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Chapter I. Analysis on profinite groups

All padic spaces have a topology in which every point has a countable basis of compact open neigh

bourhoods. Analysis on such spaces is essentially algebra, and in particular the theory of Haar measures
on padic groups is elementary. In order to emphasize this, I shall introduce such spaces in purely

combinatorial terms.
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SUMMARY. I define an LP (for Locally Profinite) space to be a locally compact Hausdorff topological space

in which every point has a neighbourhood basis of compact open subsets. The principal result of the first
part is that any locally closed subset of the set of krational points on an algebraic variety defined over a

padic field k is an LP space. This discussion is selfcontained if mildly unorthodox in its avoidance of

the strong form of the Axiom of Choice.

The second part is about basic analysis on such spaces. To emphasize the elementary nature of things, I

use a somewhat arbitrary coefficient field C of characteristic 0, instead of C, where possible. This will

be true throughout all of these noteds, except for places where some property of C is necessary—for
example, when having to deal with convergence or when it is important that something is positive.

I begin by discussing the Schwartz spaces C∞
c (X,V ) of an LP space X , when V is a vector space over

C. One important if easy result is the excision theorem (Proposition I.5.3): If Y is a closed subset of the
LP space X and V is a vector space over C, then the natural maps make an exact sequence

0 → C∞
c (X − Y, V ) → C∞

c (X,V ) → C∞
c (Y, V ) → 0 .

Integration of Schwartz functions on an LP group against a Haar measure reduces directly to summation.
On homogeneous spaces the situation is a bit more complicated. If G is an arbitrary locally compact

group and H a closed subgroup, there is in general no Ginvariant measure on H\G, which is to say

there is no linear functional from C∞
c (H\G) to C invariant under right translation by elements of G.
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Instead of functions one integrates onedensities of compact support, which are linear functions on the
space of smooth functions on H\G. What happens here ought to be familiar, since on oriented real

manifolds one integrates differential forms, not functions. If δH , δG are the modulus characters of H , G
and

δH\G(h) = δH(h)/δG(h)

then continuous onedensities on H\G may be identified, but not canonically, with continuous functions

f on G such that f(hg) = δH\G(h)f(g). The standard reference for this is [Weil:1965], but in the case
of locally profinite groups this material is more elementary, and I shall explain it here. The most useful

consequence for representation theory (Theorem I.9.3) is that if G is an algebraic group defined over k
and H a closed subgroup, then the space of smooth onedensities on H\G may be identified with the
space of smooth Cvalued functions on G such that

f(hg) =
∣

∣detAdh\g(h)
∣

∣

−1
f(g)

for all h in H , g in G. We also have in these circumstances, upon choosing rightinvariant measures on

H and G, the integral formula:

∫

G

f(g) drg =

∫

H\G

(∫

H

∣

∣detAdh\g(h)
∣

∣f(hx) drh

)

drx .

Part I. Topology

1. The padic numbers

For an integer m 6= 0, let ordpm be the exponent of p in its prime factorization and |m|p be the inverse of

the pfactor itself. Thus |pk|p = p−k and has limit 0 as k goes to ∞. Set |0|p = 0. For rational numbers
define the pnorm

∣

∣

∣

m

n

∣

∣

∣

p
= |m|p/|n|p .

This norm is multiplicative and satisfies the additive inequality

|x+ y|p ≤ sup |x|p, |y|p .

The field Qp of padic numbers is the completion of Q with respect to this norm. That is to say, the
padic numbers are defined to be the set of Cauchy sequences (xn) of rational numbers modulo a certain

equivalence condition. A Cauchy sequence (xn) is one satisfying the condition that

for any ε > 0 there exists N such that |xn − xm|p < ε for all m, n > N .

and two sequences (xn), (yn) are equivalent if

for any ε > 0 there exists N such that |xn − ym|p < ε for all m, n > N .

The ring of padic integers Zp is defined to be the closure of Z. Every nontrivial ideal in it is (pr) for

some r, so Zp is a principal ideal domain.

I.1.1. Proposition. The image in Qp of the rational number m/n (m, n relatively prime) lies in Zp if and
only if gcd(n, p) = 1.

Proof. If gcd(n, p) = 1, we can find an integer n∗ such that nn∗ ≡ 1 modulo p. Then m/n = mn∗/nn∗

and it suffices to prove the lemma when n ≡ 1 modulo p. But if n = 1 + ℓp then in the ring of padic

integers
1

1 + ℓp
= 1− ℓp+ ℓ2p2 − · · ·

This proves one half the Lemma.
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On the other hand, suppose m/n to lie in Zp. Suppose that p divides n. Since gcd(m,n) = 1, m is then
relatively prime to p. The assumption implies that we can find some integer q such that |m/n− q|p > 0.

But
m

n
− q =

m− nq

n
.

But m− nq must be relatively prime to p, a contradiction.

The map from Z to Z/pr induces a homomorphism from Zp to Z/pr as well. If r ≥ s there is a canonical
projection from Z/pr to Z/ps. This leads to:

I.1.2. Proposition. The ring Zp may be identified with the projective limit of the finite rings Z/pr .

Proof. Any sequence of integers (xn) such that xn+1 ≡ xn mod pn is a Cauchy sequence in the padic

norm, and the equivalence class of the sequence depends only on the xn modulo pn.

There is a very concrete way to represent padic numbers—every padic rational can be expressed
uniquely as an infinite reduced sum

∑

cip
i

where only a finite number of the ci with i < 0 are nonzero, and 0 ≤ ci < p for all i. Indeed, this is

perhaps the most straightforward way to define padic numbers. A key step in this specification, at least
in algorithms, is the reduction of any series

∑

cip
i with ci in Z to one with 0 ≤ ci < p for all i.

