fixed by
the Frobenius, and the restricted root system of G is made up of the restrictions toX∗(A) of the roots of
T . This gives the root system I call Σ. As the example of SU3 shows, it might not be reduced. But the

restrictions of the affine roots of T are in fact the affine roots associated to another, reduced, root system,
and this is the one that plays the important role in representation theory.
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Over knr the group SU3, for example, becomes SL3. The Frobenius interchanges the two positive roots.

Figure 3. The affine root system of SU3

embedded in that of SL3

One way in which it is this affine root system that is imporatnt is in the specification of the elements aλ

(λ ∈ Σ+) that occur in Macdonald’s formula for the spherical function—it is the translation in X∗(A)
expressed as the product of affine reflections wλ−1wλ = wλwλ+1.

The faces of the fundamental alcove C are parametrized by subsets of ∆̃ = ∆ ∪ {−α̃ + 1}: to Θ ⊂ ∆̃

corresponds the subset CΘ of points of C fixed by reflections wλ with λ ∈ Θ. If w in W̃ fixes a point of

CΘ then it lies in the subgroup generated by the wλ with λ in Θ. Therefore all the faces in the partition
ofX∗(A) ⊗ R may be labelled by such substs, too: every such face may be transformed to a unique face

of C by an element of W̃ .

Figure 4. The labelled faces for SL3

Let now G be arbitrary. LetW be the quotientNG(A)/M(o), which fits into an exact sequence

1 −→ T −→ W −→W −→ 1

since W = NG(A)/M and T = M/M(o). This sequence splits, since the Weyl group of the finite

group G is thae same as that of G—the intersection K ∩ NG(A) contains representatives of W and

K ∩ NG(A)/K ∩ M(o) projects isomorphically onto W . But this is not the most interesting exact
sequence into whichW fits.

Let G̃ be the simply connected cover of the derived group of G. Its image in G is normal, and contains

W . Let Ã be the inverse image in G̃ of A, T̃ the image of that in T . The image of X∗(Ã) in X∗(A) is
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spanned by the coroots α∧, so T̃ is spanned by the aα = α∧(̟). Let Ω be the quotient of T by T̃ , which

may be identified with the quotient of W by the subgroup W̃ generated by T̃ andW , which is normal

inW :
1 −→ T̃ −→ T −→ Ω −→ 1

↓ ↓ ‖
1 −→ W̃ −→ W −→ Ω −→ 1

As we have just seen, W̃ is the Coxeter group generated by a certain set S̃ of affine reflections.

W acts on the complex associated to G̃ . . .

Let G̃ be the simply connected cover of the derived group of G. Its image in G is normal, and contains

W . Let Ã be the inverse image in G̃ of A, T̃ the image of that in T . The image of X∗(Ã) in X∗(A) is

spanned by the coroots α∧, so T̃ is spanned by the aα = α∧(̟). Let Ω be the quotient of T by T̃ , which

may be identified with the quotient of W by the subgroup W̃ generated by T̃ andW , which is normal
inW :

1 −→ T̃ −→ T −→ Ω −→ 1
↓ ↓ ‖

1 −→ W̃ −→ W −→ Ω −→ 1

As Macdonald explains, the group W̃ is an affine Weyl group. Let me recall here what that means.

The group X∗(A) is a lattice in the real vector space X∗(A) ⊗ R. There exists a certain reduced root

system Σ̃ made up of linear functions in the dual latticeX∗(A). To each α in Σ̃ is associated a coroot α∧

inX∗(A), and reflection sα in the root hyperplane α = 0 is specified by the formula

sαv = v − 〈α, v〉α∧ .

The sublattice X∗(Ã) has the α∨ in ∆∨ as basis, and both lattices are stable underW . The partition of
X∗(A) ⊗ R by the affine root hyperplanes α = k is also Wstable. If α̃ is the dominant root, the region

A = {v ∈ X∗(A) ⊗ R | 〈α, v〉 > 0 for all α ∈ ∆, 〈α̃, v〉 < 1}

is the interior of a fundamental domain for the group W̃ generated byX∗(Ã) andW . (Recall that T and

X∗(A) may be identified.) The walls of this alcove are labeled by

∆̃ = ∆ ∪ {−α̃+ 1} ,

the affine roots vanishing on its boundary. Let

Aλ = A ∩ {λ = 0} ,

the wall labelled by λ. If S̃ is the set of affine reflections sλ for λ in ∆̃, then (W̃ , S̃) is a Coxeter system.

In particular S̃ generates W̃ .

The alcoves inX∗(A)⊗R are the connected components of the partition by affine root hyperplanes. The

group W̃ acts transitively on them. The following is standard in the theory of Coxeter groups:

5.1. dual. Suppose that w lies in W̃ . If wAλ ∩ A 6= ∅ then w = sλ.[Lemma]

Every wall of an alcove is therefore W̃equivalent to a unique wall of A. This fails for the larger group

W . Any w be in W transforms A into some other alcove, and there exists w̃ in W̃ transforming this in

turn back to A. But the composite w̃−1w will in general permute the walls, and in a well determined
way.
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5.2. subgroup. The subgroup of T which takes A into itself projects isomorphically onto Ω, so the exact[Proposition]

sequences

1 −→ T̃ −→ T −→ Ω −→ 1
↓ ↓ ‖

1 −→ W̃ −→ W −→ Ω −→ 1

split.

I’ll identify Ω with this subgroup. We’ll see some examples in a moment.

If G is split and simply conected, then the root system Σ̃ is just that associated to G itself. If G is quasi

split, the affine root system is made up of the restrictions to X∗(A) of the affine roots in the associated

split group from which G descends. This is determined by a linear root system, but it will in general
be different from the restricted root system. For example, if G = SU3 then restricted roots form a

nonreduced root system of rank one, whose simple root α̃ is the restriction of one of the simple roots α,
β of SL3 with 2α̃ equal to the restriction of α+β. The affine system is associated to thge reduced system
whose simple root is just the restriction of α+ β.

Figure 5. Affine root diagram for SL3 Figure 6. Affine root diagram for SU3

Now suppose G to be PGL3(k), so that G̃ = SL3(k). The Weyl group is S3. The group T may be
identified with that of all diagonal matrices

t = ̟m =



̟m1

̟m2

̟m3


 ,

(
m = (m1,m2,m3)

)
.

modulo the scalar matrices withm1 = m2 = m3. The subgroup T̃ is that of̟m withm1 +m2 +m3 = 0,
which embeds into PGL3. The roots are, in multiplicative notation, the characters̟mi/̟mj with i 6= j.
The positive roots are, in additive notation:

α1 = m1 −m2

α2 = m2 −m3

α̃ = α1 + α2 = m1 −m3

The group T has as basis the matrices

ε1 =



̟

1
1


 , ε2 =



̟

̟
1
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and the coroot vectors are

α∧
1 =



̟

̟−1

1


 , α∧

2 =




1
̟

̟−1


 , α̃∧ =



̟

1
̟−1


 .

These are shown in the following figures:

Figure 7. Coroots Figure 8. Weights

The generators of W̃ in S̃ are

s1 =




−1
1

1


 , s2 =




1
−1

1


 , s3 =




−̟−1

1
̟


 .

In the figures on the left are the alcoves siC:

Figure 9. The si(A) Figure 10. ε1 changes labels.

The index of T̃ in T is 3, so Ω is the cyclic group of order 3, which in its action on the walls of A just
permutes them cyclically. The figure above on the right shows immediately that ε1(A) = s3s1(A) and Ω
is generated by s1s3ε1.
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6. Jacquet modules

Suppose (π, V ) to be any smooth representation of the unipotent subgroupN with unipotent radical N .

I define the subspace V (N) to be that spanned by all vectors u of the form π(n)v − v for v in V , n in

N . The quotient VN = V/V (N) is the maximal quotient on which N acts trivially, and an N covariant
linear map from V to any otherN trivial module will factor through it. Now assume that V is a smooth

module over the parabolic subgroup P . The reductive groupM = P/N acts on the space VN , defining

the Jacquet module of π associated to P . As with parabolic induction, it is convenient to normalize this

construction, so the Jacquet module is the canonical representation ofM on V/V (N) twisted by δ
−1/2
P .

Explicitly, if u in V has image v in VN then πN (m)v is the image of δ
−1/2
P (m)π(m)u.

6.1. ggg. A vector in V lies in V (N) if and only if[Lemma]

∫

U

π(u)v du = 0

for one or, equivalently, any large compact open subgroup U ofN .

Proof. This is easy enough to see, since N has arbitrarily large compact open subgroups U . If v =
π(n)u − u we can find U containing n, and for any such U the integral vanishes. Conversely, if the

integral vanishes we can express v as a sum of π(n)u − uwith n in U .

6.2. aaa. If[Proposition]

0 −→ A −→ B −→ C −→ 0

is an exact sequence of smooth representations of P then

0 −→ AN −→ BN −→ CN −→ 0

is exact as well.

This follows immediately from the Lemma.

The map Ω1 taking f in the space Ind(χ) of teh induced representation to f(1) satisfies

〈Ω1, Rpf〉 = δ
1/2
P χ(p)〈Ω1, f〉 .

If F : V −→ Ind(χ) isGcovariant, then

〈Ω1, F (π(p)v)〉 = δ
1/2
P χ(p)〈Ω1, F (v)〉 ,

so that composition with Ω1 hence induces anM covariant map from VN to Dχ. This leads easily to:

6.3. bbb. (Frobenius reciprocity) If (π, V ) is an arbitrary admissible representation ofG then composition[Proposition]

with Ω1 induces a canonical isomorphism

HomG(V, Ind(χ)) ∼= HomM (VN , χ) .

Explicitly, if Ω is a P covariant map from VN to Dχ then v 7→ 〈Ω, Rgv〉maps V to Ind(χ).

It was principally to simplify the formulation of this Proposition that the normalizing factor δ
1/2
P (p) was

incorporated into the definition of πN .

