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Understanding root systems of higher rank depends critically on understanding systems of ranks one

and two. Many arguments reduce quickly to one of these cases.
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I recall one method by which root systems are sepcified. If V is a Euclidean vector space and v in V then

define

v♦ =
2v

‖v‖2
,

and define v∨ to be the element of the dual space V ∨ corresponding to v♦, so that by definition

〈v∨, u〉 = v♦
•u

for all u in V . A finite subset Σ together with the map

Σ −→ Σ, λ 7−→ λ∨

will form of a root system if

(a) λ •µ♦ ∈ Z for all λ, µ in Σ
(b) for each λ in Σ the orthogonal reflection

sλ: v 7−→ v − (v •λ♦)λ

takes Σ to itself.

1. Root systems of rank one

The simplest system is that containing just a vector and its negative. There is one other system of rank

one, however, which we have already seen as that of SUω3
:

Throughout this section and the next I shall exhibit root systems by Euclidean diagrams, implicitly
leaving it as an exercise to verify the conditions laid out above.

That these are the only rank one systems follows from this:

1.1. Lemma. If λ and cλ are both roots, then |c| = 1/2, 1, or 2.[non-reduced]

Proof. On the one hand (cλ)∨ = c−1λ∨, and on the other 〈λ, (cλ)∨〉 must be an integer. Therefore 2c−1

must be an integer, and similarly 2c must be an integer.

A root λ is called indivisible if λ/2 is not a root. It is easy to see that:

1.2. Proposition. If Σ is a set of roots, so is the system obtained made up of its indivisible roots.[indivisible]
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2. Root systems of rank two

REFLECTION-INVARIANT LINE CONFIGURATIONS. I start with a situation generalizing that occurring

for root systems of rank two. Assume for a while that we are given

• a Euclidean plane U ;

• a finite set L of at least two lines;

satisfying the condition:

• the set L is stable under orthogonal reflections in its lines.

I’ll call this a geometric root configuration . Each connected component of the complement of the lines in

L is a wedge. Two of themmust be acute and two obtuse. Let C be one of the acute ones, and let a and b
be rays bounding it. Let θ be the angle between them. We may assume U to be given an orientation and
θ positive, a to b.

a

b

ϑ

C

sbsa(a)

roots-images/rays.eps

Wemay choose our coordinate system so that a is the positive xaxis. The product τ = sbsa is a rotation

through angle 2θ. The line τkb will lie in L and lie at angle 2kθ. Since L is finite, 2mθ must be 2πp for
some positive integers m, p and

θ =
πp

m

where we may assume p < m relatively prime.

I claim that p = 1. Suppose k to be inverse to p modulo m, say kp = 1 + Nm. The ray τka will then
lie at angle π/m + Nπ. Since the angle of a line is only determined up to π, if p 6= 1 this gives us a line

through the interior of C, a contradiction. Therefore θ = π/m for some integer m > 1.

There are m lines in the whole collection. In the following figure, m = 4.

π/m

roots-images/cox2.eps

Suppose that α and β are vectors perpendicular to a and b, respectively, and on the sides indicated in the

diagram:
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β

α

π/m

π/m

roots-images/rank2.eps

Then the angle between α and β is π − π/m, and hence:

2.1. Proposition. Suppose C to be a connected component of the complement of the lines in L. If[rank-two]

C = {α > 0} ∩ {β > 0}

then
α •β ≤ 0 .

It is 0 if and only if the rays a and b are perpendicular.

Since 〈α, β∨〉 = 2(α •β/β •β):

2.2. Corollary. Under the same hypothesis[abvee]

〈α, β∨〉, 〈β, α∨〉 ≤ 0 .

In all cases, the region C is a fundamental domain for W .

As the following figure shows, the generators sα and sβ satisfy the braid relation

sαsβ . . . = sβsα . . . (m terms on each side ) .

This also follows from the rotation relation (sβsα)m = 1, since the sα, sβ are involutions. Let W∗ be the
abstract group with generators σα, σβ and relations σ2

∗
= 1 as well as the rotation relation. The map

σα 7→ sα, σβ 7→ sβ is a homomorphism, even a surjection.

C

sαC

sβC

sαsβC

sβsαC

sαsβsαC

sβsαsβC

sβsαsβsαC
= sαsβsαsβC

roots-images/braid2.eps

2.3. Proposition. This map from W∗ to W is an isomorphism.[braid2]

Proof. Any word w in sα and sβ may be turned into one of the form sαsβ . . . or sβsα . . . by deletions of
redundant reflections. But mα,β is the order of sαsβ .
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Conversely, to each m > 1 there exists an essentially unique configuration L satisfying the conditions
under consideration, namely the lines at angles kπ/m. The group generated by the reflections in lines of

L has order 2m. It may also be described as the symmetry group of a regular polygon of order m.