There is one more way to characterize the padic numbers—in terms of Witt vectors. This is a very

interesting matter, but it won’t be relevant to what will be needed in these essays, and I won’t say
anything about it here.

Another example of a topological group with a similar structure is the ring Af of finite adèles. It is the

restricted product of the fields Qp—i.e. the subset of all (xp) in
∏

p Qp for which all but a finite number

of the xp lie in Zp. This has as basis of neighbourhoods of 0 the products
∏

Kp where each Kp is open
in Qp and Kp = Zp for all but a finite number of p. The additive subgroup

∏

Zp is the projective limit

of finite quotients by open subgroups.

2. Trees and topologies

A padic integer can be identified with a sequence (xn) of compatible integers in the finite ringsZ/pn. We

can make a graph with directed edges out of these data: there is one node in the graph for each pair (n, x)
with n > 0 and x in Z/pn, and an edge from (n, x) to (n− 1, y) if n ≥ 2 and y ≡ x mod pn−1. A padic

integer then amounts to a oneway path of nodes in this graph, coming from infinity and terminating at

one of the initial nodes in Z/p. These observations should motivate the following discussion.

A rooted tree consists of (1) a set of nodes, (2) a designated root node, and (3) for every node other than

the root an assignment of immediate predecessor node \Pred/(x), satisfying the condition that from

any node x there exists a unique sequence xn = x, xn−1, . . . , x0 with each xi−1 the predecessor of xi and
x0 the root node. A predecessor is defined inductively by the condition that it be either an immediate

predecessor or a predecessor of an immediate predecessor.

A node x is an immediate successor of another node y if y = \Pred/(x), and a successor if linked by a
chain of immediate successors.
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A rooted tree is said to be locally finite if the number of immediate successors of every node is finite. A
chain in the tree rooted at the node x is a finite sequence of nodes x0 = x, x1, . . . , xn where each xi+1 is

an immediate successor of xi. It is said to have length n. A branch of a rooted tree is a sequence (finite
or infinite) of nodes (xi) where x0 is the root and each xi+1 is an immediate successor of xi, satisfying

the condition that the sequence stops only at a node with no successors.

Locally finite rooted trees possess a recursive structure, since if T is any locally finite rooted tree and x
is a node of T then the set of all successors of x in T , together with x itself, make up a locally finite tree
with root x. Any subset of T that contains along with a node its predecessor will also be a locally finite

tree with the same root as T .

I.2.1. Lemma. In any locally finite tree, the number of chains of length n rooted at a given node is finite.

Proof. That this is true for chains of length 1 is the definition of locally finite. The proof proceeds by
induction on chain length.

I.2.2. Lemma. (König’s Lemma) In every locally finite rooted tree with an infinite number of nodes there
exists an infinite branch.

Proof. Let ρ be the root of the given tree, assumed to possess an infinite number of nodes. It follows

from the previous result that there exist chains rooted at ρ of arbitrary length, and in particular that the

set C0 of all chains rooted at x0 = ρ is infinite. Since the number of immediate successors of x0 is finite,
the subset C1 of chains in C0 passing through some one of them, say x1, is infinite. Similarly there must

exist an infinite number among the chains in C1 whose third nodes agree. By induction, we obtain for

each n a sequence of sets of chains

C0 ⊇ C1 ⊇ . . . ⊇ Cn ⊇ Cn+1 ⊇ . . .

where all the chains in Cn agree with each other in their first n+1 nodes, and agree in their first n nodes

with the chains in Cn−1. By choosing xn to be the common nth node of the chains in Cn we assemble
an infinite branch.

The reasoning here, although plausible, is specious or at least highly subtle, since disguised in it is a

weak form of the Axiom of Choice. König’s Lemma is one of those results that hovers on the edge of
obviousness, like a dim star one cannot quite focus on directly. The degree to which it is not obvious

becomes more apparent when one sees (in, for example, the enlightening discussion to be found in

§2.3.4.3 of [Knuth:1973]) some of its immediate consequences.

Suppose T to be a locally finite rooted tree with root ρ. For every node x in T define Ωx to be the set of

all branches passing through x. König’s Lemma guarantees that this is never empty. Let ΩT be the set

of all branches of T , which is the same as Ωρ. We can make a topological space out of ΩT by defining as
basis of open sets the sets Ωx—if ω is any branch in the tree then the sets Ωx for each of its nodes x define

a basis of neighbourhoods of ω. Two distinct branches must eventually diverge, and therefore it is easy
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to see that this topology is Hausdorff. The next result shows that this topology is otherwise somewhat
special.

I.2.3. Proposition. If T is a locally finite rooted tree and x a node in T then Ωx is closed as well as open
in ΩT .

In other words, any point of ΩT has a basis of neighbourhoods that are both open and closed.

Proof. Let x0 = ρ, x1, . . . , xn = x be the chain from ρ to x, and let X = {xi}. Let Y be the union of
all of the immediate successors of the xi for i < n, except for xi+1. In other words, y is in Y if it is an

immediate successor of some xi and is not in X . Since T is locally finite, Y is finite. Every branch in T
that does not pass through x has to branch off at one of the xi with i < n, and therefore the complement

of Ωx is the union of the Ωy for y in Y .

I.2.4. Proposition. If T is a locally finite rooted tree then the topological space ΩT is compact.

Proof. This amounts to the following assertion:

Suppose X to be a set of nodes of T such that the sets Ωx (x in X) cover ΩT . Then there exists
a finite set of Ωx (x in X) covering ΩT .

The assumption means that every branch in ΩT lies in some Ωx with x in X , or equivalently that every

branch in ΩT has a node in X . If X contains the root node, we are immediately through.

