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Newton polygons are associated to polynomials with coefficients in a discrete valuation ring, and they give

information about the valuations of roots. There are several applications, among them to the structure of
Dieudonné modules, the ramification of local field extensions, and the desingularization of algebraic curves

in P2.

As an exception to a common practice of attribution, Newton polygons were originally introduced by Isaac

Newton himself, and how he used them is not so different from how they are used now. He wanted to solve

polynomial equations f(x, y) = 0 for y as a series in fractional powers of x. For example, to solve yn = x we
write simply y = x1/n, and

to solve yn = 1 + x set y =
∑

0

(

1/n

k

)

xk .

Newton sketched the procedure he had come up with in a letter to Oldenburg. It is quite readable (see

p. 126 of [Newton:1959] for the original Latin, p. 145 for an English translation). The diagram he exhibits
is not essentially different from the ones drawn today. Newton polygons are perfectly and appropriately

named—they are non­trivial, and introduced by Newton. This thread became eventually a method related

to desingularizing algebraic curves over C (explained in Chaper IV of [Walker:1950]).

My original motivation in writing this essay was to understand the theory of crystals, particularly §5 of

Chapter IV of [Demazure:1970]. But since then I have come across other applications. One recent one is the
account in [Lubin:2012] of ramification groups and what Serre has called the Herbrand function in terms of

Newton polygons. Another is the computation of splitting fields of polynomials defined over local fields,
for example in [Romano:2000], [Greve­Pauli:2013], and [Milstead et al.:2018]. I shall take these topics up

elsewhere.
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Throughout, let

o = a complete discrete valuation ring

k = its quotient field

p = the maximal ideal of o

F = the quotient o/p

̟ = a generator of p

k = an algebraic closure of k

ord(x) = n if x = u̟n with u in o×.
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Write x ≡n y to mean x − y ∈ pn.

For l a finite extension of k, let ol be its ring of integers, pl its prime ideal. Then pe
l

= p, where e is the

ramification degree of l/k. The homomorphism ord from k× to Z may be extended to one from l× to (1/e)Z,

and then in turn to one from all of k
×
to Q. This extension also satisfies the conditions that

(oa) ord(x + y) ≥ min(ord(x), ord(y))
(ob) ord(x + y) = min(ord(x), ord(y)) if ord(x) 6= ord(y) .

Part I. Polynomials

1. Introduction

Suppose P (x) = pnxn + pn−1x
n−1 + · · · + p0 to be a non­zero polynomial of degree n in k[x].

If α lies in k, what can we say about ord(P (α))?

The condition (oa) implies that all we can say in general is that

ordP (α) ≥ ord(pk) + k ord(α)

for all k. But (ob) tells us that

ord
(

P (α)
)

= mink

(

ord(pk) + k ord(α)
)

if there is a unique k such that ord(pk) + k ord(α) is minimum.

These assertions can be characterized geometrically. Let ΣP be the set of points Pk = (k, ord(pk)) in the
(x, y) plane for all k in Z, with the convention that ord(0) = ∞. Let CP be the convex hull of ΣP . Its

boundary is called the Newton polygon of the polynomial f . It will have vertical sides contained in the line

x = 0 and x = n. At lower left lies the corner (0, ord(p0)) and at lower right (n, ord(pn)). The set CP will
be stable under vertical shifts upwards, and is bounded below. Therefore (1) every linear function

y + λx

in the (x, y)­plane will have a minimum value on it, and (2) the region CP is determined by the functions of
this form that are non­negative on it.

This minimum value will in general be at a unique vertex (k, ord(ck)), but for certain exceptional λ the
minimum value will be taken along all of an edge of CP . The exceptional values of λ coincide with the

negative slopes of the edges of CP , and there are hence a finite number.

1.1. Lemma. If ord(α) is unexceptional, then

ord(P (α)) = mink

(

ord(pk) + k ord(α)
)

.

In particular, if ord(α) is unexceptional, ord(P (α) is finite. Therefore:

1.2. Corollary. If P (α) = 0 then ord(α) is the negative slope of one of the bottom edges of the Newton
polygon of P .

Here are two examples of Newton polygons:
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(5, 1)

(4, 0)

(2, 2)

(1, 3)

(0, 5)

P (x) = p5 + p3x + p2x2 + p2x3 − x4 + px5

(5, 0)

(2, 1)

(1, 3)

P (x) = p3x + px2 + p2x3 − px4 + x5

For the moment, Corollary 1.2 the main consequence of our discussion. It might not seem complete, since I

have not shown that every occurring slope is the order of a root. There is one case in which this should be
clear. Since in between x = i and x = i + 1 the slope doesn’t change, there are at most n distinct slopes. If

the orders of the roots are all different, then they must coincide exactly with the set of slopes. Less obvious is

the main fact about Newton polygons: the orders of the roots and the negatives of the slopes of the Newton
polygon coincide, even counting multiplicity. We’ll see why in the next section.