The lines of symmetry of any regular polygon form a planar

root configuration. These are exactly the systems explored
earlier. The lines at right, for the equilateral triangle, are the

lines of root reflection for the case m = 3.

INTEGRAL ROOT CONFIGURATIONS IN THE PLANE. For the rest of this section, suppose (V, Σ, V ∨, Σ∨)
to be a root system in the plane that actually spans the plane. The subspaces 〈v, λ∨〉 = 0 are lines, and
the set of all of them is a finite set of lines stable with respect to the reflections sλ. The initial working

assumption of this section holds, but that the collection of lines arises from a root system imposes severe

restrictions on the integer m.

With the wedge C chosen as earlier, again let α and β be roots such that C is where α • v > 0 and

β • v > 0. The matrices of the corresponding reflections with respect to the basis (α, β) are

sα =

[

−1 −〈β, α∨〉
0 1

]

, sβ =

[

1 0
−〈α, β∨〉 −1

]

and that of their product is

sαsβ =

[

−1 −〈β, α∨〉
0 1

] [

1 0
−〈α, β∨〉 −1

]

=

[

−1 + 〈α, β∨〉〈β, α∨〉 〈β, α∨〉
−〈α, β∨〉 −1

]

.

This product must be a nontrivial Euclidean rotation. Because it must have eigenvalues of absolute

value 1, its trace τ = −2 + 〈α, β∨〉〈β, α∨〉must satisfy the inequality

−2 ≤ τ < 2 ,

which imposes the condition
0 ≤ nα,β = 〈α, β∨〉〈β, α∨〉 < 4 .

But nα,β must also be an integer. Therefore it can only be 0, 1, 2, or 3. It will be 0 if and only if sα and sβ

commute, which means that Σ is the orthogonal union of two rank one systems:

roots-images/a1xsu2.eps

So now suppose the root system to be irreducible. Recall the picture:
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β

α

π/m

π/m

roots-images/rank2.eps

Here, α •β will actually be negative. By switching α and β if necessary, wemay assume that one of these

cases is at hand:

• 〈α, β∨〉 = −1, 〈β, α∨〉 = −1;
• 〈α, β∨〉 = −1, 〈β, α∨〉 = −2;
• 〈α, β∨〉 = −1, 〈β, α∨〉 = −3.

Since

〈α, β∨〉 = 2

(

α •β

β •β

)

, 〈β, α∨〉 = 2

(

β •α

α •α

)

‖α‖2〈α, β∨〉 = ‖β‖2〈β, α∨〉
we also have

‖β‖2

‖α‖2
=

〈β, α∨〉
〈α, β∨〉 .

Let’s now look at one of the three cases, the last one. We have 〈β, α∨〉 = −3 and 〈α, β∨〉 = −1. Therefore
‖β‖2/‖α‖2 = 3. If ϕ is the angle between α and β,

cosϕ =
α •β

‖α‖ ‖β‖ =
1

2

〈α, β∨〉‖β‖
‖α‖ = −

√
3/2 .

Thus ϕ = π − π/6 and m = 6. Here is the figure and its saturation:

β

α

G2

roots-images/g2basis.eps

roots-images/g2roots.eps

This system is called G2.

Taking the possibility of nonreduced roots into account, we get all together three more possible irre
ducible systems:
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A2

roots-images/a2basis.eps

roots-images/a2roots.eps

B2 = C2

roots-images/c2basis.eps

roots-images/c2roots.eps

BC2

roots-images/bc2basis.eps

roots-images/bc2roots.eps

The first three are reduced.

In summary:
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2.4. Proposition. Suppose that (V, Σ, V ∨, Σ∨) is a root system of semisimple rank two. Let C be one of[W-roots]

the complements of the root reflection lines, equal to the region α > 0 β > 0 for roots α, β. Swapping α
and β if necessary, we have one of these cases:

〈α, β∨〉 = 0, 〈β, α∨〉 = 0, ‖β‖/‖α‖ indeterminate, mα,β = 2 ;
〈α, β∨〉 = −1, 〈β, α∨〉 = −1, ‖β‖/‖α‖ = 1, mα,β = 3 ;
〈α, β∨〉 = −1, 〈β, α∨〉 = −2, ‖β‖/‖α‖ =

√
2, mα,β = 4 ;

〈α, β∨〉 = −1, 〈β, α∨〉 = −3, ‖β‖/‖α‖ =
√

3, mα,β = 6 .

There is another way to see the restriction on the possible values of m for planar root systems. The
rotations sαsβ are of order m and act on the latticeL spanned by the roots, thusmaking that LQ = L⊗Q

into a vector space over the field of mroots of unity, necessarily of dimension one. This field must
therefore be a quadratic extension of Q.