Otherwise, let Xmin be the set of nodes in X that are minimal—that is to say, x lies in Xmin if it lies in X
and in the path from the root to x there are no elements of X other than x. It is clear that that the Ωx for

x in Xmin cover ΩT , since every branch has to have a first element in X .

It suffices to show that Xmin is finite, since a path from x in X to the root must pass through a node in
Xmin. Let Y be the set of nodes in T that are not in X and none of whose predecessors are in X . In

particular, Y contains the root node of T . Any predecessor of a node in Y will also be in Y , so that Y
itself is a rooted tree and we can apply König’s Lemma to it. It is not possible for Y to contain an infinite

branch, since any infinite branch in Y would also be a branch in T , and by assumption every branch in

T must contain a node in X . König’s Lemma tells us that Y must be finite. But since X does not contain
the root node, every element of Xmin is the successor of some node in Y , and since the tree is locally

finite Xmin must be finite.

Applying this to each of the rooted trees Ωx:

I.2.5. Proposition. Every point in the topological space ΩT possesses a countable basis of compact open
neighbourhoods.

3. Locally profinite spaces

Suppose we are given a sequence of finite setsX0,X1, . . . and for eachn > 0 a surjectionπn:Xn → Xn−1.
We can make a finite union of trees from these data by taking the nodes of our graph to be the points of

the Xn and defining the predecessor of x in Xn to be πn(x). The branches of this tree are the infinite
sequences (xn) where πn(xn) = xn−1, and for a given point x in Xn the set Ωx consists of all sequences

with xn = x. Let X be the set of such sequences, and let Πn be the canonical surjection (xn) 7→ xn from

X to Xn. The topological space X is the projective limit of the given sequence of finite sets. According
to Proposition I.2.4 it possesses a natural Hausdorff topology with respect to which it is compact. The

point x = (xn) has as a basis of neighbourhoods the sets Ωxn
= Π−1

n (Πn(x)).

More generally, suppose Σ to be a directed set: Σ is ordered, and given any two α, β in Σ there exists
γ ≥ α, β. Suppose given (a) for each α in Σ a finite set Xα and (b) for each α > β a map

pβ,α:Xα → Xβ .

The maps are required to be (a) surjective and (b) consistent, in the sense that

pγ,βpβ,α = pγ,α
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whenever α > β > γ. The projective limit of this system is defined to be the subset of all (xα) in
∏

Xα

such that pβ,αxα = xβ . The product has a natural topology with respect to which it is compact, and

the projective limit is closed in it, hence also compact. Proving compactness of the product (Tychonov’s

Theorem) requires a stronger the Axiom of Choice, so that the sequentially profinite systems I have
examined are definitely simpler.

A topological space X is said to be profinite if it is a projective limit of finite sets. It is said to be totally

disconnected if every point has a basis of neighbourhoods that are both open and closed.

I.3.1. Theorem. Suppose X to be a topological space. The following are equivalent:

(a) it is profinite;
(b) it is Hausdorff, compact, and totally disconnected.

I’ll not prove this result, because it will not be used subsequently, except to justify terminology.

I.3.2. Corollary. If X is a Hausdorff topological space, the following are equivalent:

(a) it is locally profinite;
(b) every point has a basis of compact, open sets.

The equivalence justifies applying the convenient term ‘locally profinite’ to spaces satisfying these

conditions. I shall call them more succinctly LP spaces. A profinite space is the same as a compact LP

space, and is also just a compact Hausdorff space in which every point has a basis of compact open sets.
The spaces dealt with in earlier sections are those in which every point possesses a countable basis of

compact open neighbourhoods. I’ll call these König spaces.

I.3.3. Lemma. Every covering of a compact LP space by compact open subsets possesses a disjoint
refinement by compact open sets.

Proof. Suppose X to be a profinite space and suppose given a covering by compact open subsets Ui,

which we may assume to be a finite covering. The union of any of the Ui is compact, hence closed in X ,

so that the sets
U∗,i = Ui −

⋃

j<i

Uj

are also open, and also cover X .

I.3.4. Proposition. If (Xn) is a sequence of König profinite spaces then the product X =
∏

Xn is also a
König space.

Proof. I recall that open sets in the product topology are of the form
∏

Un with each Un open in Xn and

all but a finite number of Un = Xn.

Let Πn,m be the canonical surjection from Xn to the finite set Xn,m. As a basis of open sets in the

topology of X we therefore have the finite products
∏

n≤N Π−1
n,m(xn,m) with xn,m in Xn,m. In order to

prove the Proposition we need to find a cofinal sequence of finite sets onto which X surjects. This can

be the sequence
X1,1, X1,2 ×X2,1, X1,3 ×X2,2 ×X3,1, . . .

4. padic spaces

The ring of padic integers Zp is the projective limit of the finite rings Z/pn. The ordinary integers Z

may be embedded in Zp, since m may be identified with the sequence (m mod pn). If q is an integer

relatively prime to p then for every n > 0 there exists a multiplicative inverse of q modulo pn, so that

all rational numbers m/q with q prime to p may also be identified with elements of Zp. More generally,
the padic integers with multiplicative inverses in Zp are precisely those whose image in Z/p does not

vanish. A padic rational number other than 0 can be identified with a unique expression m/pk where

m is a unit in Zp. These make up the field Qp.

Generalizing this construction, I define padic field to be a field k containing a ring o and an ideal p of o

satisfying these conditions:
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(a) o/p is a finite field, say of q elements;
(b) the canonical projections from o to o/pn and from o/pn+1 to o/pn identify the ring o with the

projective limit of the quotients o/pn;

(c) if ̟ lies in p − p2, then every nonzero element of k may be expressed uniquely as u̟n where u
lies in o− p.