For any admissible representation (π, V ), there is an intimate relationship between the space of vectors

in V fixed by the Iwahori subgroup I and the subspace of vectors fixed byM(o) in the Jacquet module
VN . Recall that τm = charImI form inM−−.
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6.4. ccc. If v in V I has image u in VN , then form inM−− the image of π(τm)v in VN is equal to[Proposition]

δ
−1/2
P (m)πN (m)u .

Proof. From an earlier calculation

π(τm)v = π(m)
∑

m−1N(o)m/N(o)

π(n)v

which has image δ
−1/2
P (m)πN (m)u in VN .

6.5. ddd. If V is any admissible representation of G then the canonical projection from V I to V
M(o)
N is[Proposition]

an isomorphism.

Proof. First to be shown that it is an injection. From the previous calculation

π(τm)v = π(m)
∑

m−1N(o)m/N(o)

π(n)v

form inM−−. On the other hand, v lies in V (N) if and only if

∑

U/U∩I

π(u)v = 0

for some large subgroup U of N . Choosem inM−− so that U ⊆ m−1N(o)m. Since τm is invertible, v
lies in V (N) only if v = 0.

Next that it is a surjection. Suppose u in V
M(o)
N , and choose v in V M(o) whose image in VN is u. Suppose

that v is fixed by a (possibly very small) compact open subgroup N∗ of N . Choose a in A−− such that

N(p) ⊆ aN∗a
−1. Then v∗ = δ−1

P (a)π(a)v is fixed byM(o)N(p) and has image δ
−1/2
P (a)πN (a)u in VN .

The average of π(n)v∗ over n in N(o) is the same as the average of the π(x)v∗ over x in I . This average

v∗∗ lies in V
I and has image δ

−1/2
P (a)πN (a)u in VN . But τa is invertible on V I . The image of π(τa)−1v∗∗

in VN is u.

One immediate consequence:

6.6. fff. Any irreducible unramified representation of G embeds into some Ind(χ), and in particular its[Corollary]

subspace of vectors fixed byK has dimension one.

This is because of Frobenius reciprocity for representations induced from P .

These clever arguments originated with Jacquet, and were first presented in his Montecatini lectures

[Jacquet:1971]. They can be extended to prove that the JacquetmoduleVN is an admissible representation

ofM and furthermore that the Jacquet module controls the asymptotic behaviour of matrix coefficients
of admissible representations. The best way to formulate this is:

6.7. jacquetmoduke. Suppose (π, V ) to be any admissible representation of G. Let P be a parabolic[Theorem]

subgroup ofGwith unipotent radicalN , P a parabolic subgroup opposite to P . There exists a canonical

isomorphism of the admissible dual of VN with ṼN characterized by the property that for every v in V

with image u in VN and, ṽ in Ṽ with image ũ in ṼN there exists ε > 0

〈π(a)v, ṽ〉 = δ
1/2
P (a)〈πN (a)u, ũ〉can
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whenever a in A−− satisfies the condition that |α(a)| < ε for all α in Σ+
P .

A proof can be found in [Casselman:1974].

This result says that any matrix coefficient is asymptotically equal to an Afinite expression. The special
thing about the spherical function is that this ‘asymptotic’ expression is valid for all a in A−−, as it is

for all vectors fixed by the Iwahori subgroup I . What really distinguishes these, as we have seen, is that
the operators τa are invertible on V I . In general, if K is an open compact subgroup with an Iwahori

factorization, then π(τa) for a in A−− will be invertible on a wellplaced subspace of V K , the image of
the π(τn

a ) for large n. It is this subspace which embeds into the Jacquet module.

We now know that the M finite expression for Φχ is related to the structure of the Jacquet module of

Ind(χ). In the next section I’ll describe that Jacquet module, but in the rest of this one I’ll put in a short
digression about unramified admissible representations.

It follows from the Corollary above that if (π, V ) is an irreducible unramified representation then V K has
dimension 1. Recall that the characteristic homomorphism cπ from H(G//K) to D is then well defined.

It turns out that this distinguishes π.

6.8. eee. Given any ring homomorphism c fromH(G//K) to D, there exists up to isomorphism at most[Proposition]

one irreducible, unramified, admissible representation whose characteristic homomorphism is c.

Proof. The point is that the representation can be constructed directly from its characteristic homomor

phism. Suppose (π, V ) to be irreducible and unramified, c its characteristic homomorphism. Both V K

and Ṽ K are onedimensional. Fix ṽ 6= 0 in Ṽ .

The map taking v to the function
Φv = 〈π(g)v, ṽ〉

embeds V into the space C∞(K\G). For any f inH(G//K) the operator

Lf =

∫

G

f(g)Lg dg

acts on C∞(K\G), commuting with the right regular representation R of G. Explicitly, for v in V

LfΦv =

∫

G

f(g)LgΦv dg

and

LfΦv(x) =

∫

G

f(g)LgΦv(x) dg

=

∫

G

f(g)〈π(g−1x)v, ṽ〉 dg

=

∫

G

f(g)〈π(x)v, π̃(g)ṽ〉 dg

= 〈π(x)v, π̃(f)ṽ〉
= cπ̃(f)〈π(x)v, ṽ〉
= cπ̃(f)Φv(x) .

Note that since

π(f)v = cπ(f)v =

∫

G

f(g)π(g)v dg

for all f in the Hecke algebra,

〈v, π̃(f)ṽ〉 =

∫

G

f(g)〈v, π̃(g)ṽ〉 dg =

∫

G

f(g−1)〈π̃(g)v, ṽ〉 dg
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and cπ̃(f) = cπ(f∧) where f∧(g) = f(g−1).

Define Lc̃ to be the space of all smooth functions Φ onK\G such that

LfΦ = cπ̃(f)Φ

for all f in the Hecke algebra.

I claim now that the image of V is the unique irreducibleGstable subspace of Lc̃.

To see this: • every Gstable subspace of C∞(K\G) contains a function fixed by K ; • the space of

functions in Lc̃ fixed byK has dimension 1. I leave these both as exercises.

7. The Jacquet module of Ind(χ)

The group G possesses a decomposition into disjoint double cosets PwP indexed by elements of the

Weyl groupW . There is a single one of these which is an open subset of G, the one with w = wℓ, the

longest element of W . There is exactly one which is closed in G, that with w = 1, where PwP = P
itself. The closure of a coset PwP is the union of cosets PxP where x ≤ w in what is frequently called

the Bruhat order on the Weyl group W . The union of the subsets PxP with w ≤ x is then an open

neighbourhood of PwP in G.

The Bruhat order has a combinatorial description—ifw has the reduced decomposition w = s1 . . . sn as

a minimal product of elementary reflections, then x ≤ w if and only if x can be expressed as a product
of a subsequence of the si in the same order.

The Bruhat order onW induces a P stable filtration on I = Ind(χ). For each w in the Weyl groupW ,
define the space Iw to be that of f in I with support on the union of the PxP with w−1 ≤ x. Thus

I = I1, for example, and Iwℓ
is contained in all others. Each space Iw is stable under P . If f lies in

Iw then its restriction to Pw−1P is smooth and of compact support modulo the left factor P . It satisfies

the equation f(px) = δ
1/2
P (p)χ(p)f(x) for all x in Pw−1P . The space of all such restrictions is as a

representation ofN isomorphic to C∞
c (N ∩ wNw−1\N). For f in Iw , the integral

〈Ωw, f〉 =

∫

N∩wNw−1\N

f(w−1n) dn

is hence a finite sum, defining anN invariant linear functional on Iw . An easy calculation shows that in
addition

〈Ωw, Rmf〉 = δ
1/2
P (m)χ(w−1mw) 〈Ωw , f〉 = δ

1/2
P (m)wχ(m) 〈Ωw , f〉

for all m inM , so that Ωw induces anM covariant map from the Jacquet module of Iw with respect to
N to Dwχ. Let

Jw = Iw

/ ∑

w−1<x

Ix ,

also a representation of P . If f lies in one of the Ix with x > w−1 then 〈Ωw, f〉 = 0, so Ωw factors

through Jw .

7.1. hhh. The linear functional Ωw induces an isomorphism of Dwχ and the Jacquet module of Jw with[Lemma]

respect toN .

This is because the integral is, up to scalar multiples, the only N invariant functional on C∞
c (N,D).

Because the functor V  VN is exact:

7.2. filtration. The Bruhat filtration of Ind(χ) induces a filtration of its Jacquet module. The graded[Theorem]

module associated to this filtration is the direct sum of the Dwχ.
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If χ is regular, which is to say wχ 6= χ for all w inW , then all the extensions occurring in this filtration

must split, and the Jacquet module of Ind(χ) is itself the direct sum of the Dwχ. In other words, in these

circumstances Ωw extends to define a P covariant map from all of Ind(χ) to D
δ
1/2

P
wχ

.

To summarize, we now know that

Φχ(m) = δ
1/2
P (m)

∑

w∈W

αw(χ)wχ(m)

form inM−− and regular χ. It is also easy to see that dealing with nonregular χ is a matter of applying
an algebraic version of l’Hôpital’s rule. The task remaining is to calculate the coefficients αw .

8. The operators Tw

Finding a formula for the the αw(χ) comes down to doing this for just one of them. More precisely, we’ll
see that αw(χ) = α1(wχ).

According to Frobenius reciprocity for Ind(χ), the linear functional Ωw corresponds to a Gcovariant
map

Tw: Ind(χ) −→ Ind(wχ), f 7−→ 〈Ωw, Rgf〉 .

8.1. tw. If ℓ(xy) = ℓ(x) + ℓ(y) then[Proposition]

TxTy = Txy

Proof. The length ℓ(w) ofw is the length of a reduced expression for it, in terms of elementary reflections.

It is also the cardinality of the root set

Λw = {α > 0 | w−1α < 0} .

If x and y are two elements ofW with ℓ(xy) = ℓ(x) + ℓ(y) then Λxy is the disjoint union of xΛy and Λx.