From now on, let NPP be the function on the range [0, n] whose graph is the bottom of the Newton polygon
of P .

2. The main theorem

Since the valuation of k extends canonically to k, one can define by exactly the same formula the Newton

polygon of any polynomial f in k[X ]. For each i ≥ 1, let λi be its slope between x = i− 1 and x = i—i.e. the

slope of the i­th segment, reading left to right. The slope sequence of f is the n­tuple (λ1, λ2, . . . , λn). By
definition of convexity, λi ≤ λi+1. In the figure on the left above, the slope sequence is (−2,−1,−1,−1, 1)
and on the right it is (−2,−1/3,−1/3,−1/3).

We have seen in the previosu section that if α is a root of P (x) then −ord(α) is the negative of one of the

slopes on the Newton polygon. If the slopes of the are all different, this implies that the orders of the roots

are exactly these negative slopes. This leaves up in the air what happens when some of the slopes have
multiplicity. This turns out not to be a probem:

2.1. Theorem. Suppose that

P = c ·
∏

(x − αi)

lies in k[X ]. Arrange the αi in decreasing magnitude, so that

µ1 = ord(α1) ≤ µ2 = ord(α2) ≤ . . . ≤ µn = ord(αn) .

Then the slope sequence of the Newton polygon is

−µn,−µn−1, . . . ,−µ1 .

In another formulation, suppose P =
∏n

1 (x − α). Suppose x in [k − 1, k] with 1 ≤ k ≤ n. Then

NP(x) =
∑n

k+1
ord(αi) + (k − x)ord(αk) .
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The reason for the choice of indexing should become clear in a moment. Before beginning the proof, let’s
look at a few examples.

• Suppose P = x − α. Its polygon is the segment between (0, ord(α)) and (1, 0), and the claim is trivial.

x x − p2

• Now suppose P = (x − α)(X − β) = x2 − (α + β)x + αβ, with ord(α) ≥ ord(β). The constant term is
αβ, so one point on the polygon is (0, ord(α) + ord(β)). Another is (2, 0). Otherwise, there are two cases:

(1) ord(α) > ord(β), (2) ord(α) = ord(β). In the first ord(α + β) = ord(β), and so there are two distinct

slopes. In the second, ord(α + β) ≥ ord(α) = ord(β) = (say) λ, and the polygon is the single segment from
(0, 2λ) to (2, 0).

p3 + px + x2 p3 + p2x + x2

Proof of the Theorem. One may as well assume c = 1, since multiplying P by c only shifts CP vertically by
ord(c). For each subset I of [1, n] let

αI =
∏

i∈I

αi .

So now

P (x) =

n
∑

0

pix
i

with p0 = 1 and

pk =
∑

|I|=n−k

αI .

For example, pn =
∏n

1αi. Let

Mk = min|I|=k ord(αI)

= ord(α1 . . . αk)

= µ1 + · · · + µk ,

with the convention that M0 = 0. The corner of the Newton polygon at the far left is (0, Mn), that far
right is (n, 0). The assertion of the Theorem is that the bottom of the Newton polygon is the polygonal path

connecting all the points (k, Mn−k). I’ll call this path ΓP . This will follow from the following two claims,

together with basic facts about convex regions: (1) the path ΓP lies (weakly) below the Newton polygon; (2)
its vertices (i.e. its extremal points) lie on the Newton polygon.



Newton polygons 5

The first follows immediately from the inequality

ord(pk) ≥ min|I|=kord(αI) = Mk .

For the second, it suffices to show that the actual vertices of ΓP are points of the Newton polygon. So I

ask, what is the shape of the path ΓP ? The segment from (n − k, Mk) to (n − k + 1, Mk−1) has slope

ord(αk). The vertices of ΓP are therefore the points (n − k, Mk) for which ord(αk+1) > ord(αk). But then
ord(αk+1) > ord(αj) for all j ≤ k, and ord(pn−k) = Mk, so that (n − k, Mk) is a vertex of CP .

As an immediate consequence:

2.2. Corollary. Suppose P (x) and Q(x) to be polynomials in k[x]. Suppose that ord(α) ≥ ord(β) whenever
α is a root of P (x) and β is a root ofQ. Then the Newton polygon of PQ is obtained by joining shifted copies
of the Newton polygons of f and g, first f and then g, so as to make a continuous path.

In other words, let k, ℓ be the degrees of P , Q. Then

NPPQ(x) =

{

NPP (x) + ord(q0) if 0 ≤ x ≤ k
NPQ(x − k) if k ≤ x ≤ p + q.

2.3. Corollary. Suppose the bottom of the Newton polygon of the polynomial P (x) in k[x] is a single line
segment from (0, ord(p0) to (n, 0) that does not contain any integral nodes (i, m). Then P is irreducible in
k[x].