If x is an element of o−p there exists an element y of o−p such that xy ≡ 1 modulo p. If thenm = xy−1
the series

u = 1−m+m2 −m3 + · · ·

converges to an element of o because of condition (b), since modulo any power of p the series terminates.
The limit will be a multiplicative inverse of xy, so that yu will be a multiplicative inverse of x. Hence

every element of o − p is a unit of o. The ideal p is the only prime ideal of o other than (0), and every

nonzero ideal of o is a power of p. If ̟ lies in p − p2 then multiplication by ̟n induces a bijection of
o/p with pn/pn+1, so that o/pn is a finite ring of cardinality qn.

The fieldQp of padic integers is a padic field with o = Zp and p = (p). Every finite algebraic extension of

a padic field is a padic field. The completion of any algebraic number field of finite degree with respect
to any nonzero prime ideal of its ring of algebraic integers is a padic field, and is a finite extension of

Qp. The field of power series in x with coefficients in Fq and a finite number of negative powers of x

c−nx
−n + c−(n−1)x

−(n−1) + · · ·

make up the quotient field Fq((x)) of the ring of formal power series Fq[[x]]. It is a padic field with

p = (x). The completion of any Fqrational local ring on a nonsingular algebraic curve over Fq is
isomorphic to it. Conversely, any padic field is either some Fq((x)) or a finite algebraic extension of Qp.

Throughout this book we will work with a fixed padic field (k, o, p), where o/p ∼= Fq . If x = u̟n with

u a unit in o then its norm |x| = |x|p is defined to be

|x| = q−n .

Thus when n ≥ 0 the index of the ideal (x) in o is | x |−1.

The ring o is a profinite space. The ideals pn form a basis of neighbourhoods of 0, and any locally closed
subspace of a finite dimensional vector space over k will be a König space. Hence:

I.4.1. Theorem. Any locally closed subset of the set of krational points on an algebraic variety defined
over k is a König space.

Now let F be a global field. The ring A = AF,f of finite adèles is the restricted product of the non
Archimedian completions Fv—the subset of (xv) in

∏

Fv for which all but a finite number of the xv lie in

the integer ring ov. The product
∏

ov is an open neighbourhood of 0 in A, and according to Proposition

I.3.4:

I.4.2. Theorem. The ring of finite adèles of F is a König space.

Part II. Analysis

5. Smooth functions on an LP space

For the moment, fix a coefficient field C of characteristic 0. Much later it will be assumed to be

algebraically closed, and even more specifically C, but for the moment it might even be just Q.

Suppose X to be a locally profinite space and V a vector space over C. Define

C(X,V ) = space of continuous functions on X with values in V

Cc(X,V ) = subspace of those with compact support

C∞(X,V ) = space of locally constant functions with values in V

C∞
c (X,V ) = subspace of those with compact support

D(X) = linear dual of C∞
c (X) = C∞

c (X,C) .
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The functions in C∞ are called smooth, and they are continuous. The elements of D are distributions.

For any open set U of X let charU be its characteristic function.

I.5.1. Lemma. If Y is a closed subset of the locally profinite space X and f in C∞
c (Y, V ), then there exists

a finite sum
∑

charU ·vU whose restriction to Y is f .

Proof. Suppose f to be in C∞
c (Y ). Because of Proposition I.2.5, we can find a covering {Ui} of the

support of f by compact open subsets Ui of X with the property that f is constant on each Ui∩Y . Apply
Lemma I.3.3 to get a refinement by disjoint sets U∗,i.

On each U∗,i ∩Y the function f takes a constant value vi. The linear combination
∑

charU∗,i
·vi then lies

in C∞
c (X,V ) and has image f in C∞

c (Y, V ).

If Y = X :

I.5.2. Corollary. Every function in C∞
c (X,V ) is a finite sum of functions charU ·v with v in V .

I.5.3. Proposition. (Excision Lemma) If Y is a closed subset of the locally profinite space X , then the
natural maps make an exact sequence

0 → C∞
c (X − Y, V ) → C∞

c (X,V ) → C∞
c (Y, V ) → 0 .

Proof. The only interesting point is the final surjectivity, which follows from Lemma I.5.1.

6. Locally profinite groups

I define an LP group to be a Hausdorff topological group possessing a basis of neighbourhoods of 1 that

are compact open subgroups.

In GLn(k) the subgroup GLn(o) of invertible matrices with coefficients in o is a compact open subgroup,

with the congruence subgroups

GLn(p
m) =

{

g ∈ GLn(o)
∣

∣ g ≡ I (pm)
}

forming a basis of neighbourhoods of the identity. The group GLn(o) may be identified with the

projective limit of the groups GLn(o/p
n). Hence the group of krational points on any closed subgroup

of GLn(k), and in particular the group of krational points on any affine algebraic group defined over k,
is a locally profinite group.

SMOOTH FUNCTIONS ON AN LP GROUP.

I.6.1. Proposition. Suppose X to be any locally profinite space on which the locally profinite group G
acts continuously. Then for every compact open set Ω in X there exists a compact open subgroup K of
G such that KΩ = Ω.

Proof. Because the action of G is continuous, left multiplication in G is continuous. For any point x of Ω
there exists a compact subgroup K and a neighbourhood U of x such that KU ⊆ Ω. Since Ω is compact,
Ω will be covered by a finite number of these, say by the KiUi. Then Ω will be stable with respect to the

intersection of the Ki.

If G is a locally profinite group, it acts by the right and leftregular representations on C∞(G), C∞
c (G),

and D(G) according to the recipes

Lgf(x) = f(g−1x)

Rgf(x) = f(xg)

〈LgΦ, f〉 = 〈Φ, Lg−1f〉

〈RgΦ, f〉 = 〈Φ, Rg−1f〉 .

