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Infinitedimensional spaces are ubiquitous inmany branches of mathematics, and their topologies are almost
always interesting. Samples of spaces that one is sure to encounter are Cc(R), C∞(R), Lp(R), and their

continuous linear duals. There are two good reasons for making oneself at least somewhat familiar with the

subject. On the one hand, without some preparation, it is easy to make false statements about any of these.
On the other, there are many positive results in the subject that can save one an enormous amount of work.

Most of the available literature on topological vector spaces is written by enthusiasts, and I hope that a
relatively short account will be valuable. My aim is here is to give an outline of techniques rather than full

coverage, and from time to time explanations will be sketchy.

All vector spaces in this chapter will be complex, except perhaps in a few places where explicitly assumed

otherwise.
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1. Semi-norms

AHilbert space V is a complex vector space assigned a positive definite inner product u • v with the property

that Cauchy sequences converge. These are conceptually the simplest topological vector spaces, with the
topologydefinedby the condition that a subsetU ofV is open if and if it contains a neighbourhood‖v−u‖ < ε
for every one of the points u in U . But there are other naturally occurring spaces in which things are a bit
more complicated. For example, how do you measure how close two functions in C∞(R/Z) are? Under

what circumstances does a sequence of functions fn in C∞(R/Z) converge to a function in that space? If

two functions in C∞(R/Z) are close then their values should be close, but you should also require that their
derivatives be close. So you introduce naturally an infinite number of measures of difference:

‖f‖m = sup
x

∣∣f (m)(x)
∣∣ ,

and say that fn → f if ‖fn − f‖m → 0 for all m. The most fruitful way to put topologies on many other

infinitedimensional vector spaces is by using measures of the size of a vector that are weaker than those on
Hilbert spaces.

1.1. Proposition. If ρ is a nonnegative function on the vector space V , the following are equivalent:
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(a) for all scalars a and b, ρ(au + bv) ≤ |a|ρ(u) + |b|ρ(v);
(b) for any scalar a, ρ(av) = |a|ρ(v), and ρ(tu + (1 − t)v) ≤ tρ(u) + (1 − t)ρ(v) for all t in [0, 1];
(c) for any scalar a, ρ(av) = |a|ρ(v), and ρ(u + v) ≤ ρ(u) + ρ(v).

The realvalued function ρ on a vector space is said to be convex if

ρ(tu + (1 − t)v) ≤ tρ(u) + (1 − t)ρ(v)

for all 0 ≤ t ≤ 1, and these conditions are essentially variations on convexity.

Any function ρ satisfying these conditions will be called a semi-norm . It is called a norm if ρ(v) = 0 implies

v = 0.

A prototypical norm is the function ‖x‖ =
√
|x1|2 + · · · + |xn|2 in Cn, or the integral

∫

Rn

∣∣f(x)
∣∣2 dx1 . . . dxn

for f in the space of continuous functions on Rn of compact support. The functions ‖f‖m on C∞(R/Z) are
seminorms.

Proof. That (c) implies (b) and that (b) implies (a) is immediate. Assuming (a), we have

ρ(v) = ρ(a−1av) ≤ |a|−1ρ(av) ≤ |a|−1 |a|ρ(v) = ρ(v) ,

leading to homogeneity.

1.2. Corollary. The kernel
ker(ρ) =

{
v ∈ V

∣∣ ρ(v) = 0
}

of a seminorm on a vector space is a linear subspace.

From now on I’ll usually express seminorms in norm notation—‖v‖ρ instead of ρ(v).

The conditions on a seminorm can be formulated geometrically, and in two rather different ways. The graph

of a seminorm ρ is the set Γρ of pairs (v, ‖v‖ρ) in V ⊕R. Let Γ+
ρ be the set of pairs (v, r) with r > ‖v‖ρ. The

conditions for ρ to be a seminorm are that Γ+
ρ be convex, stable under rotations (v, r) 7→ (cv, r) for |c| = 1,

and homogeneous with respect to multiplication by positive scalars. (I recall that a subset of a vector space

is convex if the real line segment connecting two points in it is also in it.)

A more interesting geometric characterization of a seminorm is in terms of the disks associated to it. If ρ is

a seminorm its open and closed disks are defined as

Bρ(r−) =
{
v

∣∣ ‖v‖ρ < r
}

Bρ(r) =
{
v

∣∣ ‖v‖ρ ≤ r
}

.