Because according to the previous corollary, if P = QR then the Newton polygon of P would be the join of

those of Q and R at an integral node.

And in turn a consequence. Recall that an Eisenstein polynomial is one of the form xn +
∑

i xi with all pi in

o, ord(pi) ≥ 1 for all i, and ord(p0) = 1.

2.4. Corollary. Every Eisenstein polynomial is irreducible in k[x].

An amusing consequence:

2.5. Corollary. A rational number that is an algebraic integer is an integer.

Proof Because it is an integer in every Qp.

COMPUTATION. The proof gives absolutely no idea of how to find explicit solutions, and in fact this is a task

that depends on the particular field k. There is, however, one tool that is ubiquitous. For every element of x
in o let x be its image in F, and for every polynomial P in o[x], let P be its image in F[x].

2.6. Proposition. (Hensel’s Lemma) Suppose P to be in o[x]. If a in o satisfies P (a) = 0 and P
′
(a) 6= 0, then

there exists a unique α in o such that P (α) = 0 and α = a.

Proof. This follows directly from the p­adic version of the method of Newton­Raphson for solving equations:

2.7. Lemma. Suppose that f(a) ≡n 0 and that f ′(a) is a unit in o×. Then

b = a − f(a)

f ′(a)

satisfies f(b) ≡2n 0.

Proof. From Taylor’s series:

f

(

a − f(a)

f ′(a)

)

= f(a) − f ′(a) · f(a)

f ′(a)
+

(

f(a)

f ′(a)

)2
(

. . .
)

= O(̟2n) .
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Verifying the assumption on P
′
(a) can be done by computing the gcd of P (x) and P

′
(x), since this will

contain as factors all x − a with a a root of multiplicity greater than one, and factorization in finite fields is
well known to be entirely feasible.

The convergence is quadratic, but in practice it is often more convenient to proceed linearly. In this version
of the process, one starts with some x1 in o such that f(x1) ≡1 0 and then calculates in succession some xn

in o (effectively modulo pn) such that f(xn) ≡n 0. Explicitly:

(2.8) xn+1 = xn − C ·f(xn) ≡n xn ,

with C ≡ 1/f ′(x1). The solution is therefore determined by what I call Hensel data : (i) a polynomial f(x)
in k[x] and (ii) a root x1 of f(x) modulo p such that f ′(x0) 6≡ 0 modulo p.

Example. Let k = Q2 and

P (x) = x3 + 2x + 1 .

Then P ′(a) = 3x2 + 2 and

P (x) − x ·P ′
(x) = 1

so that Hensel’s Lemma may be applied to all roots modulo 2—for example 1. Therefore we set x1 = 1
in Z/(2). For subsequent values of xn we may identify Z/(2n) with [0, 2n − 1], and take θ to be just the
obvious embedding. For example, since f(1) = 4 ≡ 0 mod 22, we have also x2 = 1. For the rest, note that

−1/f ′(x1) = −1/5 ≡ 1 modulo 2, so

x3 = 1 + f(x2) = 1 + 4 = 5 .

Sure enough, f(5) = 125 + 10 + 1 = 136 ≡ 0 modulo 8. A few more initial values of xn:

x1 = 1, x2 = 1, x3 = 5, 13, 29, 29, 29, 157, 157, 669, 669, 2717, . . .

Remark. [Jorza:(undated)] explains an algorithm that amounts to a converse to Corollary 2.2: the partition
of the Newton polygon of a polynomial in k[x] into edges of distinct slopes corresponds to a factorization of
the polygon in k[x].

3. Newton’s example

Suppose now k to be an algebraically closed field of characteristic 0, k = k((x)) (formal Laurent series in t
with coefficients in k). The argument leading to the following result is suggested implicitly in a letter from

Newton to Oldenburg, in which he introduces ‘his’ polygons. This result also plays an important role in the

explicit desingularization of algebraic curves, as explained in [Walker:1950]). But Newton’s writing on the
subject leaves much to be desired, and the modern version originates in a more extensive exposition by the

nineteenth century French mathematician Puiseux.

3.1. Theorem. The union of the fields k((x1/n)) is an algebraic closure of k.

Of course Newton didn’t state it this way. In his case the domain of coefficients concerned wasn’t even spec­
ified explicitly, but he presumably knew only about real numbers. Here is a roughly equivalent formulation,

closer to what Newton had in mind:

3.2. Corollary. Suppose P (x, y) to be in k[x, y], monic in y of degree n. There exist n seriesαi in some k[[x1/m]]
such that

P (x, y) =
∏

(y − αi) .

The most subtle point is that one m suffices for all roots. I’ll postpone the proof to the next section, but in this
one go through one relatively simple example—essentially that in Newton’s letter.
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Suppose we want to solve
y6 − 5xy5 + x3y4 − 7x2y2 + 6x3 + x4 = 0 .