We have
Lg1g2 = Lg1Lg2 , Rg1g2 = Rg1Rg2 .
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Define the subspace C∞
u (G) to be that of smooth functions on G with values in Q that are leftinvariant

under multiplication by elements of some compact open subgroup. Because of Proposition I.6.1, it con

tains C∞
c (G). A smooth distribution is one that is locally rightinvariant under some open subgroup of

G. Uniform smoothness for distribution means global rightinvariance under some fixed open subgroup.

I.6.2. Lemma. If G is a locally profinite group and f a function on G with values in V with compact
support, the following are equivalent:

(a) the function f lies in C∞
c (G, V );

(b) there exists a compact open subgroup K of G such that Lkf = f for all k in K ;
(c) there exists a compact open subgroup K of G such that Rkf = f for all k in K .

This is straightforward.

HAAR MEASURES. The theory of Haar measures on locally profinite groups is very simple. In practice,
as will be explained in a moment, integrals are nearly always sums—even though occasionally infinite.

I.6.3. Proposition. Let G be an LP group. Given a compact open subgroup K and a constant cK in Q×,
there exists a unique right Ginvariant measure µ on G such that

〈µ, charK〉 = cK .

Proof. First I assign measures to compact open subsets of G.

Suppose that the measure µ is known to exist. If K∗ is a compact open subgroup contained in K then

〈µ, charK∗

〉 = [K:K∗]
−1cK

since K is the disjoint union of the K∗x as x runs over representatives of K∗\K , and 〈µ, charK∗x〉 =
〈µ, charK∗

〉. If K∗ is an arbitrary compact open subgroup, then

〈µ, charK∗

〉 =
[K∗:K ∩K∗]

[K:K ∩K∗]
cK .

But knowing 〈µ, charK∗

〉 for all compact open subgroups K∗, together with right Ginvariance, deter

mines 〈µ, f〉 for any smooth function f of compact support, since f is a linear combination of charK∗x

for some one K∗ and a finite set of x in G. This argument when run backwards gives the recipe for
constructing µ as a distribution.

To define it as a measure, one must evaluate 〈µ, f〉 for any continuous function of compact support. But

if f is a continuous function of compact support, there exist arbitrarily close functions in C∞
c (G), with

the same support, and one can define 〈µ, f〉 as a limit, exactly as one defines Riemann sums.

I shall call such any Qdistribution on G with positive cK that is right Ginvariant a (rational) right Haar

measure on G, and if drx is one write

meas(U, drx) = 〈drx, charU 〉
∫

G

f(x) drx = 〈drx, f〉 .

I have said that, in practice, integration on G amounts to summation. Let’s make this explicit.

I.6.4. Lemma. Suppose (a) V is a vector space over Q, (b) f lies in C∞
c (G, V ), and (c) K is a compact

open subgroup of G. If f is leftinvariant with respect to K , then

∫

G

f(x) drx = meas(K)
∑

K\G

f(x) ,
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and if it is rightinvariant then

∫

G

f(x) drx = meas(K)
∑

G/K

δG(g)f(x) ,

Proof. Straightforward. For example:

∫

G

f(x) drx =
∑

K\G

∫

Kg

f(x) drx

= meas(K)
∑

K\G

f(Kg) .

Here is a frequently useful characterization:

I.6.5. Proposition. Suppose G to be an LP group, assigned a rightinvariant Haar measure drg. For f in
C∞

c (G),
∫

G

f(g) drg = 0

if and only f is a linear combination of functions of the form Rgϕ− ϕ, with ϕ ∈ C∞
c (G)

Proof. One way is trivial. As for the other, suppose that

∫

G

f(g) drg = 0 .

If f is leftinvariant under K , this means that

∑

K\G

f(gi) = 0 ,

if the support of f is the disjoint union of the Kgi. Let charg be the characteristic function of Kg. Then

charg = Rg−1char1 and so

f =
∑

i

f(gi)chargi

=
(

∑

i

f(gi)chargi

)

−
(

∑

f(gi)
)

char1

=
∑

f(gi)
(

Rg−1

i

char1 − char1
)

.

THE MODULUS CHARACTER. If drx is any right Haar measure on G then any left translation Lg drx is also
a right Haar measure, and must be therefore a scalar multiple of drx. In other words for each g in G
there exists a scalar δG(g) such that

∫

gU

drx = δG(g)

∫

U

drx

for all compact open subsets U of G, or in brief

drgx = δG(g) drx .
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The constant δG(g) is independent of the right Haar measure chosen, since all others are just scalar
multiples of it. It depends multiplicatively on g:

δG(g1g2) = δG(g1)δG(g2) .

This multiplicative character of G with values in the positive rational numbers is called the modulus

character of G. If drx is a right Haar measure on G then δG(x)
−1drx is a left Haar measure.

The modulus character also clearly characterizes how conjugation affects measures, since

meas(g Ug−1) = δG(g)meas(U) .

The group is called unimodular if δG is trivial. If K is a compact subgroup of G then the image of any

character of K with values in the positive rational numbers has to be a torsion group, hence trivial.
Therefore every compact group is unimodular.

SMOOTH DISTRIBUTIONS. Assume for the moment a rightinvariant Haar measure drg chosen on G. If ϕ
is a smooth function on G with values in V then the formula

〈Dϕ, f〉 =

∫

G

ϕ(x)f(x) drx
(

f ∈ C∞
c (G,Q)

)

defines a distribution Dϕ on G with values in V , and

RgDϕ = DRgϕ, LgDϕ = δG(g)
−1DLgϕ .

If ϕ is rightinvariant under an open group K , then Dϕ will also be rightinvariant under K .