The decomposition of

n =
∑

α>0

nα =
∑

α>0,w−1α>0

nα +
∑

α>0,w−1α<0

nα

corresponds to the factorization

N = (wNw−1 ∩N)(wNw−1 ∩N) = N+
wN

−
w

so that

N+
w \N ∼= N−

w .

When ℓ(xy) = ℓ(x)+ℓ(y) the decompositionΛxy = xΛy∪Λy corresponds to a direct sumdecomposition

n−
xy = Ad(x) n−

y + n−
x

and a factorization

N−
xy = xN−

y x
−1 ·N−

x .
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Thus

TxTyf(g) =

∫

N−

x

Tyf(x−1nxg) dnx

=

∫

N−

x

∫

N−

y

f(y−1nyx
−1nxg) dny dnx

=

∫

N−

x

∫

N−

y

f(y−1x−1xnyx
−1nxg) dny dnx

=

∫

N−

xy

f(y−1x−1nxyg) dnxy

since (ny, nx) −→ xnyx
−1nx is a measurepreserving bijection betweenN−

y ×N−
x andN−

xy.

Since the subspace of Ind(χ) of vectors fixed byK has dimension one,

Twϕχ = ζw(χ)ϕwχ

for some scalar ζw(χ). The Proposition leads to a product formula for ζw(χ) that it is not yet convenient
to display. But at any rate it should be clear that in principle the problem of evaluating it for an arbitrary
w reduces to evaluating it in the special case when w is an elementary reflection s. This will be done

in the next section, in a selfcontained calculation. One consequence of that computation is that Tw is
generically an isomorphism. Because of this:

• As a function of χ, the spherical function isW invariant: Φwχ = Φχ;

• The Satake transform has its image inH(M//M(o))W ;
• For regular χ, αw(χ) = α1(wχ).

The calculation in the next section will also show that ζs(χ) is of the form C
(
χ(aα)

)
where C(X) is an

explicitly calculated rational function ofX . Here s is the elementary reflection corresponding to the root

α in ∆P . The Proposition in this section then leads to the product formula

Twϕχ =
∏

α>0,w−1α<0

C
(
χ(aα)

)
ϕwχ.

This allows us also to evaluate the functionals 〈Ωw, ϕχ〉. And this in turn, as I shall next explain, will
give us Macdonald’s formula at last.

9. Asymptotics

I recall that for allm inM−− and regular χ

Φχ(m) = δ
1/2
P (m)

∑

w

α1(wχ)wχ(m) = δ
1/2
P (m)

∑

w

αwℓ
(w−1

ℓ wχ)wχ(m) .

Macdonald’s formula follows directly from this:

9.1. asymptotics. We have[Proposition]

αwℓ
(χ) = µG 〈Ωwℓ

, ϕχ〉 = µG

∏

α>0

C
(
χ(aα)

)
.
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The proof of this will require still one more digression. We have defined the linear functionals Ωw on

Ind(χ), at least formally, by the integral

〈Ωw, f〉 =

∫

N∩wNw−1\N

f(w−1n) dn .

The rigourous interpretation of this is that the integral is well defined on Iw and extends uniquely to a

P covariant map onto D
δ
1/2

P
wχ

.

The Bruhat decomposition G =
⋃
PwP gives rise to the decomposition

G =
⋃

w

PwPwℓ =
⋃

w

Pwwℓ w
−1
ℓ Pwℓ =

⋃

w

Pwwℓ P .

The filtration on Ind(χ−1) produced by this will also be indexed by W , but according to the order
opposite to the Bruhat order. Thus PP = PwℓPwℓ is the largest (and open) coset, PwℓP = Pwℓ the

smallest. For regular χ the linear functionals

〈Ω̃w, f̃〉 =

∫

N∩wNw−1\N

f(w−1n) dn

identify the Jacquet module of Ind(χ−1) with the direct sum
⊕

Dwχ−1 . In particular

〈Ω̃wℓ
, f̃〉 = f(wℓ) .

From the general result about asymptotic behaviour of matrix coefficients we deduce that for suitable
constants βw

〈Raf, f̃〉 = δ
1/2
P (a)

∑

w

βw wχ(a) 〈Ωw , f〉 〈Ω̃w, f̃〉

for all f in Ind(χ), f̃ in Ind(χ−1) and a ‘small enough’. The real point here is that the coefficients βw

are independent of f and f̃ . Therefore in order to know what αwℓ
is, we have now to consider the

asymptotic behaviour just for a particular f and f̃ .

Choose f and f̃ with support in the open set PwℓN . Then

〈Raf, f̃〉 = µG

∫

N

f(wℓna)f̃(wℓn) dn

as we have seen in defining µG. We can rewrite the integral as

∫

N

f(wℓaw
−1
ℓ wℓ a

−1na)f̃(wℓn) dn

= δ
−1/2
P (a)wℓχ(a)

∫

N

f(wℓ a
−1na)f̃(wℓn) dn

= δ
1/2
P (a)wℓχ(a)

∫

N

f(wℓn)f̃(wℓana
−1 dn

= δ
1/2
P (a)wℓχ(a) f̃(wℓ)

∫

N

f(wℓn) dn

if a is ‘small enough’. Hence βwℓ
= µG. From this it follows that βw = µG for all w.
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10. Rank one groups

Corresponding to each simple positive root α is a parabolic subgroup P{α} whose Levi factor M{α}

has semisimple rank one. The group M{α} contains M , and the image of P modulo the unipotent

radical of P{α} is a minimal parabolic subgroup of M{α}. The representation Ind(χ) of G is equal to

a representation induced in two steps, from P to P{α} and thence from P{α} to G. The intertwining
operator Tsα is likewise induced from an operator between representations ofM{α}. The factor csα(χ)
for G is the same as that forM{α}.

So now, for the moment, we are reduced to the following question: Suppose G to be a reductive group

over k of semisimple rank one, w the nontrivial element in the Weyl group. Suppose χ to be a regular
unramified character of M . We know that Twϕχ = ζw(χ)ϕwχ. What is ζw(χ)? Equivalently, what is

〈Ωw, ϕχ〉?
The calculation reduces immediately to one on the simply connected cover of G, so we may as well
assume G to be simply connected, hence of the form SL2(E) or SU3(E). I may as well assume E = k,
too.

In both cases, we want to evaluate 〈Ωw, ϕχ〉, where ϕχ is defined by the formula

ϕχ(nmk) = δ
1/2
P (m)χ(m) .

In the published literature, the coefficient field D is always C, and the usual calculation proceeds in
two stages: (i) calculation of a convergent series in the region where the integral defining Ωw converges

and (ii) analytic continuation. With our selfimposed handicap, this is not an allowable option. It is
not difficult to think up a way to deal with this problem, however. For any m in M , the function

ψ =
(
Rm − δ

1/2
P (m)χ(m)

)
ϕχ is 0 at 1 and has support on the coset PwP . Hence 〈Ωw, ψ〉 can be

evaluated as a finite sum, which we shall calculate separately in each case. On the other hand

〈Ωw, ψ〉 = 〈Ωw,
(
Rm − δ

1/2
P (m)χ(m)

)
ϕχ〉

= 〈Ωw, Rmϕχ〉 − δ
1/2
P (m)χ(m)〈Ωw , ϕχ〉

= δ
1/2
P (m)χ−1(m)〈Ωw , ϕχ〉 − δ

1/2
P (m)χ(m)〈Ωw, ϕχ〉

= δ
1/2
P (m)

(
χ−1(m) − χ(m)

)
〈Ωw, ϕχ〉

〈Ωw, ϕχ〉 =
δ
−1/2
P (m)

χ−1(m) − χ(m)
〈Ωw, ψ〉 .

• Let G = SL2(k), K = SL2(o), P be the group of upper triangular invertible matrices,M = A be the

group of diagonal invertible matrices. Further let

w =

[
−1

1

]
, w−1 =

[
1

−1

]
,

which represents the single nontrivial element in the Weyl group. Let

χ:

[
x

x−1

]
7−→ |x|s

be an unramified character of A, and let

ω =

[
̟

̟−1

]
so that δ

1/2
P (ω) = q−1, χ(ω) = q−s .



Macdonald’s book (1:17 p.m. August 25, 2012) 30

What we find here is that

〈Ωw, ϕχ〉 =
δ
−1/2
P (ω)

χ−1(ω) − χ(ω)
〈Ωw, ψ〉

=
q

qs − q−s
〈Ωw, ψ〉

=
q1−s

(1 − q−s)(1 + q−s)
〈Ωw, ψ〉

=
q1−s

(1 − q−s)(1 + q−s)

∫

N

ψ(w−1n) dn

=
q1−s

(1 − q−s)(1 + q−s)

∫

k

ψ

([
1

−1

] [
1 x

1

])
dx

where meas(o) = 1. The first step in evaluating the integral is to find a formula for

ψ(w−1n) = ψ

([
1

−1

] [
1 x

1

])
.

By definition

ψ(w−1n) =
(
Rω − δ

1/2
P (ω)χ(ω)

)
ϕχ(w−1n)

= ϕ(w−1nω) − δ
1/2
P (ω)χ(ω)ϕχ(w−1n) .

For an arbitrary n inN we have

ϕχ(w−1nω) = ϕχ(w−1ωw · w−1 · ω−1nt) = δ
−1/2
P (ω)χ−1(ω)ϕχ(w−1 · ω−1nω)

so that we must next find a formula for ϕχ(w−1n) for an arbitrary n =

[
1 x

1

]
in N .