Newton plots the exponents (m, n) of each term (xnym) occurring, and considers the bottom of their convex

hull. This is equivalent to what we have done earlier. The diagram that arises (which is basically just a copy
of Newton’s) is this :

Newton then solves the equation obtained by summing just the terms on the line y + (1/2)x = 3. This gives
us

y6 − 7x2y2 + 6x3 = 0 ,

which we can solve explicitly. It is a cubic equation in Y = y2, but more significantly it is homogeneous of
weoight 3 in x and y if we assign y aweight of 1/2, x aweight of 1. This allows us to perform a transformation

particular to the case of power series. The equation has homogeneity degree 3 (which is also the y­intercept
of the line under consideration). so we divide it by x3 to get

(y/
√

x)6 − 7(y/
√

x)2 + 6 = 0 ,

or

(3.3) Y 6 − 7Y 2 + 6 = (Y 2 − 1)(Y 2 − 2)(Y 2 + 3) = 0 (Y = y/
√

x) .

The solutions are Y = ±1,±
√

2, ±
√
−3.

We now divide the original equation by x3, getting

y6

x3
− 5y5

x2
+ y4 − 7y2

x
+ 6 + x = 0 .

Setting Y = y/
√

x (as before) and also X =
√

X this becomes

(3.4) f(Y ) = Y 6 − 5XY 5 + X4Y 4−7Y 2 + (6 + X) = 0 .

The point of this is that reduced modulo (X) this is the part that is emphasized, which is the same as (3.3).

The roots of the reduction are distinct, so we may apply Hensel’s Lemma. For the original equation we
therefore have solutions which are formal series in

√
x with leading terms

y = ±
√

x, ±
√

2x, ±
√
−3x .

For Newton only the first four were to be considered, since he excluded imaginary numbers. What Newton

says is that these leading terms solve the equation ‘very nearly’, including almost no details but adding a bit
later the remark, “Here some difficulties will sometimes arise . . . ” It’s hard to know exactly what he meant.

Hensel’s Lemma will give a series solution of (3.4) of the form

c0 + c1X + c2X
2 + · · · ,
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in which c0 is a root of (3.3) and we can find the rest of the coefficients inductively.

What we have done so far is illustrated here by the fact that the constant term in (3.4) vanishes if Y = 1.

We have
f ′(1) = 6 − 25X + 4X4 − 14 = −8 − 25X + 4X4 ,

which is a unit in the ring R[[X ]]. Its inverse is

1

−8 − 25X
≡ −1

8
· (1 + (25/8)X) mod (X2) .

We therefore have

Y1 = Y0 −
f(Y0)

f ′(Y0)
= 1 − −4X

−8 + 25X
= 1 − (1/2)X + O(X2)

and sure enough f(Y1) = O(X2). Continuing, we get

Y = 1 − (1/2)X + (29/16)X2 − (1197/128)X3 + (58993/1024)X4 − (3203393/8192)X5 + · · ·

or

y =
√

x(1 − (1/2)
√

x + (29/16)x− (1197/128)x3/2 + (58993/1024)x2 − (3203393/8192)x5/2 + · · ·

Remark. There is no simple generalization of this Theoremwhen k is a finite extension ofQp, and the algebraic
closure of k in that case is quite complicated. More curious is the case in which k itself has characteristic p > 0.
As Chevalley had already pointed out a while ago, yp − y − 1/x has no solution in fractional power series in
x. [Kedlaya:1999], [Kedlaya:2001], and other papers referred to there tell the really remarkable story of how

to fix things up in that case.

4. Puiseux expansions

In this section I’ll sketch a proof of Theorem 3.1, along with a few related items. The proof will amount to a

reasonably practical algorithm, under the assumption that one knows how to find and describe all roots of

any polynomial in k[x]. Of course this an entirely unreasonable assumption, but I imagine one could find a
substitute assumption that uses only factorization in k[x] into irreducibles.

What is going to develop is by far simplest if one knows that f(x, y) = 0 has only simple roots. If

f(x, y) =
∏

i
(y − αi(x))mi

and some mi > 1, then the gcd g(x, y) of f(x, y) and ∂f(x, y)/∂y will have y−αi(x) as common factor, and

in particular g(x, y) will be a non­trivial polynomial in y. But in any case the quotient f(x, y)/g(x, y) will

always have the same roots as f(x, y), and they will be simple. So from now on I assume that f(x, y) = 0
has only simple roots.

The example in the previous section is too simple to indicate what problems can arise. For a general equation
P (x, y) = 0 it is true that all solutions can be expanded in formal fractional power series in some k[[x1/n]],
but it may not be apparent at first what n is. Finding the common denominator in the expansion may take

several iterations of a relatively simple process. As in Newton’s example, the point of the iterations is to
reduce the problem to one in which Hensel’s Lemma can be applied.

