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A basic theme in representation theory is to approximate various functions on a space by simpler ones. Some
well known examples are the approximation of functions on the interval [0, 1] by polynomials or that of

approximation of functions on the unit circle by trigonometrical polynomials. A fundamental tool in all these
results is a very general result about the approximation of continuous functions on compactHausdorff spaces.

In proving the general result it is useful to show first what happens for the simplest case of functions on [0, 1],
which is as well known due to Weierstrass. I’ll give below a satisfactorily explicit version of Weierstrass’
theorem due to the Russianmathematician Sergei Bernstein, and in fact by following his own argument fairly

closely. But in order to appreciate Bernstein’s construction, it is useful to understand first that the naive

approach to the problem of approximating continuous functions on [0, 1] doesn’t work, and that’s what I’ll
begin with.

1. Lagrange’s interpolation

Given a continuous function f on [0, 1], a formula due to Lagrange produces a polynomial Lf,n(x) that
interpolates f exactly at the points m/n for m = 0 to n. First, for each m in that range define

Lm,n(x) =
∏

0≤k≤n,k 6=m

x − k/n

m/n − k/n
.

This satisfies

Lm,n(j/n) =
{

1 j = m
0 otherwise

and hence if we choose xj = j/n

Lf,n(x) =
n

∑

0

f(k/n)Lk,n(x)

satisfies

Lf,n(k/n) = f(k/n) (0 ≤ k ≤ n) .

Lagrange’s interpolating polynomial Lf,n(x) therefore agrees exactly with f(cx) at all points k/n. This

seems like a good start, but in fact it does a poor job of approximating arbitrary continuous functions away

from the interpolation points. Here, for example, is the graph of Lf,16(x) for the function f(x) = |x − 0.5|
in the interval [0, 1]:

f(x) = |x − 1/2|

y = Lf,12(x)
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More examples would show that the behaviour of Pn at the end points only becomes wilder as n increases.

You can see what the problem is, at least roughly—Lagrange’s polynomial doesn’t behave locally—i.e.
singular behaviour of the function at a point can affect behaviour of the approximation far away from it. In

these examples, the break at the middle of the interval (x = 1/2) causes severe oscillation at the endpoints

(x = 0, 1) and as the number of interpolation points increases so does this oscillation. The following figures,
which graph Lm,8(x) for m = 1 to 4, exhibit the difficulty clearly.

The Lagrange polynomials are useless for demonstratingWeierstrass’ theorem, and in fact what they demon­
strate is that the theorem is subtle.

One way around the difficulty is to use Lagrange’s formula at points that are not evenly spaced in [0, 1]. The
optimal choice leads to approximation by Chebyshev polynomials, which often works well. But in the next

section we’ll see a simple, intuitive method with much appeal.

2. Bernstein polynomials

If β = (βk) for k = 0 to n is any sequence of real numbers, the associated Bernstein polynomial is

Bβ(x) =

n
∑

k=0

βk

(

n

k

)

xk(1 − x)n−k .

If all the βk are equal to a single constant β, for example, we get the constant function

Bn(x) = β
(

(1 − t) + t
)n

= β .

In other low degrees:

B1(x) = β0(1 − x) + β1x

B2(x) = β0(1 − x)2 + 2β1x(1 − x) + β2x
2

B3(x) = β0(1 − x)3 + 3β1x(1 − x)2 + β2x
2(1 − x) + β3x

3



The Stone­Weierstrass Theorem 3

The first of these polynomials is just the linear function interpolating between β0 and β1, and in general

the Bernstein polynomials of degree n should be thought of as rather roughly interpolating the coefficient

sequence at the points x = i/n. Of course Bβ(0) = β0 and Bβ(1) = βn, but in general Bβ does not take
the βk as intermediate values. As compensation, the Bernstein polynomials behave robustly with respect

to variation in the constants βk. For this reason, the Bernstein polynomials of low degree are used in