Conversely, supposeD to be a smooth distribution, which will be locally rightinvariant by some compact

open subgroup K . We can associate to it a function value at g in G by the formula

ϕ(g) =
〈D, chargK〉

meas(gK)
.

Local rightinvariance of D implies immediately that

〈D, chargK〉 = 〈D, chargK∗

〉

(

meas(gK)

meas(gK∗)

)

.

for any compact open subgroup K∗ of K , which means that the definition of ϕ(g) is independent of the

choice of K with respect to which D is rightinvariant. It is also straightforward to see that D is then the
same as Dϕ. We have proved:

I.6.6. Proposition. Suppose V to be a vector space over Q. Given a rightinvariant Haar measure on
G, the correspondence ϕ 7→ Dϕ is a rightGequivariant isomorphism between the space of smooth
functions with values in V and that of V valued smooth distributions on G.

There is one large class of distributions we shall often use. Suppose H to be any compact subgroup of G
(not necessarily open). Then associated to H is the distribution µH (not necessarily smooth) defined by

the formula

〈µH , f〉 =
1

[H :H ∩K]

∑

H/H∩K

f(h)

if f in C∞
c (G) is rightinvariant under K . In effect it evaluates the average value of f on H .
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7. Smooth vector bundles

In this section, I’ll explain a version of equivariant vector bundles on a quotientX = H\G, with G an LP

group and H a closed subgroup. This quotient is also an LP space, which can be covered by translates
of the profinite quotients (H ∩K)\K , for K a compact open subgroup of G. The principal application

I have in mind will be covered in the next section, and in fact my real purpose in this section is only to
motivate definitions in the next.

This section is optional as well as formal, and I should first explain the point. There is generally no

Ginvariant integral of functions on X . Instead, one integrates onedensities. There is in practice a very

simple way to deal with this, but it is noncanonical. In this section I’ll indicate how to specify a canonical
identification of the space of onedensities.

BUNDLES. Let D be an arbitrary field of characteristic 0 and V a vector space over D. A smooth

representation of H on V is a homomorphism σ from H to GLD(V ) with the property that the stabilizer
of each v in V is an open subgroup. For example, if V has finite dimension and D = R or C, this will be

true if and only if σ is continuous, since in this caseGLD(V ) does not possess arbitrarily small subgroups.

A smooth representation may also be characterized as one that is continuous if V is assigned the discrete
topology—that is to say, one for which the associated map H ×V → V is continuous with respect to the

discrete topology.

• From now on, I shall assume V to be given this topology.

The group H acts on the product V ×G—the element h takes

(v, g) 7−→ (σ(h)v, hg) .

The quotient H\(V × G) is the fibre product V = V ×H G. It possesses the natural quotient topology,
according to which a set U in V is open if and only if its inverse image in H × V is open.

There is a canonical projection Π from V to X , making this diagram commutative:

V ×G −→ V ×H G
↓ ↓Π

G −→ X

The fibre over any point x is the inverse image Π−1(x). Let [g] be the fibre containing g The embedding

v 7−→ the image in V of (v, 1)

is an isomorphism of V with the fibre over [1]. Let η be its inverse, a map from the fibre over [1] to

V . Any two fibres are isomorphic to each other and to V , but there is in general no canonical choice of
isomorphism.

The group G acts on both G and V ×G on the right. It commutes with the left action of H , hence also

acts compatibly on both X and V . I shall sometimes find it convenient to describe this as a left action:

λg: x 7−→ g ◦x = x ·g−1 .

The map λg maps the fibre over y = Π(x) to that over y ·g−1. In particular, it is an isomorphism of the
fibre over [g] with that over [1]. The map Λ = η ◦λg is an isomorphism of the fibre over [g] with V . The

group H takes the fibre over [1] to itself, and the map η is Hequivariant.

A section of the bundle is a map s from X back to V—i.e. it assigns to each element of X an element of
its fibre. I’ll call it smooth if it is continuous. Equivalently, for every x in X there exists a compact open

subgroup K such that s(x ·k) = s(x) ·k for each k in K . For every open U in X , let Γ(U,V) be the space

of smooth sections of V over U .

For example, if σ is the trivial bundle, then Γ(X,V) is just the space of locally constant functions on
H\G.
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If s is a section of V , define F = Fs from G to V :

F (g) = Λ(s([g])) .

This make sense—v = s([g]) is in the fibre over [g], λg(v) is in the fibre over [1], and η takes this to V .

Since η is Hequivariant, this map satisfies the condition

(I.7.1) F (hg) = σ(h)F (g) for all h in H , g in G.

I.7.2. Lemma. The map defined in this way is a bijection between smooth sections of V with locally
constant functions F from G to V satisfying (I.7.1) .

Proof. There are two things to be verified. The first is that F is locally constant. The second is that every

suitable F gives rise to a section. I leave these as exercises.

SHEAVES. The vector bundle V determines a sheaf S = SV whose sections are sections of V . For each
open U in X , let

(I.7.3) S(U) = Γ(U,V) .

I.7.4. Proposition. In the notation of (I.7.3) :

(a) the sheaf S is Gequivariant;
(b) sections are locally constant;
(c) each S(U) is a module over C∞(U,D) such that

Rg(ϕ ·s) = Rg(ϕ) ·Rg(s) .

What (a) means is that for every g in G and U open in X the map y 7→ y ·g induces a map

Rg: S(U) −→ S(U ·g−1)

through the formula

[Rgs](x) = s(x ·g) ·g−1 .

In terms of Lemma I.7.2 this becomes

RgF (x) = F (xg) .