I am going to describe an algorithm with input a polynomial f(x, y) in k[x, y] and output amounting to a
list of all of its roots, specified in a very particular way. Each root, if described completely, will be an infinite

formal power series

(4.1) y = c1x
γ1 + c2x

γ2 + c3x
γ3 + · · ·
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in which the ci 6= 0 are complex numbers, and the γi are rational numbers such that

γ1 < γ2 < γ3 < . . . .

Of course it is impractical to specify the series completely. The algorithm will tell how to compute the terms

in the series, inductively, one by one. Let

λ1 = γ1, λi = γi − γi−1 (i ≥ 2) .

And let

yN = c1x
γ1 + c2x

γ2 + · · · + cNxγN

wN = xλN (cN + xλN+1cN+1 + · · · )

so that

w1 = y

y = yN + xγN wN+1

wN = xλN (cN + wN+1) .

The algorithm will amount to a series of steps. In each step, we start with the equation satisfied by wN .

Then the possible values of λN are determined from the slopes of the Newton polygon of the equation, the
possible values of cN for each slope are determined by examining the homogeneous equation associated to

that slope, and then the equation satisfied by wN+1 is derived. At that point, we do the next step.

Before I try to explain the general algorithm, I’ll look at another example, one that should make things

somewhat clearer. (I take it from [Didier et al.:2008], although how I deal with it will differ from how they

do.) Let
P (x) = 4y3 + 4xy2 + x2y + 2x4 .

Its Newton polygon looks like this:

2x4 + x2y + 4xy2 + 4y3

According to Theorem 2.1, its roots have orders 2, 1, 1. What are the corresponding power series solutions?

(a) Let’s look first for the solution of order 2. That is to say, in the format of (4.1) its leading term is of the
form c1x

2.

Following Newton, we look first at the terms of the equation whose vertices lies on the edge from (0, 4) to
(1, 2):

x2y + 2x4 = 0 .

This is homogeneous of degree 4, if we assign y weight 2. If we divide this by x4 we get the homogeneous

equation of degree 0
y

x2
+ 2 = 0 .
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If we divide the whole equation by x4 to get

4
y3

x4
+ 4

y2

x3
+

y

x2
+ 2 = 4x2 y3

x6
+ 4x

y2

x4
+

y

x2
+ 2 == 0

If we set Y = y/x2, X = x this becomes

F (X, Y ) = 4X2Y 3 + 4XY 2 + Y + 2 = 0 .

Its Newton polygon is this:

2 + Y + 4XY 2 + 4X2Y 3

In other words, I have flattened the edge under consideration in the original Newton polygon. The new
Newton polygon is strictly decreasing at the left of the flat segment (which is vacant in this example), strictly

increasing to its right.

Its reduction modulo (X) is Y + 2 = 0. The root Y = −2 has multiplicity one. In the end, we get a solution

y = x2 Y (x) = x2(−2 + w1)

in which Y = −2 + w is a series in x with Y (0) = −2 satisfying

F (X, Y ) = 4x2Y 3 + 4xY 2 + Y + 2 = 0 ,

which we can solve by applying Hensel’s Lemma.

(b) Now we look at the edge from (1, 2) to (3, 0), lying on the line with slope −1 and y­intercept (0, 3). The
corresponding homogeneous subexpression is

4y3 + 4xy2 + x2y .

It is homogeneous of weighted degree 3, since the line passing through the nodes under consideration is

j + i = 3. We therefore divide the original equation by x3, getting

4
y3

x3
+ 4

y2

x2
+

y

x
+ 2x = 0 ,

or, setting Y = y/x, X = x:

(4.2) F (X, Y ) = 4Y 3 + 4Y 2 + Y + 2X = 0 .

The reduced equation is

4Y 3 + 4Y 2 + Y = 0
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with solutions Y = 0,−1/2,−1/2. We can ignore the root 0 because we are now looking for a solutionwhose
constant term does not vanish. It is in effect a shadow of the first solution we have found. So we are now

looking at a root−1/2 of multiplicity 2. Because it has multiplicity 2, we cannot apply Hensel’s Lemma. All

we know is that we are looking for a pair of solutions of the form

Y = −1/2 + y1 (y1 = o(1))

in which y1 is a fractional power series of order more than 0. We substitute this expression for Y into (4.2) to

derive an equation for y1. This gives us the equation

2x1 − 2y2
1 + 4y3

1 = 0 .

Its Newton polygon is

2x − 2y2 + 4y3

We require that y1 = o(1), so we ignore the last segment. The homogeneous equation for the first segment is

2y2
1 − 2x1 = 0

with y­intercept 1, so we divide the (new) original equation by x to get

2 − 2
y2
1

x
+ 4

y3
1

x
= 2 − 2

y2
1

x
+ 4x1/2 y3

1

x3/2
= 2 − 2Y 2

1 + 4x1Y
3
1 (Y1 = y1/

√
x, x1 =

√
x) .