If x lies in o then wn lies inK and ϕχ(wn) = 1. Otherwise, we must factor the matrix

[
1

−1

] [
1 x

1

]
=

[
1

−1 −x

]

according to G = NAK . I could just write out the factorization directly, but it is probably a good idea
to show where it comes from. First I note that it suffices to find such a factorization for

w−1nw =

[
1

−1

] [
1 x

1

] [
−1

1

]
=

[
1

−x 1

]

since w lies inK . Now the matrix [
1

−x 1

]

lies inN − {1}, and we know that it can be factored as n1awn2 according to 2.6.6 of Macdonald’s book,

at least in principle. But this factorization is practical in the sense that it can be found by applying a mild

variant of the familiar Gauss elimination algorithm. We obtain

[
1

−x 1

]
=

[
1 −x−1

1

] [
x−1

x

] [
1

−1

] [
1 −x−1

1

]

But as long as x doesn’t lie in o, its inverse x−1 will, so the last two factors lie inK . In fact, x−1 will lie
in o as long as x doesn’t lie in p, so:
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10.1. eval. We have[Lemma]

ϕχ

([
1

−1 −x

])
=

{
1 if x ∈ p

|x|−1−s otherwise

Therefore

ψ

([
1

−1 −x

])

= δ
−1/2
P (ω)χ−1(ω)ϕχ

([
1

−1 −̟−2x

])
− δ

1/2
P (ω)χ(ω)ϕχ

([
1

−1 −x

])

= q1+sϕχ

([
1

−1 −̟−2x

])
− q−1−sϕχ

([
1

−1 −x

])

so that

ψ

([
1

−1 −x

])
=




q1+s − q−1−s if x ∈ p2

1 − q−1−s if x ∈ p − p2

0 if x /∈ p .

Then ∫

k

ψ

([
1

−1 −x

])
dx = q−2(q1+s − q−1−s) + (q−1 − q−2)(1 − q−1−s)

= q−1(1 + qs)(1 − q−1−s) .

Finally

〈Ωw, ϕχ〉 =
q1−s

(1 − q−s)(1 + q−s)
〈Ωw, ψ〉

=
q1−s

(1 − q−s)(1 + q−s)
q−1(1 + qs)(1 − q−1−s)

=
1 − q−1−s

1 − q−s

=
1 − q−1χ(ω)

1 − χ(ω)
.

• Now let ℓ/k be an unramified quadratic extension, and let G be the unitary group of the Hermitian

form x1x3 + x2x2 + x1x3 with matrix

J =




1
−1

1




In other words,G is the group of allX in GL3(ℓ) such that

tX J X = J or X = J tX−1 J .

Let
P = upper triangular matrices in G

M = diagonal matrices inG

w =




1
−1

1




ω =



̟

1
̟−1
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Thus a typical element inM looks like 

z

z/z
z−1




and one inN looks like 


1 x y
1 x

1


 , y + y = xx .

The element w represents the nontrivial element in the Weyl group, and

δ
1/2
P (ω) = q−2 .

We want to calculate 〈Ωχ, ϕχ〉, and as before the crucial step is to evaluate ϕχ(w−1n) where n lies in N .

It again comes down to finding theNMwN factorization of w−1nw, which is easy to do:

n =




1 x y
1 x

1




w−1nw =




1
−x 1
y −x 1




=




1 x/y 1/y
1 −x/y

1






1/y
y/y

y






1
−1

1






1 x/y 1/y
1 −x/y

1


 .

If y ∈ p then since xx = −y + y, x will also be in p and n will lie inK . Otherwise, x/y will lie in o and

the matrix 


1 x/y 1/y
1 −x/y

1




will lie inK .

Let χ be the character ofM taking ω to q−s. From the calculations above, we have

ϕχ(w−1n) =





1 if y ∈ p

|y|−2−s otherwise

A calculation only slightly more complicated than the one for SL2 shows that

〈Ωw, ϕχ〉 =
δ
−1/2
P (ω)

χ−1(t) − χ(ω)
〈Ωw, ψ〉

=
q2

qs − q−s
〈Ωw, ψ〉

=
q2−s

1 − q−2s
〈Ωw, ψ〉

=
(1 − q−2−s)(1 + q−1−s)

1 − q−2s

=

(
1 − q−2χ(ω)

)(
1 + q−1χ(ω)

)

1 − χ(ω)2
.

This concludes the proof of Macdonald’s formula for the spherical function.
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11. The character

This section follows [van Dijk:1972].

The full Hecke algebraH(G) associated toG is the space of all smooth, compactly supported functions on
G (with values in D). Multiplication is by convolution. This algebra acts on the space of any admissible

representation of G, and indeed admissible representations of G are easily seen to be equivalent to

admissible modules overH(G).

If (π, V ) is an admissible representation of G its character is a linear functional on H(G), taking f to

traceπ(f). Conjecturally in all cases it can in fact be represented by integration of a function on an open
subset ofG. In this section I’ll derive its formula when π = Ind(χ). This formula and some of the results

leading to it will play a role in the discussion of the Satake isomorphism in the next section, and other

parts of this section will play a role in the later discussion of endoscopy.

If f lies inH(G) then for any ϕ in Ind(χ)

Rfϕ(x) =

∫

G

f(g)ϕ(xg) dg

=

∫

G

f(x−1g)ϕ(g) dg

=

∫

K

dk

∫

M

δ−1
P (m) dm

∫

N

ϕ(nmk)f(x−1nmk) dn

=

∫

K

ϕ(k) dk

∫

M

χ(m)δ
−1/2
P (m) dm

∫

N

f(x−1nmk) dn .

The space Ind(χ) may be identified as a linear space and even as aKspace with Ind(χ |K ∩P,K), and
acting on this space Rf has the kernel

Kf (k, ℓ) =

∫

M

χ(m)δ
−1/2
P (m) dm

∫

N

f(ℓ−1nmk) dn .

The trace of Rf on Ind(χ) is therefore

∫

K

dk

∫

M

χ(m)δ
−1/2
P (m) dm

∫

N

f(k−1nmk) dn .

For any f inH(G) define

f(x) =

∫

K

f(k−1xk) dk ,

that is to say the projection of f onto the functions invariant with respect to conjugation byK . This lies
again in H(G) since if f is right invariant under the subgroup K• of K and u lies in

⋂
k∈K kK• k

−1 (a

finite intersection, hence an open, compact subgroup) then for any k inK we have uk = k · k−1uk with

k−1uk ∈ K• and

f(xu) =

∫

K

f(k−1xuk) dk

=

∫

K

f(k−1xk · k−1uk) dk

=

∫

K

f(k−1xk) dk

= f(x) .
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Also for any f inH(G) define

fP (m) = δ
−1/2
P (m)

∫

N

f(nm) dn ,

which will be a function inH(M). The calculation of the trace of Rf can now be formulated like this:

11.1. trace. For any f inH(G), the trace of Rf acting on Ind(χ |P,G) is[Proposition]

∫

M

χ(m)fP (m) dm .

If f lies in H(G//K) then f = f , the trace of Rf is just cχ(f), and the integral is a simple sum. We
recover a formula to be found in Satake’s book on spherical functions:

11.2. satakeint. For any f inH(G//K)[Corollary]

cχ(f) =
∑

M/M(o)

χ(m)fP (m) .

If T is any maximal torus inG (not necessarily maximally split) then the adjoint action of T on g/t (over
the algebraic closure k of k) is a direct sum of onedimensional subspaces on which T acts by characters
called its roots . For any t in T let

D(t) = det(Adg/t(t) − I) .

This function can also be defined for any semisimple element ofG, independently of a torus containing
it, according to the recipe

det(Adg(t) − I + λ) = D(t)λr + higher powers of λ

where r is the rank of G over k. The element t is called regular if D(t) 6= 0, or equivalently if the

connected component of the centralizer of t is T . LetGreg be the regular elements of G.

The functionD(t) is important because of this elementary formula:

11.3. conjugationmap. The conjugationmap fromG×T toG taking taking (g, t) to gtg−1 has differential[Lemma]

g ⊕ t: (x, y) 7−→ Ad(g)
(
Ad(t−1) − I)x+ y

)
.

As a consequence, the mapG/T ×T reg → G taking (g, t) to gtg−1 has open image, the regular elements
Greg

T of G that are conjugate to an element of T , and we have this fundamental integral formula:

11.4. orbitalint. For any f inH(G) with support in the open set Greg
T[Lemma]

∫

G

f(g) dg =
∑

T

1

WT

∫

T

|D(t)| dt
∫

G/T

f(xtx−1) dx

whereWT is the finite quotient ofNG(T ) by T .
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For T = M , we have

|D(t)| =
∣∣∣
∏

Σ

det(Adnα(t) − I)
∣∣∣

=
∣∣∣
∏

α>0

det(Adnα(t) − I) det(Adnα(t−1) − I)
∣∣∣

= δ−1
P (t)

∣∣∣
∏

α>0

det(Adnα(t) − I)
∣∣∣
2

∣∣∣
∏

α>0

det(Adnα(t) − I)
∣∣∣ = |D(t)|1/2δ

1/2
P (t) .

The following originates in HarishChandra’s work on real groups.

11.5. hcl. HarishChandra’s Lemma) For regular t in M the map N → N taking n to n · tn−1t−1 is a[Proposition]

bijection with modulus ∣∣ det(Adn(t) − I)
∣∣ .

Proof. The group N possesses a filtration by normal subgroups with graded groups equal to the Nα.
The modulus on each of these is easily seen to be det(Adnα(t) − I).

11.6. fbar. For any t inM and f inH(G)[Proposition]

fP (t) = |D(t)|1/2

∫

G/M

f(xtx−1) dx .

The curious feature of this formula is that although the orbital integral

∫

G/M

f(xtx−1) dx

may be badly behaved as t approaches the singular elements of G, the product of the orbital integral by
the normalizing factor |D(t)|1/2 is nicely behaved, since fP (t) is.

Proof. By HarishChandra’s Lemma

∣∣D(t)
∣∣1/2

∫

G/M

f(xtx−1) dx =
∣∣D(t)

∣∣1/2
∫

N

dn

∫

K

f(kntn−1k−1) dk

=
∣∣D(t)

∣∣1/2
∫

N

f(ntn−1) dn

=
∣∣D(t)

∣∣1/2
∫

N

f(ntn−1t−1 · t) dn

= δ
−1/2
P (t)

∫

N

f(nt) dn .