What (b) means is that if U is any open subset of X , s is in S(U), and x is in U , then there exists a compact

open K with U ·K = U such that Rk(s) = s for all k in K . This implies that if the image of s in the fibre
at x vanishes, then there exists a compact open subgroup K such that s|x ·K = 0.

As for (c), it is interpreted according to the formula

[ϕ ·s](x) = ϕ(x) ·s(x) ,

which makes sense because each fibre is a vector space.

One important consequence is that fibres of the bundle are determined canonically in terms of the sheaf.

Let mx be the ideal of C∞(X,D) vanishing at x, and let M = S(X). In these terms, the fibre at x is the

quotient Sx = M/mxM . In particular, V is isomorphic to M/m[1]M . The group H takes m[1] into itself,
and hence the action of H on V may also be defined in terms of S.

The stalk of the sheaf S at x is the direct limit of the S(U) as U shrinks to {x}. There is a canonical map

from the stalk at x to the fibre at x. Because sections are locally constant, this is an isomorphism.

The real point of the present discussion is a converse to the conclusion of this discussion:
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I.7.5. Theorem. If S is any sheaf on H\G satisfying the conditions in the previous proposition then it is
that associated to the vector bundle determined by the representation of H on S[1].

In particular, I’ll eventually define a line bundle in terms of the sheaf whose sections are analogues of

smooth differential volume forms.

Proof. Pretty much straightforward.

PROJECTIONS. Given f in C∞
c (G, V ), define

[Pf ](g) =

∫

H

σ−1(h)f(hg) drh .

If F = Pf then

F (hg) = σ(h)F (h) .

for all h in H , g in G.

I.7.6. Proposition. The map P from C∞
c (G, V ) to Γc(H\G) is a surjection.

This is an immediate consequence of the following.

I.7.7. Lemma. There exists a continuous section of the canonical projection G −→ H\G over all of H\G.

Consequently, such vector bundles are always topologically trivial.

Proof. Given a compact open subgroup K , the quotient is covered by subsets HgK as g ranges over

some subset of G. But HgK = H ·gKg−1 ·g, and gKg−1 is again compact and open. It therefore suffices
to prove the Lemma when G = K itself is compact.

I’ll give the proof, in fact, only whenK is sequentially profinite. For the general case, I refer to [Serre:1964].

Let Kn be a shrinking sequence of compact open normal subgroups of K , and let Hn = Kn ∩H . The

first claim is that for each n there exist continuous sections of the canonical projections

Hn\K −→ H\K .

The quotient H\K is the union of some finite number of cosets HkKn. But Kn is normal in K , so

HkKn = HKnk. Hence it suffices to prove that there exists a section over (Kn ∩ H)\Kn. However,
(Kn ∩H)\Kn embeds into both Hn\K and H\K , so of course there is a section over it.

We now consider a tree whose nodes are continuous sections

sn: H\G −→ Hn\G

and where the successor of a section is its composition with the canonical projection from Hn+1\G to
Hn\G. Since Hn+1 has finite index in Hn, such systems form a locally finite tree. By König’s Lemma

(Lemma I.2.2) there exists an infinite branch in this tree, hence a sequence of compatible continuous

sections sn:H\G → Hn\G, hence a map from H\G to the projective limit of the Hn\G, which can be
canonically identified with G.
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8. Integration on quotients

Onedensities are for arbitrary locally compact spaces the analogue of differential forms on oriented

manifolds. As one might expect from this analogy, onedensities are sections of a line bundle. The main

result of this section is an explicit form of this assertion.

THE SHEAF OF ONEDENSITIES. A distribution on an open set U of an LP space is an element of the dual
of C∞

c (U,D). Define a sheaf Ω∞ by the requirement that Ω∞(U) be the vector space of locally constant

distributions on U . It follows immediately from the somewhat abstract Theorem I.7.5 that the sheaf Ω∞

is the sheaf associated to a vector bundle over H\G. The proof will exhibit a practical formula for the

evaluation of integrals of onedensities.

Defining smooth volume forms on H\G when G is a Lie group requires choosing local coordinates xi,

specifying a form as ω(x) dx1 . . . dxn. This is usually done by defining the form as a ratio of forms on H
and G. Integration then reduces to integration over a subset of Rn. The analogous procedure here will

be to choose rightinvariant measures on H and G. So I begin by fixing such measures.

Let X = H\G. For f in C∞
c (G) define

(I.8.1) f(g) =

∫

H

f(hg) drh .

I.8.2. Lemma. The map f 7→ f is a surjection from C∞
c (G) to C∞

c (X).

Proof. This is a corollary of Proposition I.7.6, but I’ll give a direct proof that does not require sections.

Suppose f to be in C∞
c (X), say fixed by elements of K . Then it is a finite linear combination of functions

constant on sets HgK , so we may assume that f is equal to the characteristic function of HgK . But then

it is, up to scalar, equal to f with f equal to the characteristic function of gK .

If ω is a smooth linear functional on C∞
c (H\G), then we can define a smooth distribution Dω on G

according to the formula
〈Dω, f〉 = 〈ω, f〉 .

The map taking ω to Dω is injective, according to the previous Lemma. Since

Lhf(g) =

∫

H

f(h−1xg) drx = δH(h)f(g)

since

〈LhDω, f〉 = 〈Dω, Lh−1f〉 = 〈ω,Lh−1f〉

we must have

(I.8.3) LhDω = δ−1
H (h)Dω

for all h in H . Since Dω is smooth, Proposition I.6.6 tells us that for some smooth function ϕ = ϕω on G

〈D, f〉 =

∫

G

ϕ(g)f(g) drg .