Now we can apply Hensel’s Lemma. It gives us two solutions corresponding to the two roots ±1 of the

reduced equation, leading finally to solutions of the original equation:

y = x(−1/2 +
√

xY (x1)) = x(−1/2 +
√

x(−1 + w3) ,

with Y (x1) a power series in x1 =
√

x, such that Y (0) = ±1, satisfying the equation

2 − 2Y 2 + 4x1Y
3 = 0 .

With examples in view, I can now describe the general algorithm. The ultimate goal is to find all of its
solutions, in the form of fractional power series

(4.3) y = c1x
λ1 + c2x

λ1+λ2 + c3x
λ1+λ2+λ3 + · · ·

with all ci 6= 0, all rational numbers λi > 0. Of course we cannot expect to find a formula for all terms, but
we shall instead describe an algorithm for finding, in principle, arbitrarily many. This algorithm takes place

in stages, in each of which another term in (4.3) is determined.
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One point that causes some difficulty, as we have seen already in the last example, is that different solutions
can start out with the same initial terms. Nonetheless, since we have arranged things so that f(x, y) = 0 has

only simple roots, sooner or later solution series will diverge.

At the start of each stage, we are given a polynomial f(x, y), and we wish to find c 6= 0, λ > 0 such that
y = cxλ is an approximate root. Suppose that

f(x, y) =
∑

ci,jx
jyi .

Since we want λ > 0, we consider one by one the edges of its Newton polygon that have a negative slope.

Suppose that the edge we are consiering lies in the line β + λα = µ. Here µ is the β­intercept of the line, and
λ = k/ℓ with k, ℓ relatively prime. Thus for all monomials xjyi we have

j + (k/ℓ)i ≥ µ, or jℓ + ki ≥ ℓµ ,

and on the edge

j + (k/ℓ)i = µ .

We now divide the original equation by xµ. This determines a new equation

∑

ci,jx
j−µyi ==

∑

ci,jx
j+(k/ℓ)i−µyi/x(k/ℓ)i = 0 .

We now introduce new variables

x∗ = x1/ℓ, Y = y/xλ = y/xk
∗ .

The equation becomes

f(x, y) = xµ
(

∑

ci,jX
jℓ+ki−µℓY i

)

= 0 .

Because the line β + λα = µ lies weakly below all nodes (i, j), the exponent of X is always a non­negative

integer. It vanishes along the line itself, and the corresponding terms therefore give rise to an equation with
constant coefficients—i.e. homogeneous of degree 0. This is the reduction of the new equation modulo (X).
If c is a root of multiplicity one, we are in a situation in which Hensel’s Lemma is applicable. Otherwise, we

set Y = c + y∗ with y∗ = o(1) and find the equation f∗(x∗, y∗) = 0 satisfied by y∗ (subject to y∗ = o(1)). The
algorithm now loops with f∗ replacing f . At the start we have

f(x, 0) = O(xµ)

and at the end we have

f(x, cxλ) = O(xµ+1/ℓ) .

Things therefore improve in each loop through this step, and it follows that in the end we have a true root if
only we know:

4.4. Lemma. Eventually ℓ = 1.

Proof. We have to consider more carefully what is changing as the algorithm proceeds. When we start one of

these steps, we are looking at the strictly decreasing part of the Newton polygon of a polynomial of degree

n, and then we consider in turn each of several edges with distinct slopes. I call the admissible span of the
polygon the with of its decreasing part, and the span of an edge is its width. The span of one of the edges

we are looking at is at most the admissible span of the polygon.

After flattening, we are looking at an equation

Y r(Y − c)mΦ(Y ) + x∗R(x∗, Y ) = 0 .

Here r is the left coordinate of the flat segment, and its right hand end is the sum of r, m, and the degree–say
d—of Φ(Y ). The sum m + d is at most the admissible span of the polygon before flattening.
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In the next phase, we set Y = c + y∗, getting a new equation for y∗:

(c + y∗)
rym

∗ Φ(c + y∗) + x∗R(x∗, c + y∗) .

ItsNewtonpolygonfirst touches thex∗­axis at (m, 0), so its admissible span is exactlym. The admissible span
of the new Newton polygon is strictly less than what we started with, unless the edge under consideration
has span m, in which acse it remains the same.

In particular, the admissible span does not increase, and any chain of stpes must result in an infinite sequence

of constant values, say L, of the admissible span. At each step the polynomial F (0, Y ) has a single root of
multiplicity L. In this chain, the Newton polygon will always be a single edge of width L.

The single edge will intersect the lattice Z2 is a number of points with horizontal spacing δ, so that we can
factor L = Λδ. The ‘constant’ polynomial F (0, Y ) appearing in the loop will be a polynomial in Y δ:

F (0, Y ) = Φ(Y δ) .

We can factor Φ into linear factors Z − d, and then

F (0, Y ) =
∏

(Y δ − d) .