For any unramified character χ ofM let Θπχ be the unique function defined on the conjugates of regular
elements ofM by

Θπχ(gtg−1) =
1

|W |

∑
W wχ(t)
∣∣D(t)

∣∣1/2
.

and extend it to all of Greg by setting it equal to 0 off the conjugation ofM .
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XXX Sure about the factor 1/|W |?
Finally:

11.7. character. For any function f inH(G)[Theorem]

traceπχ(f) =

∫

G

f(g)Θπχ(g) dg

Proof. SinceD(t) is invariant underW , the two previous Propositions imply that

∫

M

fP (t)χ(t) dt =

∫

M

χ(t)|D(t)|1/2 dt

∫

G/M

f(gtg−1) dg

=
1

|W |
∑

W

∫

M

wχ(t)|D(t)|1/2 dt

∫

G/M

f(gtg−1) dg

=

∫

M

1

|W |
∑

W

wχ(t)

|D(t)|1/2
|D(t)| dt

∫

G/M

f(gtg−1) dg

=

∫

G

f(g)Θπχ(g) dg .

12. The Satake transform

I want to emphasize here several features of the Satake isomorphism, and for that reason I’ll sketch its

proof. In this section let D = Q[q±1/2].

12.1. unram. For any unramified character χ and w inW , cwχ = cχ.[Proposition]

Proof. From the Corollary to the first Proposition in the previous section, since the normalization factor

D(m) isW invariant.

In a moment I’ll prove that the Satake transform is an isomorphism. The proof can be motivated by a

simple example, that of PGL2(k). Let

ω =

[
̟

1

]
modulo the centre .

Ifm = 0 then

S(charKωmK) = cχ(charK) = 1

and otherwise

S(charKωmK) = qm/2

[(
ωm+1 − ω−(m+1)

ω − ω−1

)
− q−1

(
ωm−1 − ω−(m−1)

ω − ω−1

)]

= Qm −Qm−2

where
Qm = qm/2

(
ωm + ωm−2 + · · · + ω−(m−2) + ω−m

)
.

Thus in this case S(charKωmK) = δ
−1/2
P (ωm)ωm modulo terms of lower degree. This is a general

phenomenon, and the basis for the proof.
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On the lattice T define x ≤ y to mean that (in additive notation)

x = y −
∑

α∈∆

nαα
∧(̟) (nα ≥ 0) .

Thisorder onT inducesoneonT −− andfiltrationsonbothHecke algebrasH(G//K)andH(M//M(o))W .

For t in T −− define

H(G//K)t =
{ ∑

u∈T −−,u≤t

fu charKuK

}

H(M//M(o))t =
{∑

u≤t

fuu
}

H(M//M(o))W
t = H(M//M(o))W ∩H(M//M(o))t

For t in T −− and w inW , wt ≤ t. This implies that the associated graded ring for both H(G//K) and
H(M//M(o))W is just D[T −−], with the ring structure arising from the monoid structure of T −−.

12.2. sattrans. The Satake transform is compatible with these filtrations, and induces multiplication by[Proposition]

δ
−1/2
P (t) on the tcomponent of the associated graded module.

Proof. This follows immediately from the calculation of the Satake transform in terms of fP (m) and this:

12.3. minus. (a) If m1 and m2 are elements of M−− and Km1K ∩ Nm2 6= ∅, then m2 ≤ m1; (b) for[Lemma]

m ∈M−− and n in N , nm ∈ KmK if and only if n ∈ N(o).

This is essentially 2.6.11(3)–(4) in the book of Macdonald when G is simply connected, but the general

case follows from that one.

For an example, suppose G to be GLn(k). Then G/K can be identified with o lattices of rank n in kn.

The group T may be identified with all diagonal matrices with entries of the form ̟m, and T −− is the

subset of those withm1 ≥ m2 ≥ ... . . . ≥ mn. That

G =
⋃

t∈T −−

KtK

is elementary divisor theory. A matrix g lies in the double coset of

t = ̟m =




̟m1

̟m2

̟mn


 , wherem = (m1, . . . ,mm)

withm1 ≥ . . . ≥ mn if and only if for each r the g.c.d. εr(g) of all r × r minor determinants of g is that
of t, which is

εr(t) = ̟mn−r+1+···+mn .

In particular, the integer mn is the least m with the property that all entries in g are of the form x̟m

with x in o. It can be proven easily by induction that for ν inN

εr(ν̟
m) ≥ εr(̟

m), εn(ν̟m) = εn(̟m)

and that εr(ν̟
m) = εr(̟

m) for all r only when ν lies in N(o).
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13. Root data and group structure

In this section I’ll summarize in a bit more detail than I have so far the structure of reductive groups. The
principal references I amaware of for this section are [DemazureGrothendieck:1970] and [Springer:1979].

The standard reference for root systems is [Bourbaki:1968].

For the moment, let F be an arbitrary field.

SupposeG to be a connected split reductive group defined overF . ABorel pair ofG is a pairB = (B, T )
withB a Borel subgroup ofG and T a maximal torus inB. If B = (B, T ) is a Borel pair, then the adjoint

action of T on the nilpotent radical of b decomposes into a direct sum of onedimensional root spaces .

If ΣB is the set of all characters arising in this decomposition, there exists a unique subset ∆ = ∆B with
the property that every λ in ΣB can be expressed as λ =

∑
α∈∆ nαα with nonnegative integers nα. It

is called the basis of ΣB. The adjoint action of T on all of g decomposes into the direct sum of t and the

onedimensional root spaces gα where α ranges over ΣB and −ΣB.

Inner automorphisms act transitively on Borel pairs. A Borel subgroup is its own normalizer and the

stabilizer of a maximal torus within one is that torus. Therefore if g conjugates B1 = (B1, T1) to
B2 = (B2, T2) the induced isomorphism X∗(g) of X

∗(T1) with X∗(T2) depends only on the pair and

not specifically on g. Similarly for the coweight lattices X∗(Ti). We can therefore define the canonical
root lattice LG and its dual L∨

G associated to G. An element of this lattice may be identified with the
collection of all triples (B, T, λ) where λ lies in X∗(T ) and the λ for different Borel pairs correspond

under the canonical identification. Since the variousΣB,T and∆B,T also correspond under the canonical
identifications, we may in fact define a canonical quadruple

RG = (LG,∆G, L
∨
G,∆

∨
G) .

It is usually referred to in English as the canonical based root datum of G. (Some linguistic confusion

is certainly possible here, since a root datum is an array of data. The use of the singular goes back to
[DemazureGrothendieck:1970], who first defined “une donnée radicielle”.) The literature also defines

the canonical root datum (L,Σ, L∨,Σ∨), but in these notes this will not occur. In summary:

13.1. borelpair. For each Borel pair B there exists a canonical isomorphism[Proposition]

κB: X∗(T ) −→ LG

taking ∆∨ to ∆∨
G, and likewise for the dual objects. For any inner automorphism γ this diagram

commutes:

X∗(T )
X∗(γ)−→ X∗(γ(T ))

κBց ւ κγB

LG

The assignment ofRG to G is to some extent functorial. We’ll not need to know the most general case.

13.2. gamma. If γ is any automorphism of G, the automorphism[Corollary]

LG(γ) = κγBX∗(γ)κ
−1
B : LG −→ LG

of LG depends only on the class of γ modulo inner automorphism.

Or, in other words, the map γ 7→ LG(γ) depends only on the image of γ in the quotient of outer
automorphisms

Outer(G) = Aut(G)/Int(G) .
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It induces a canonical map from this quotient to the groupAut(RG) of automorphisms of the based root

datum.

The relationship between automorphisms of G and automorphisms of RG can be made more precise.
An épinglage E of G is made up of (1) a Borel pair (B, T ) and (2) an array (Xα) of elements of the

root spaces bα for α ∈ ∆B,T . Each Xα determines as well an embedding of the additive group Ga into
Bα. Automorphisms of G transport épinglages in an obvious way. In general, it will interchange the

elements of the array (Xα) so as to be compatible with the action on ∆B. Thus an automorphism takes

Xα to Xβ where β = L∨
G(γ−1)α. (There seems to be no good English equivalent for the French word

‘épinglage’. The word ‘épingler’ means ‘to pin’, and the image that comes to mind most appropriately

is that of a mounted butterfly specimen. [Kottwitz:1984] uses ‘splitting’ for what most call ‘épinglage’,

but this is not compatible with the common use of ‘deploiement’, the usual French term for ‘splitting’.)
Ian Macdonald, among others, has suggested that retaining the French word épinglage in these notes

is a mistake, and that it should be replaced by the usual translation ‘pinning.’ This criticism is quite
reasonable, but I rejected it as leading to noncolloquial English. The words ‘pinning’ as noun and

‘pinned’ as adjective are commonly used only to refer to an item of clothing worn by infants, and it just

didn’t sound right.

The following is the simplest case of oneof theprincipal results (XXIII.4.1) of [DemazureGrothendieck:1970]

(also discussed by [Springer:1979]).

13.3. bpconjugate. IfE = (B, T, (Xα)) and E′ = (B′, T ′, (X ′
α′)) are two épinglages then any automor[Proposition]

phism ofRG lifts to a unique automorphism of G taking E to E′.

If E′ = E this leads to:

13.4. canproj. The canonical projection from Outer(G) to Aut(RG) is an isomorphism. Épinglages give[Corollary]

rise to splittings of the sequence

1 −→ Int(G) −→ Aut(G) −→ Outer(G) −→ 1 .

Conversely, we can start with a datumR = L,∆, L∨,∆∨) and construct a groupGwithRG isomorphic

toR. The first thing to be decided is what conditions to impose on the datum.

Suppose ∆ to be a finite set, embedded as a basis into a lattice L∆, which is in turn embedded in a lattice

L. Suppose also given a map α 7→ α∨ from ∆ to a set ∆∨ of linearly independent elements in the dual

lattice L∨ = Hom(L,Z), and that

• for α in ∆, 〈α, α∨〉 = 2;
• for α 6= β in ∆, 〈α, β∨〉 ≤ 0;
• 〈α, β∨〉 = 0 if and only if 〈β, α∨〉 = 0.