The condition (I.8.3) on D translates to the condition δG(h)
−1Lhϕ = δH(h)−1ϕ or, equivalently,

(I.8.4) ϕ(hg) = δH(h)δG(h)
−1ϕ(g)

for all h in H , g in G.
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Conversely, suppose ϕ to be a smooth function on G satisfying (I.8.4) , f in C∞
c (G). Suppose K to be

a compact open subgroup of G such that f is rightKinvariant and that ϕ is rightKinvariant on the

support of f . Then
∫

G

ϕ(x)f(x) drx =
∑

H\G/K

∫

HgK

ϕ(x)f(x) drx ,

and since h 7→ hgK is a bijection between H/H ∩ gKg−1 and HgK/K

(I.8.5)

∫

HgK

ϕ(x)f(x) drx =
∑

H/H∩gKg−1

ϕ(hg)f(hg)meas(hgK)

=
∑

H/H∩gKg−1

δH(h)δ−1
G (h)ϕ(g) ·f(hg) ·δG(h)meas(gK)

= meas(gK)ϕ(g)





∑

H/H∩gKg−1

δH(h)f(hg)





= ϕ(g)

[

measG(gK)

measH(H ∩ gKg−1)

] ∫

H

f(hg)drh

= ϕ(g)

[

measG(gK)

measH(H ∩ gKg−1)

]

·f(g) .

I.8.6. Theorem. Suppose given rightinvariant measures on H and G. The map ω 7→ ϕω is an isomor
phism of the space of smooth distributions on H\G with the space of smooth functions ϕ on G such
that

(I.8.7) ϕ(hg) = δH(h)δG(h)
−1ϕ(g) .

Explicitly, if f and ϕ are right Kinvariant then

∫

H\G

ϕ(x)f(x) dx =
∑

H\G/K
ϕ(g)f(g)

[

measG(gK)

measH(H ∩ gKg−1)

]

.

You can check quickly that the terms in this sum do not depend on the choice of representatives g in
H\G/K .

I.8.8. Corollary. There exists a unique right Ginvariant linear map drx from Ω∞
c (H\G) to C, which will

be denoted simply by integration, such that

∫

G

f(g) drx =

∫

H\G

(∫

H

δ−1
H (h)δG(h)f(hx) drh

)

drx .

for any f in C∞
c (G).

This can be written
∫

G

f(g) drx =

∫

H\G

fΩ(x) drx .

if

fΩ(x) =

∫

H

δ−1
H (h)δG(h)f(hx) drh .

I.8.9. Corollary. For ϕ in Ω∞
c (H\G) fixed on the right by elements of the compact open subgroup K

∫

H\G

ϕ(x) dx =
∑

H\G/K

ϕ(g)

[

measG(gK)

measH(H ∩ gKg−1)

]

.
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I add a supplement. Suppose
∫

H\G

F (x) dx = 0 .

Then we can find f in C∞
c (G) such that fΩ = F , and then

∫

G

f(g) drg = 0

as well. According to Proposition I.6.5, we may express f as a linear combination of Rgϕ−ϕ. We deduce

the following generalization of Proposition I.6.5:

I.8.10. Corollary. If F lies in Ω∞
c (H\G) then

∫

H\G

F (x) dx = 0

if and only if F is a linear combination of smooth densities of the form Φ− RgΦ.

9. Measures on padic manifolds

In the special case that G is an algebraic group defined over the padic field k, we can derive measures

on G in a way that one must often use when one wants to treat coherently all local fields associated to a

global one.

First let V be the additive group kn. A translationinvariant measure dx on V is a constant multiple of
the measure dx = dx1 . . . dxn that assigns measure 1 to on. This assigns measure q−nk to (pn)k. This

determines the measure on any compact open subgroup, since it will be the disjoint union of translates
of one of these neighbourhoods of 0.

If T is any matrix in GLn(k) and dx is translationinvariant then the transform by T is also translation

invariant, hence a multiple of dx. The constant is determined by what T does to on. If D is a diagonal

matrix with diagonal entries di the volume of T on is µ
∏

|di|. If γ is in GLn(o) then γon = on, hence
it preserves volumes. The principal divisor theorem tells us that any matrix T in GLn(k) is a product

γ1Dγ2 with the γi in GLn(o) and D diagonal, so T multiplies volumes by | det(T )|. Consequently:

I.9.1. Proposition. If ϕ is an analytic isomorphism of subsets X and Y of kn, then setting y = ϕ(x),
g(x) = f(ϕ(x)) we have the change of variables formula

∫

Y

f(y) dy =

∫

X

g(x)
∣

∣det(∂y/∂x)
∣

∣ dx .

Now suppose X to be an arbitrary kanalytic manifold, given with a countable, locally finite atlas {Xi}.
For each Xi we are given an open embedding into kn, and on overlaps two coordinate systems differ by

an invertible analytic function. Details about what this means can be found in [Serre:1965]. Because of
the implicit function theorem for kanalytic maps, every nonsingular algebraic variety over k has such a

structure.

Following what happens for real manifolds, I define a smooth onedensity on X to be a family of

compatible smooth measures on the sets Xi. Compatibility means only that the measures agree on
overlaps. In particular, if one is given a nonvanishing differential form ω on an algebraic variety M ,

then |ω| defines a smooth onedensity. If one applies this to an algebraic group, one obtains:

I.9.2. Proposition. If G is an algebraic group defined over k, then the modulus character is
∣

∣ det(Adg)
∣

∣.
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I.9.3. Theorem. If G is an algebraic group defined over k and H a closed subgroup, then the space of
smooth onedensities on H\G may be identified with the space of smooth Cvalued functions on G such
that

f(hg) =
∣

∣det−1Adh\g(h)
∣

∣f(g)

for all h in H , g in G.

If G is unimodular
∣

∣det−1Adh\g(h)
∣

∣ =
∣

∣detAdh(h)
∣

∣ .
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