computer graphics, where they are called Bézier functions (after a car designer who used them for practical
applications). Another reason they are used in computer graphics is that they can be plotted very efficiently

by means of efficient recursion properties. The intermediate values βk for 1 ≤ k ≤ n − 1 are called in
computer graphics the control values of the Bernstein polynomial. The figure below shows a cubic Bernstein

graph with control values (0, 1/2, 1/2, 0). In computer graphics, this is called a Bézier cubic . The control

points of Bézier lines and quadratic curves have a simple geometric significance, but for higher degree curves
this significance is somewhat lost. One simple characteristic, however, is that the graph of the function is

always contained in the convex hull of the control points (i/n, βi).

In spite of the apparent crudeness of the approximation, as n increases the Bernstein polynomials associated

to f do converge to it:

2.1. Proposition. Let f be any continuous function on [0, 1], and for each n ≥ 0 let

Bf,n(x) =

n
∑

k=0

f(k/n)

(

n

k

)

xk(1 − x)n−k .

Then the Bf,n approach f uniformly as n → ∞.

Here, for example, is the Bernstein approximation to |x − 1/2|with n = 32.

the approximation looks good except around x = 1/2. It can be shown that the convergence to the value at
1/2 is of order 1/

√
n, which is not very good. In fact, it is not at all good idea to use Bernstein polynomals

for practical approximation, in spite of theoretical virtues.

Proof. I’ll follow Bernstein’s original argument, with a few enhancements.

For a fixed x, the coefficients

Px(k/n) =

(

n

k

)

xk(1 − x)n−k

describe the Bernoulli probability distribution assigning the probability of k successes in n independent
events, each with probability x. The mean of this distribution is nx and the variance is nx(1 − x), and of
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course for a fixed x as n grows the probability clusters around the mean, with a rough spread of
√

nx(1 − x)
(the standard deviation). The total probability sums to 1, so in effect the distributions Px(k/n), which can be

expressed as a sum of Dirac distributions

Px =

n
∑

k=0

(

n

k

)

xk(1 − x)n−kδk/n ,

converge to the Dirac delta δx as n → ∞. The Bernstein polynomial Bf,n(x) calculates the expected value

of the continuous function f(x) with respect to this probability distribution, and because of the clustering of
k/n around x the polynomial it should not be too surprising that Bf,n(x) has f(x) as limiting value. What is

slightly subtle is that the convergence is uniform in p, but this is for simple reasons. The spread, or standard

deviation, is a maximumwhen p = 1/2 and decreases to 0 at either p = 0 or p = 1, so in fact the convergence
should be better near the endpoints of the interval. This is shown in the following figures, which portray the

distribution for different values of x, in which n = 100. (These are scaled. The gray region in each is the unit

square, of area 1.)

0.125 0.25 0.375 0.5

Bernstein’s proof makes this intuitive reasoning rigourous. It depends on the Chebyshev inequality, which

asserts that for a probability distribution with mean µ and standard deviation σ, P (|x − µ|) > tσ ≤ 1/t2.
It is only a crude estimate for Bernoulli distributions, so we should not expect the proof to give us a good
estimate of convergence achieved.

Given ε > 0 we want to find N such that |f(x) − Bf,n(x)| < ε for all n ≥ N and 0 ≤ x ≤ 1. Since [0, 1] is
compact, the function f is uniformly continuous—we can find δ > 0 such that |f(x)−f(y)| < ε/2whenever

|x − y| < 2δ.