But if δ > 1 this will give a smaller span in the next loop. Hence δ = 1. Thus the left hand vertex of the

Newton polygon is some multiple of L, and hence ℓ is always 1 from some point on.

Furthermore,Lmust also be eventually 1, or wewould have roots of the original equation that are not simple.

Hence:

4.5. Lemma. Eventually we arrive at an equation to which we can apply Hensel’s Lemma.

You can continue looping in this way as long as you wish, at least in principale, but in practice you can speed

things up slightly by following the method demostrated earlier when Hensel’s Lemma becomes applicable.
It hence makes sense to have as output of the algorithm a list of the solutions as initial series together with

Hensel data characterizing subsequent computation.

5. Duality

In this section I follow closely the Appendix of [Lubin:2013].

If Ω is any closed convex region in R2, its dual Ω∗ is the set of all (a, b, c) in R3 such that ax + by + c ≥ 0 on
Ω. It is a convex cone. The region Ω then consists of all (x, y) such that ax + by + c ≥ 0 for all (a, b, c) in Ω∗.

For us, the regionΩwill be CP , and in this case a slight variationwill be convenient. To the set CP is associated
the set C∨

P of all (λ, c) with the property that CP is contained in the region y + λx− c ≥ 0. It is a essentially a

slice through the three­dimensional dual, taking into account a change in sign, and it is also convex. It is not

closed, because it won’t contain any functions of x alone.

The region CP is taken into itself by a vertical upwards shift, and consequently C∨
P is taken into itself by a

vertical shift downwards. There exists for each λ a maximumvalue of c such that (λ, c) lies in C∨
P , since some

shift upwards of a line with finite slope will eventually intersect CP . Define ωP (λ) to be that value of c. It is
also the minimum value of y + λx on CP , and the y­intercept of that highest line.
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y +
λx =

ω(λ)

ω(λ)

5.1. Theorem. The set C∨
P is the same as the set of points lying on or below the graph of ω(λ).

Vertices of CP correspond to bounding lines in the dual figure, and vice­versa. In figures, with P (x) =
x5 − px4 + p2x3 + p3x:

y = −x/3 + 5/3

y
=
−

2x
+

5

(5, 0)

(2, 1)

(1, 3)

(0,∞)

Ω
(2, 5)

(1/3, 5/3)

y = ω(x)

Ω∨

y
=

5x

y
=

2x
+

1
y
=

x
+

3

In these figures, one encounters in CP the lines y = −x/3 + 5/3, y = −2x + 5 reading right to left, and in C∨
P

the vertices (1/3, 5/3), (2, 5), reading left to right.

Here are some basic examples:

5.2. Lemma. (a) If P (x) = x then ωP (λ) = λ for all λ. (b) If P (x) = x − α with α 6= 0, then

ωP (λ) =

{

λ if λ ≤ ord(α)
ord(α) otherwise.

In figures:



Newton polygons 15

ω(
λ)

=
λ

P (x) = x

(ord(α), ord(α))

P (x) = x − α

I put into one package a number of important facts about the dual polygons:

5.3. Theorem. Suppose P , Q to be in k[[x]].

(a) If ord(x) is unexceptional for P , then

ord(P (x)) = ωP (ord(x)) .

(b) If P and Q are two polynomials in k[X ], then ωPQ = ωP + ωQ.
(c) If P (0) = 0, the function ωP is an invertible piece­wise linear map from [0,∞) to itself.
(d) The function ω is linear between exceptional values, and if λ is unexceptional then its slope is equal to

the number of roots α of P with ord(α) ≥ λ.
(e) Suppose Q(0) = 0. Then

ωP ◦Q = ωP ◦ωQ .

Note that (a) determines completely the function ωP , since it is continuous.

Proof. Item (a) is just a reformulation of .

Item (b) follows from (a).

Item (c) follows from the interpretation of ω(λ) as y­intercept.

Item (d) follows from (b) and Lemma 5.2.

Only item (e) requires a bit of work, but follows without too much trouble from (a).

Part II. Power series

6. The Weierstrass preparation theorem

The material in this section is well known. I have found §4.2 of [Castillo:2008] particularly clear.

Let x 7→ x be the ring homomorphism from o to o/p. A series

f(T ) = f0 + f1T + f2T
2 + · · ·

in o[[T ]] will be called here admissible if one of its coefficients is a unit in o.

6.1. Lemma. (Weierstrass division) Suppose f , g in o[[T ]]with f admissible. Let n be least such that fn ∈ o×.
There exist q in o[[T ]] and r in o[T ] of degree < n such that

g = fq + r .
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Proof. I shall exhibit an algorithm computing successively a series qn and a polynomial rn such that

g ≡ fqn + rn modulo pn+1

qn+1 ≡ qn modulo pn+1

rn+1 ≡ rn modulo pn+1 .