These are the conditions that the matrix (Cα,β) with Cα,β = 〈α, β∨〉 be an integral Cartan matrix . With
the first assumption, the linear transformation

sα: v 7−→ v − 〈v, α∨〉α

is a reflection in L—that is to say it fixes points in the hyperplane 〈v, α∨〉 = 0 and takes α to −α. So
is its contragredient sα∨ = s∨α in L∨. These reflections generate a Coxeter group in the vector space

L ⊗ R—i.e. one defined by certain simple generators and relations. It is called the Weyl group of the

system. In general, it will be the Weyl group of a KacMoody algebra, so the last condition on a root
datum, at least in this article, is that this Weyl group be finite:
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• the sα generate a finite group.

Associated to the Cartan matrix is the Dynkin graph of the matrix, whose nodes are elements of ∆, with

an edge from α to a distinct node β if 〈α, β∨〉 6= 0. This edge is oriented if

nα,β = 〈α, β∨〉〈β, α∨〉 < 4 ,

and assigned a multiplicity indicated graphically according to the following diagrams:

α β 〈α, β∨〉 = 〈β, α∨〉 = −1

〈α, β∨〉 = −2, 〈β, α∨〉 = −1

〈α, β∨〉 = −3, 〈β, α∨〉 = −1

The condition on finiteness is in practice usually verified by checking that each of the connected compo

nents of the Dynkin graph belong to one of the known list of graphs of a given rank giving rise to a finite
Weyl group, which are given, for example, in [Bourbaki:1968].

In these circumstances, let Σ be the (finite) orbit of ∆ underW , Σ∨ that of ∆∨. This pair forms a root
system , for which ∆ forms a basis. In particular, if Σ+ is the subset of positive roots, those of the form∑

∆ nαα with all the nα nonnegative integers, then

Σ = Σ+ ∪ −Σ+ .

The complete set (L,∆, L∨,∆∨) is a based root datum . (In [GrothendieckDemazure:1970] it is called

‘une donnée radicielle épinglée’, thus emphasizing usefully the parallel with the term ‘groupes épinglée’.
I see no way to do this in colloquial English.)

Since the Weyl group is finite, there exists an invariant positive definite inner product • on L. Since the
root reflection sα is an orthogonal reflection,

〈α, β∨〉 = 2

(
α •β

α •α

)

for all α and β in ∆. This implies the matrix equation 2(α •β) = DC where C is the Cartan matrix and

D the diagonal matrix with entries α •α. This in turn implies that the Cartan matrix is nonsingular.

A root datum is called semi-simple if the lattice L∆ in L spanned by ∆ has finite index in L. Since the

Cartan matrix is nonsingular, this is equivalent to the condition that (L∨)∆∨ have finite index in L∨. In
general, let L∨

der be the λ in L∨ such that some nonzero integral multiple nλ lies in L∆.

13.5. quadruple. If L = (L,∆, L∨,∆∨) is a root datum then the quadruple[Proposition]

Lder =
(
(L∨

der)
∨,∆, L∨

der,∆
∨
)

is also one. If L is the root datum of a reductive groupG then Lder is that of the derived groupGder.

Because L∨
der is saturated in L∨, the short exact sequence

0 −→ L∨
der −→ L∨ −→ L∨/L∨

der −→ 0

is a sequence of lattices, which therefore splits (albeit noncanonically). Every root datum is therefore
obtained from a semisimple one by adding on a lattice summand.

If one is givenabased root datum (L,∆, L∧,∆∧) then, according to a theoremoriginallydue toChevalley,

there exists an essentially unique split reductive groupGdefined overF giving rise to it. Accounts of this
can be found in [Chevalley:1961] and [DemazureGrothendieck:1970]. The group is determined only up
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to isomorphism, but the standard proof constructs the group togetherwith an épinglage, which rigidifies

the construction. The passage from the root datum to the group of rational points is entirely constructive.

Results of R. Steinberg, extended somewhat in [DemazureGrothendieck:1970] and discussed clearly in
the recent account [CohenTaylor:2002] tell how to describe explicitly the group of rational points by

generators and relations. The paper by Cohen et al. goes on to give reasonable algorithms for group

operations, representing elements of the group in terms of the Bruhat decomposition. The algorithms
they describe have been implemented in the computer program MAGMA. Slightly more explicitly, if T is

the torus whose character group is L and E/F a field extension, its group of Erational elements may
be identified with L∨ ⊗ E×. The group G is defined as an algebraic group, and G(E) turns out to be

the group generated by symbols s(t) for t in T (E) and eα(x) for α in ∆ or −∆ and x in E. The group

G(E) is that generated by the s(t) and eα(x) subject to certain relations laid out in the paper by [Cohen
et al.:2002].

In principle the root datum tells everything about the group. If Gder is the derived group of G and Tder

the intersection of Gder with the torus T , the lattice L∨
der is the image of X∗(Tder) in L

∨ = X∗(T ). The
groupGder will be simply connected precisely when this is equal to L∨

∆∨ , and equal to the adjoint group

when it is (L∆)∨. The quotient L∨/L∨
der is isomorphic to the cocharacter group of the torus G/Gder.

The lattice L∨/L∨
der is the coroot lattice of the quotient of G byGder.

The centreZG ofGwon’t in general be connected, but it will be amultiplicative group, hence determined
by its character groupX∗(ZG). The group of its rational points, for example, may be identified with

ZG(F ) = Hom(X∗(ZG), F×) .

IfRG = (L,∆, L∨,∆∨) then
X∗(ZG) = L/L∆ .

The caseG = SL2 plays a special role. HerewemaychooseB to be thegroupofupper triangularmatrices,

T the diagonal matrices. The root spaces are the upper and lower nilpotent matrices, corresponding to
roots α and −α. Let α∨ inX∗(T ) be the map from Gm to SL2 taking

x 7−→
[
x

1/x

]
.

Since [
x

1/x

] [
0 y

0

] [
1/x

x

]
=

[
0 x2y

0

]

we have α(α∨(x)) = x2. Let e±α be maps from the additive group Ga to SL2:

eα: y 7−→
[

1 y
1

]
, e−α: y 7−→

[
1
y 1

]

The images are the unipotent subgroupsNα andN−α whose Lie algebras are the root spaces. The images
of e±α generate all of SL2. Because of the Bruhat factorizations

[
a b
c d

]
=

[
1
c/a 1

] [
a

1/a

] [
1 b/a

1

]

[
1/c

−c d

]
=

[
1

−1

] [
c −d

1/c

]
=

[
1

−1

] [
c

1/c

] [
1 −d/c

1

]
,

we can see that theN±α, the diagonal matrices and the element

w(1) =

[
1

−1

]
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generate SL2. But the equations[
1 x

1

] [
1

−1/x 1

] [
1 x

1

]
=

[
x

−1/x

]

= w(x)

w(x)w(1) =

[
−x

−1/x

]

show that theN±α alone generate all of SL2.

Given any isomorphism of the additive group Ga with the root space gα, there exists a unique isomor
phism eα of Ga with the group Gα whose Lie algebra is gα. There then exists a unique embedding e−α

of Ga into G such that

eα(x)e−α(−1/x)eα(x)

lies in the normalizer of T . The maps eα and e−α extend to a unique homomorphism εα from SL2 toG,
taking the diagonal matrices into T . Conjugation by the image of any w(x) is the reflection inX∗(T ) or
X∗(T ) corresponding to the pair α, α∨.

14. Root data for quasi-split groups

Suppose E/F to be a Galois extension with group G, and G a connected quasisplit group defined

over F that splits over E. Let B = (B, T ) be a Borel pair defined over F . Any element of G gives
rise to an automorphism of X∗(T ) that preserves ∆B, hence an automorphism of the root datum

R = (L,∆, L∨,∆∨) associated to G over E.

Conversely, any homomorphism from G to the Aut(R) lifts to a homomorphism from G to Outer(G),
hence by Galois descent gives rise to a quasisplit reductive group obtained from the split form ofG over

F . The correspondance induces a bijection between conjugacy classes of homomorphisms ϕ from G to
the automorphism group of R and quasisplit groups defined over F that are isomorphic over E to the

split group G determined by R. If σ 7→ ϕσ is the homomorphism then the group of F rational points

on Gϕ is
Gϕ(F ) = {g ∈ G(E) |ϕγ(g) = σ−1(g) for all σ ∈ G} .

In the cases we care about, F will be a padic field and E an unramified extension, therefore G a cyclic
group. In this case, the homomorphism from G to Aut(G) is determined by the image of the Frobenius

F.

For example, let E be a quadratic extension of F , G = SL3(F ), ϕσ the involution

X 7−→ J tX−1J

ofG, where here σ is the conjugation ofE/F . The corresponding quasisplit group is the special unitary
group SU3(E/F ), which becomes isomorphic to SL3(E) over E.

Any automorphism of L determines one of its Dynkin diagram as well. If the extension E/F is cyclic,
the action on this diagram is completely specified (up to conjugacy) by giving the orbit of each of the

nodes. This is usually indicated by Tits diagrams . In case G = SU3, let

xα1
(y) =




1 y 0
1 0

1




xα2
(y) =




1 0 0
1 y

1




xα3
(y) =




1 0 y
1 0

1


 .
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The image of conjugation of E/F swaps xα1
and xα2

, hence takes xα3
to−xα3

since

[dxα1
, dxα2

] = dxα3
.

Therefore, here is the diagram for SU3:

which indicates that conjugation swaps the nodes. Here are all of the Tits diagrams for the absolutely

simple groups, along with their conventional designations taken from [Tits:1979]:

2A′
2n

2A′
2n−1

2Dn

3D4

2E6

One important thing to notice is that the connected component of each orbit has only one or two nodes

in it. This can be seen directly, since a perusal of the possible Dynkin diagrams for sp[lit groups shows
that the only diagrams onwhich a group acts transitively are those forA1 andA2. Furthermore, the only

case that it does have two is that of 2A′
2n. This means that every simply connected unramified quasisplit

group of rational rank one is either SL2(F ) or SU3(E/F ) where F is some unramified extension of k
(that is to say, obtained by restriction of scalars from such a group).