For a fixed x, the discrete variable k/n has mean value x and standard deviation
√

x(1 − x)/n. Therefore

by Chebyshev’s inequality the probability P of |x − k/n| > t
√

x(1 − x)/n is at most 1/t2. Let M be the
maximum spread of f across the interval [0, 1], that is to say the difference between its maximum and its

minimum. Then

1 =

n
∑

k=0

(

n

k

)

xk(1 − x)n−k

f(x) = f(x)

n
∑

k=0

(

n

k

)

xk(1 − x)n−k

=
n

∑

k=0

f(x)

(

n

k

)

xk(1 − x)n−k .
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Therefore

∣

∣Bf,n(x) − f(x)
∣

∣ ≤
n

∑

k=0

∣

∣f(k/n) − f(x)
∣

∣

(

n

k

)

xk(1 − x)n−k

=
∑

|k/n−x|≤δ

∣

∣f(k/n) − f(x)
∣

∣

(

n

k

)

xk(1 − x)n−k

+
∑

|k/n−x|>δ

∣

∣f(k/n) − f(x)
∣

∣

(

n

k

)

xk(1 − x)n−k

≤ ε/2 + M/t2

if t
√

x(1 − x)/n = δ. For all n such that M/t2 < ε/2 or n > 2Mx(1 − x)/εδ2, we have

|Bf,n(x) − f(x)| < ε .

For completeness, I include here the proof of Chebyshev’s inequality. Given a discrete probability distribution
pi with mean µ and standard deviation σ, we want to show that

∑

|x−µ|/sσ≥1

pi ≤
1

s2
.

But this sum is
∑

|xi−µ|/sσ≥1

pi =
∑

|xi−µ|2/s2σ2≥1

pi

≤
∑

|xi−µ|2/s2σ2≥1

pi
|xi − µ|2

s2σ2

le
∑

i

pi
|xi − µ|2

s2σ2

=
1

s2σ2

∑

i

pi|xi − µ|2

=
1

s2
.

3. The Stone-Weierstrass Theorem

If X is a topological space and R a subring of C(X) = C(X, R), it is said to separate points of X if for every

x 6= y in X there exists ϕ in R with ϕ(x) 6= ϕ(y).

3.1. Theorem. If X is a compact Hausdorff space and R is a subring of C(X) that (a) contains the constants
R and (b) separates points of X then it is dense in C(X).

[Kelley:1955], whom I follow loosely, says of this result that it is “unquestionably the most useful known
result on C(X).”

Proof. The first step is to show that if f is in R then |f | can be approximated by elements in R. Suppose |f |
is bounded by M on X . By Weierstrass’ theorem for intervals of R, we can find an approximation of |x| in
[−M, M ] by polynomials P (x), hence an approximation of |f | by P (f), which lies in the ring R.
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Now

max(f, 0) =
f + |f |

2

max(f − g, 0) =
(f − g) + |f − g|

2

max(f, g) = f − max(f − g, 0)

=
(f + g) + |f − g|

2
.

It follows that if f and g are two functions in R, both min(f, g) and max(f, g) are in R.

I now follow [Pinkus:2000]. Since R separates points and contains the constants, given any x 6= y in X we
can find a function ϕ in R with ϕ(x) 6= ϕ(y). The function

h(w) =
ϕ(w) − ϕ(x)

ϕ(y) − ϕ(x)

is in R and satisfies h(x) = 0, h(y) = 1, so functions in R can interpolate any two values on X .

Suppose f in C(X), ε > 0. Fix temporarily x in X . For any y we can find h in R such that h(x) = f(x),
h(y) = f(y), and we can then find a neighbourhood Uy of y such that |h(w) − f(w)| < ε for all w in Uy. In

particular h(w) > f(w) − ε for all w in Uy. Choose a finite subcover, so now we are given a collection of

open sets Ui and functions hi such that for all i (a) hi(x) = f(x) and (b) hi(w) > f(w)− ε on Ui. If Hx is the
maximum of these then (a) Hx(x) = f(x) and (b) Hx(w) > f(w) − ε for all w.

To conclude, make a similar argument about neighbourhoods of each x, and take a minimum of a finite
collection of functions.

3.2. Corollary. If X is a compact subset of Rn, then every continuous function on X may be approximated
arbitrary closely by polynomials in the coordinates.

3.3. Corollary. If X is a compact subset of Cn, then every continuous function on X may be approximated
arbitrary closely by polynomials in the coordinates and their complex conjugates.
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