INITIALIZATION. What are the initial q0 and r0? Because of the definition of n, we can write

f = ρ + T nσ

with ρ a polynomial of degree < n whose reduction modulo p vanishes, and σ in o[[T ]]×. Reducing modulo

p we now have
f = T nσ .

Since σ is a unit in o[[T ]] it is invertible, so also have

T n = f σ−1 .

We can also write
g = r0 + T ns0

with r0 a polynomial of degree < n and s0 in o[[T ]]. But then

g = r0 + T n s0

= r0 + f ·σ−1s0

= r0 + f ·q0 (q0 = σ−1s0)

or

g = f ·q0 + r0 + ̟g1, g1 =
g − f ·q0 − r0

̟
.

INDUCTION. Now proceed by induction, applying the same process to each get in turn

gn = rn + T nsn

qn+1 = σ−1sn

gn+1 =
gn − f ·qn − rn

̟

with

g = (r0 + r1̟ + · · · + rn̟n) + f(q0 + q1̟ + · · · + qn̟n) + ̟n+1gn+1

at each stage.

A polynomial P (X) in o[X ] is said to be distinguished if it is monic, say of degree n, and the coefficients of
P (X) − Xn lie in p.

6.2. Proposition. (Weierstrass preparation theorem) Suppose f to be admissible in o[[X [[, and let n be the
least n such that fn is in o×. There exist a unique distinguished polynomial P (X) of degree n and g in k[[X ]]×

such that f = P ·g.
Proof. Apply the previous Lemma to f and g = T n, giving

T n = f ·q + r
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with r a polynomial of degree < n. Reducing modulo p we see that

r = T n − qf .

But by hypothesis f is divisible by T n, so r is also divisible by T n. Hence r ≡ 0, and r is divisible by ̟. Set

P = T n − r .

Since T n = fq, q lies in o[[T ]]×. The polynomial P is distinguished, and

f = P ·q

This already an interesting result even if f is a polynomial. It then factors f into a polynomial all of whose

roots α agree with those of f that satisfy |α| < 1 and a series with no roots in that region.

Example. Let

f(T ) = 1 + pT .

It is already a unit in o[[T ]], so P = 1, g = f .

Example. Let

f(T ) = p − (1 + p2)T + pT 2 = (T − p)(pT − 1) .

here P = T − p and g = −1 + pT .

Example. Let
f(T ) = p − T + pT 2 .

This has the same Newton polygon as the last example, but the Weierstrass factorization is not simple. We

can solve for the roots according to the formula

α =
1 ±

√

1 − 4p2

2p
.

The square roots converges in Zp since it can be written in terms of the binomial series (also due to Newton!)

as

(1 − 4p2)γ = 1 − γ · (4p2) +
γ(γ − 1)

2
· (4p2)2 − · · · .

with γ = 1/2.

One of the roots, say α, is integral. The other is β = 1/α. The explicit formula in this case will tell us that
ord(α) = 1, and that pβ is a unit. We now have the Weierstrass factorization

f(T ) = p(T − α)(T − β) = (T − α)(pT − pβ) .
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7. Newton polygons of power series

If f(T ) is a power series in o[[T ]] and x is in k with ord(x) > 0, then f(x) converges. It therefore makes sense

to refer to the roots α of f with |α| < 1. If f has theWeierstrass factorization f = P ·g, then those roots agree
with the roots of P . One can define the Newton polygon of f in the usual way, but if one is interested in only

the roots α with |α| < 1, it also seems reasonable to define a variant of the Newton polygon in which only

those roots appear. This is exactly what [Lubin:2013] does. He defines the Newton polygon of an admissible
power series to be given by the monotonically decreasing part of what might be called the ‘normal’ Newton

polygon, together with the horizontal line tacked on at the end. Thus if n is the least n such that fn is a unit,
the Newton polygon will have a horizontal line from (n, 0) off to ∞. Up to the point (n, 0) this will agree

with the Newton polygon of P .

Similarly, the dual polygon will be the top of the dual of the new Newton polygon. It will be the same as the
old one in the positive quadrant, but will now be bounded on the left by the ray from (0, 0) to (0,−∞). This
is the dual polygon illustrated in Lubin’s paper.

The main result along these lines is that Theorem 5.3 holds as well if the polynomials are replaced by the

series introduced here.

I include here a simple application of these ideas to the arithmetic of algebraic extensiuons. Suppose l/k to

be a totally ramified separable extension, ̟l and ̟k prime ideal generators. We may write

̟k =
∑

m=e
cm̟m

l

with ce a unit in ok. (One may even choose the cm to be Teichmüller representatives.) Let

f(x) =
∑

m=e
cmxm .

Weiersrass’ preparation theorem allows to write

f(x) − ̟k = P (x) ·u(x)

in which P (x) is a monic polynomial of degree e, u(x) an invertible power series in o[[x]].

7.1. Proposition. In these circumstances, the polynomial P is the irreducible polynomial over k whose root
is ̟l.
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