Suppose R = to be a root datum and ϕ to be a homomorphism from G to Aut(R). The associated

quasisplit groupwill have a maximal torus T defined over F also determined by ϕ. IfA is the maximal

split torus of T then X∗(A) may be identified with the lattice of Ginvariants in X∗(T ). The set of
restricted roots is the set Σ of restrictions of the roots in Σ = ΣR toX∗(A). This is well known to be root

system itself, with the restrictions of simple roots in ∆ = ∆R as basis. I’ll explain this here in a rather

constructive fashion, following §1 of [Steinberg:1968].
LetW be the Weyl group of Σ, and letW be the subgroup of w inW commuting with G. This will turn

out to be the Weyl group of the restricted root system. The group X∗(A) is the lattice of invariants in
X∗(T ) and the Galois group fixes the positive chamber C ofW , soX∗(A) contains points in the interior

of C, andW is also the quotient of the stabilizer of X∗(A) by the subgroup acting trivially on it, so this

is compatible with the usual specification of the restricted Weyl group.

For each orbitΞ of G in ∆, letwΞ = wℓ,Ξ, he longest element ofWΞ, the group generated by s in Ξ. Since
Ξ is fixed by G, the element wΞ lies inW , and it is the unique Ginvariant inWΞ. Since every element
w of W can be uniquely factored as w = xy with xΞ > 0 and y inWΞ and ℓ(w) = ℓ(x) + ℓ(y), every
elementw ofW may be thus factored as w = xy with y = wΞ. An induction argument shows that every

w inW may be expressed as a product of thewΞ. If Ξ is any Gorbit, then the intersection ofXA with the
sublattice spanned by the roots inΞ is onedimensional, andwΞ acts by−1 on it, fixing a complementary

subspace. It is therefore a reflection inXA, and also maps Sigma to itself.
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Let Ξ be a Gorbit in ∆, let αΞ be its restriction toX∗(A), and let aΞ be the real vector such that

wΞv = v − 〈v, aΞ〉αΞ

In order to know that Σ is a root system, it remains only to show that 〈v, aΞ〉 is an integer for every

restricted root v. If Ξ has one or two elements this is a direct observation, and it follows from this in

general, since the connected component of every orbit has just one or two elements in it.

15. The L-group

Toget aquick ideaofwhat’s coming, letG = GLn. Theunramifiedcharacters ofA/A(o)areparametrized
by ntuples (x1, . . . , xn) with each xi in C×. Different ntuples give rise to the same homomorphism

from H(G//K) to C× if and only if one is a permutation of the other—i.e. the homomorphisms are
parametrized by invertible diagonal n × n matrices up to permutation, or in other words semisimple

conjugacy classes in GLn(C). This apparent coincidence is the simplest case—simple enough to be

deceptive—of something first pointed out by Langlands. It has proven extraordinarily fruitful in under
standing the nature of automorphic forms.

Throughout this section, suppose thatG be as usual an unramified, connected, reductive group defined
over k.

• Suppose at first G to be in fact split over k.

Up to isomorphism, the structure of G is completely determined by its root datumR = (L,∆, L∨,∆∨).
The dualR∨ = (L∨,∆∨, L,∆) ofR is also a root datum. Associated to it is a connected reductive group

Ĝ defined over C, and in this I choose a Borel pair (B̂, T̂ ) where (B, T ) is a Borel pair in G. I’ll often

confound Ĝ and Ĝ(C).

If G = GLn(k), for example, then Ĝ = GLn(C). If F is semisimple and simply connected, the Ĝ is teh

adjoint form of the dual root system. For example, the dual of Cn is Bn, and hence if G = SLn(k) then

Ĝ = PGLn(C), and if G = Sp(2n) then Ĝ = SO(2n+ 1).

The dual group of A = T is a complex torus Â. The group of rational homomorphisms

Hom(A/A(o),C×) = Hom(X∗(A),C×) = Hom(X∗(Â),C×)

is that of unramified characters of A, but it is also by definition the group of points of Â. Different
complex characters give rise to the same homomorphism from H(G//K) to C if and only if they are

W conjugates of each other, which is to say if and only if the corresponding points of Â(C) lie in the

same conjugacy class in Ĝ(C). In summary:

• If G is split, the irreducible unramified representations of G are parametrized by semisimple

conjugacy classes in Ĝ.

This will have a remarkable generalization to the case whenG is not necessarily split.

Any function in the Hecke algebra H(G//K) is associated by the Satake transform to a function on the

characters of A/A(o), namely χ 7→ cχ(f). This is invariant underW , and hence determines a function

on the conjugacy class of χwhen it is identifiedwith an element of Â (still assumingG to be split). What

functions arise in this way? Each t in T −− corresponds to a weight of the complex torus T̂ . Its Weyl

orbit forms the extremal weights of a unique irreducible representation ρt of Ĝ whose highest weight is
among these. Let χ(ρt) be its character.

As is already implicit in the proof of the Satake isomorphism, every function in the integral Hecke
algebra made up of Zlinear combinations of the charKtK is mapped under the Satake transform to a

Zlinear combination of conjugation invariant functions δ
−1/2
P (t) TR/(ρt), and conversely every such

linear combination lies in the image of the Satake transform.
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• IfG is split, the integral Hecke algebraH(G//K) is isomorphic to the ring of conjugationinvariant

functions on Ĝ generated by the functions δ
−1/2
P (t) TR/(ρt) as t ranges over T −−.

Let me point out one interesting place where Ĝ illuminates the theory of spherical functions. Recall that

for G = PGL2(k)

S(charKωmK) =

{ 1 m = 0
Q1 m = 1
Qm −Qm−2 m ≥ 2

where
Qm = qm/2

(
ωm + ωm−2 + · · · + ω−(m−2) + ω−m

)
.

The element ω is a generator of A/A(o), which may be identified with a generator of X∗(Â(C)). In
terms of this identification, Qm is equal to qm/2 times the character of the irreducible representation of

Ĝ = SL2(C) of dimension m + 1 and highest weight ωm. For general groups we expect to meet the
Weyl character formula in similar circumstances.

• Now I drop the assumption thatG be split.

Recall that Γ is the Galois group of knr/k. In this case, the isomorphism class of G is determined by its

root datumR = (L,∆, L∨,∆∨) together with a homomorphism ϕ from Γ to Aut(R), hence determined

by the image of F. As before, we define Ĝ be a connected reductive group defined over C together with

an isomorphism of its root datum withR∨.

If we are given an épinglage, it determines a lifting from Aut(R∨) to Aut(Ĝ), hence a homomorphism

from Γ to Aut(Ĝ). Since the image fixes an épinglage, it is what [Kottiwtz:1984] calls an Laction .

Following [Kottwitz:1984], I say that a dual group for G is a reductive group Ĝ over the complex

numbers C together with an Laction of Γ and a Γisomorphism of the based root datum of Ĝ with
R∨. The corresponding unramified L-group LG of G is the semifirect product ofWnr, the cyclic group

generated by the Frobenius, and Ĝ.

• In rest of this section, because the role of the Levi component of P is predominantly as a maximal
torus, I shall write it as T , notM .

When G is split, the Lgroup is just the direct product ofWnr and Ĝ, and the Frobenius in the Lgroup
plays no important role. For arbitrary unramified groups, one has to take it into account. The way to

parametrize unramified representations in general is based on a remarkable observation of Langlands:

15.1. lconj. Every semisimple LG conjugacy class in Ĝ × F contains an element t̃ × F with t̃ in T̂ .[Theorem]

The image of t̃ in Â/W depends only on the original conjugacy class, and induces a bijection between

semisimple conjugacy classes in Ĝ× F and Â/W .

There are few places in the literature where this is proven, and indeed the Lgroup of an arbitrary

unramified group seems to be something of a neglected animal, suffering by comparisonwith the simpler

split groups. But, amazingly, the arbitrary case was dealt with by Langlands right from the beginning.
The original construction of the Lgroup is in the letter [Langlands:1967] to Weil that introduced it

along with several conjectures about automorphic forms. Other accounts are in [Langlands:1971] and
[Borel:1978]. In the survey [Casselman:1998] I sketched a proof of this Proposition that incorporated a

suggestion of Kottwitz, but it was perhaps a bit too condensed as well as full of typographical errors

to be completely satisfactory, and I’ll expand it here. Most of what I say is taken from Borel’s Corvallis
exposition, but even there can be found a few minor errors.

The proof starts with a simple calculation.

15.2. sameas. In Ĝ× F ⊆ LG, Ĝconjugacy is the same as LGconjugacy.[Lemma]
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Proof. If g and x lie in Ĝ then

g · x× F · g−1 = gxg−F × F .

On the other hand
F · x× F · F−1 = FxF−1 × F = xF × F = x−1xxF × F

= x−1 · x× F · x .

The equivalence x ∼ gxg−F is called twisted conjugacy . So what this result says is that g1×F and g2×F

are conjugate under either Ĝ or LG if and only if g1 and g2 are twisted conjugates.

In order to make Langlands’ Theorem at least plausible, let’s look first at the case whenG is the torus T
itself. The injection of X∗(A) intoX∗(T ) induces a surjection

T̂ = Hom(X∗(T ),C×) 7−→ Â = Hom(X∗(A),C×) .

The following result asserts precisely that the fibres of this projection are the twisted conjugacy classes

in T̂ .

15.3. trivialimage. An element t̂ of T̂ has trivial image in Â if and only if it is of the form uu−F for some[Lemma]

u in T̂ .

Proof. The image of X∗(A) in X∗(T ) is the submodule of Galois invariants. The quotient in the short

exact sequence

0 −→ X∗(A) −→ X∗(T ) −→ L = X∗(T )/X∗(A) −→ 0

therefore has no torsion, and the short exact sequence therefore splits. Thus the kernel of the projection

from T̂ to Â is a connected torus Hom(L,C×). This kernel contains the image of u 7→ uu−F. The

Lie algebra of T̂ decomposes into a direct sum of the Finvariants and the image of F − I . The first is

isomorphic to the Lie algebra of Â and the second to the Lie algebra of the kernel. Since F−I is invertible
on its image, the Lemma follows, since exponentiation maps a Lie algebra onto its torus.

Step 1 . Every semisimple conjugacy class in Ĝ× F contains an element t̂× F with t̂ in T̂ .

Suppose x× F to be a semisimple element of Ĝ× F. We want to find g in Ĝ such that

g · x× F · g−1 = gxg−F × F = y × F

with y in T̂ . Equivalently, we want to find g such that y = gxg−F satisfies

yT̂y−1 = T̂ , yB̂y−1 = B̂ .

because the first places y in the normalizer of T̂ , and the second then places it in T̂ itself.

Now ifH = T̂ or B̂, then sinceHF = H , yHy−1 = H means that

yHy−1 = gxg−F ·H · gFx−1g−1 = H

g−1Hg = x · (g−1Hg)F · x−1

= (x× F) g−1Hg (x× F)−1

In other words, we are looking for g such that gHg−1 is fixed under conjugation by x× F. Theorem 7.5
of [Steinberg:1968] asserts that there exists a Borel subgroupB∗ and a maximal torus T∗ contained inB∗

fixed by x× F, and the pair (B∗, T∗) will be conjugate to (B̂, T̂ ). (Some define a semisimple element of

a possibly disconnected group to be one which stabilizes a pair T ⊂ B.) (This argument is taken from
[KottwitzShelstad:1999].)
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Step 2 . For this next step, letWnr be the Weyl group of G with respect to T , over knr. The kroots of G
are the restrictions toA of the roots Σnr, and correspond bijectively to the orbits of the Frobenius on Σnr.

The restrictions of the basic roots are the restrictions of a basis for Σ+
nr. As we have seen earlier in the

discussion of quasisplit group root data, the elements ofW may also be identified with the elements of

Wnr fixed by the Galois group. Better than that:

15.4. restrictedweyl. Every element of the restricted Weyl group can be represented by an element of[Lemma]

N
Ĝ

(T̂ ) fixed by the Frobenius automorphism.

I follow the argument of [Borel:1978]. According to the proof of Theorem 5.3 of [BorelTits:1965], the

restricted Weyl group is generated by reflections corresponding to the roots in the basis ∆nr. More
precisely, if α lies in ∆nr, let A{α} be the kernel of α in A. The restricted reflection is the unique element

s of order two inWnr fixingX∗(A) and trivial onX∗(A{α}). It suffices to prove the claim for such an s,
say corresponding to the orbitD in ∆nr.

By the construction of the group Ĝ from the root datum, we can find a family of elements e±α in g±α for

each α in ∆, permuted among each other by F. For each α the element [eα, e−α] = hα 6= 0 lies in t̂, and
hFα = Fhα. The elements

h =
∑

α∈D

hα, e+ =
∑

α∈D

eα, e− =
∑

α∈D

e−α

are all fixed by F, and since the sum of a positive and a negative root is never a root

[e+, e−] = h

and

[h, e+] =
∑

α,β∈D

〈α, β∧〉eβ .

The number

dβ =
∑

α

〈α, β∧〉

is independent of β. The number of roots in any connected component of D can be only 1 or 2, since
the Galois group acts transitively on it, and the component must be the Dynkin graph of type A1 or A2

(as I have already pointed out in the previous section), so that dβ must in fact be 1 or 2. Thus h, e±
span a three dimensional Lie algebra fixed elementwise by F, whose corresponding threedimensional

subgroup in Ĝ is also fixed pointwise by F. Pick in it an element w representing the nontrivial Weyl

element.

Step 3 . It follows from Step 1 that the map

T̂ × F −→ Ĝ× F/Int(Ĝ)

is a surjection. IfN is defined to be the inverse image ofW with respect to the projection fromN
Ĝ

(T̂ ) to

Wnr, it follows from Step 2 that every element ofN can be written as a product of w with wF = w and t̂

in T̂ . If n = ûw then
n · t̂× F · n−1 = û · wt̂w−1 · û−F × F

so that N conjugates T̂ × F to itself.

15.5. inclusion. The map[Proposition]

T̂ × F/N −→ Ĝ× F/Int(Ĝ)

induced by inclusion is an injection as well as a surjection.
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Proof. The following argument is attributed in [Borel:1978] to T. Springer. Suppose that

gt1g
−F = t2 .

Suppose g to have the Bruhat factorization g = n1t̂wn2 with w fixed by F. Thus

n1t̂wn2 · t1 · n−F
2 w−1 t̂−Fn−F

2 = t2

n1 · t̂wt1w−1 · w · t−1
1 n2t

−1
1 = t2n

F
1 · t̂F · w · nF

2

= t2n
F
1 t

−1
2 · t2t̂F · w · nF

2

which implies that

t2 t̂
F = t̂wt1w

−1, t2 = t̂w · t1 · w−1 t̂−F .

Step 4 . Langlands’ Theorem now follows from:

15.6. yyy. Projection from T̂ to Â is equivariant with respect to the projection fromN toW . The induced[Proposition]

map

T̂ × F/N −→ Â/W

is a bijection.

Proof. Surjectivity follows from the surjectivity of the projection from T̂ (C) to Â(C). Equivariance and

injectivity both follow immediately from the fact that any w inW has a representative in N
Ĝ

(T̂ ) which
is fixed by F.

This concludes the proof of Langlands’ Theorem. In combination with Satake’s Theorem, it says that

the unramified principal series are parametrized by semisimple conjugacy classes in the coset Ĝ× F of
LG, the inverse image in LG of the Frobenius automorphism inWnr. Another way to phrase this is to
say that they are parametrized by semisimple splittings of the canonical projection from LG toWnr. Or,

equivalently, they are parametrized by diagrams

Wnr −→ LG
ց ւ

Wnr

where the arrow from Wnr to itself is the identity. Homomorphisms from Wnr to LG fitting into this

diagram are called L-homomorphisms .

• From now on, if π is an irreducible unramified representation of G, let Fπ be the corresponding

conjugacy class in Ĝ× F.

The most immediate gain from introducing the Lgroup is the association of L functions to automorphic

forms. If π is an unramified representation of G and ρ a finite dimensional representation of LG then

Langlands defines

L(s, π, ρ) =
1

det
(
I − ρ(Fπ)q−s

) .

Of course this is well defined since it depends only on the conjugacy class of Fπ. Since a unitary

representation has to have bounded matriz coefficients, Macdonald’s formula implies a bound on s that
guarantees convergence for this function in a right halfplane. It is precisely these L functions which

should play the role in automorphic forms that the Artin Lfunctions do in number theory.
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3. D. Barbasch and A. Moy, ‘A unitarity criterion for padic groups’, Invent. Math. 98 (1989), 19–37.

4. ——, ‘Unitary spherical spectrum for padic classical groups’, preprint, 2002.

5. J. Bernstein, Representations of p-adic groups (preprint based on lecture notes by Karl Rumelhart),

Harvard University, 1992. Formally unpublished, but available at

http://www.math.ubc.ca/~cass/research/p-adic-books/bernstein.dvi

6. ——, ‘On the support of Plancherel measure’, J. Geom. Phys. 5 (1988), 663–710.

7. ——, ‘All reductive padic groups are tame’, journalJour. Funct. Anal. Applic. 8 (1974), 91–93.

8. A. Borel, ‘Automorphic Lfunctions’, pp. 27–62 in part 2 of in Automorphic forms, representations,
and L-functions , Proc. Symp. Pure math. XXXIII. Edited by A. Borel and W. Casselman, American
Mathematical Society, 1979.
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25. M. Demazure and A. Grothendieck, Schémas en Groupes III , Lecture Notes in Mathematics 153.
Springe, 1970

26. G. van Dijk, ‘Computation of certain induced characters of padic groups’, Math. Ann. 199 (1972),
229–240.

27. P. Garrett, Buildings and classical groups , Chapman and hall, 1997.

28. V. Ginzburg, ‘Geometrical aspects of representation theory’, pp. 840–848 in Proceedings of the
International Congress of Mathematicians . American Mathematical Society, 1987.

29. ——, ‘Perverse sheaves on a loop group and Langlands’ duality’, preprint, 1990. This has gone

through several versions. It contains errors, but is still valuable as a preface to later work.

30. B. H. Gross, ‘On the Satake isomorphism’, pp. 223–237 in Galois representations in arithmetic
algebraic geometry ,LondonMath. Soc. LectureNote Ser. 254. CambridgeUniversity Press, Cambridge,

1998. A brief and pleasant introduction, with some interesting examples.

31. T. Haines, ‘On matrix coefficients of the Satake isomorphism’, Manuscripta Math. 101 (2000),

167–174.

32. ——,R.E.Kottwitz, andA,Prasad, ‘IwahoriHecke algebras’, preprint, http://www.arxiv.org:math.RT/0309168/,

2004.

33. HarishChandra, ‘Harmonic analysis on reductive padic groups’, in Harmonic analysis on homo-
geneous spaces , Proc. Symp. Pure Math. XXVI. Edited by C. Moore, American Mathematical Society
1973.
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55. ——, Arbres, amalgames, SL2, Astérisque 46 (1977). Also published by Springer in English as
Trees .

56. G. Shimura, Introduction to the arithmetic theory of automorphic funct ions . Iwanami Shoten and
Princeton University Press, 1971.

57. A. Silberger, Introduction to harmonic analysis on reductive p-adic reductive groups . Princeton
University Press, 1979.



Macdonald’s book (1:17 p.m. August 25, 2012) 52

58. ——, ‘HarishChandra’s Plancherel theorem for padic groups’, Trans. Amer. Math. Soc. 348 (1996),

59. ——, correction to the previous article, Trans. Amer. Math. Soc. 352 (2000), 1947–1949.

60. L. Solomon, ‘The orders of the finite Chevalley groups’, Journal of Algebra 3 (1966), 376–393.
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