We shall see in a moment how seminorms can be completely characterized by the subsets of V that are their
unit disks. What are the necessary conditions for a subset of a vector space to be the unit disk of a seminorm?

A subset of V is balanced if cu is in it whenever u is in it and |c| = 1, and strongly balanced if cu is in it
whenever u is in it and |c| ≤ 1. (This is not standard terminology, but as often in this business there is no

standard terminology.) Convex and balanced implies strongly balanced.

A subset X of V is absorbing if for each v in V there exists ε such that cv ∈ X for all |c| < ε. It is

straightforward to see that if ρ is a seminorm then its open and closed disksBρ(r−) and Bρ(r−) are convex,
balanced, and absorbing.
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A seminorm is determined by its unit disks. If rv = ‖v‖ρ > 0 then

‖v/r‖ρ

{
> 1 if r < rv

= 1 if r = rv

< 1 if r > rv.

we have

‖v‖ρ = inf{r > 0 | v/r ∈ B}

for B equal to either Bρ(1) or Bρ(1−).

Conversely, suppose C to be an absorbing subset of V . The intersection of the line R·v with V is an interval,

possibly infinite, around 0. Since C is absorbing, there exists r > 0 such that v/r ∈ C. Define

‖v‖C = inf{λ ≥ 0 | v/λ ∈ C} .

v/‖v‖C

v

C

For example, if v lies on a line inside C then ‖v‖C = 0.

1.3. Proposition. If C is convex, balanced, and absorbing then ρ(v) = ‖v‖C is a seminorm.

If C is not convex or balanced then it can be replaced by its convex, balanced hull, so the first two of these

requirements are not onerous. But its not being absorbing is fatal—in that case, the seminormwill be infinite

almost everywhere. So in practice it is that condition that one has to be careful about. Similarly, if one is
given a formula for a seminorm, the important thing to check is that it be finite.

Proof. It is immediate that ‖cv‖C = c‖v‖C for c > 0, and since C is balanced it is immediate that ‖cv‖C =
‖v‖C for |c| = 1. Finally, the function ρ(v) = ‖v‖C is convex since C is.

The seminorm determined by C is called its gauge .

Several such sets C may determine the same seminorm. For example both the open and closed unit disks of

ρ determine ρ. The correspondance becomes bijective if we impose a simple condition on C. I’ll call a subset
of V linearly open if its intersection with any real line is open.

1.4. Lemma. If ρ is a convex realvalued function then the region ρ < c is linearly open.

For example, the open unit disk defined by a seminorm is linearly open.

Proof. Suppose P to be a point in V such that ρ(P ) < c. I must show that every real line in V containing P
contains also an open interval around P . It suffices for this to show that if Q is any other point in the vector

space V , then points on the initial part of the segment from P to Q also satisfy ρ < c. If ρ(Q) < c then the

whole segment [P, Q] lies in the region ρ < c. Otherwise say ρ(Q) ≥ c > ρ(P )or ρ(Q)−ρ(P ) > c−ρ(P ) > 0.
We have

ρ
(
(1 − t)P + tQ

)
≤ (1 − t)ρ(P ) + tρ(Q)

= ρ(P ) + t
(
ρ(Q) − ρ(P )

)
.
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so if we choose t small enough so that

t
(
ρ(Q) − ρ(P )

)
<

(
c − ρ(P )

)
or t <

c − ρ(P )

ρ(Q) − ρ(P )

then
ρ
(
(1 − t)P + tQ

)
< ρ(P ) +

(
c − ρ(P )

)
= c .

1.5. Proposition. The map associating to ρ the open unit disk Bρ(1−) where ‖v‖ρ < 1 is a bijection between
seminorms and subsets of V that are convex, balanced, and linearly open.

Proof. The previous result says that if ρ is a seminorm then Bρ(1−) is convex, balanced, and linearly open.

It remains to show that if C is convex, balanced, and linearly open then it determines a seminorm for which
it is the open unit disk. For the first claim, it suffices to point out that a convex, balanced, linearly opne set is

absorbing. That’s because for any v the line through 0 and v must contain some open interval around 0 and

inside C. This means that we can define in terms of C the seminorm ρ = ρC .

Why is C the open unit disk for ρ? It must be shown that a point v lies in C if and only if ‖v‖C < 1. Since C
is convex, balanced, and linearly open, the set {c ∈ R | cv ∈ C} is an open interval around 0 in R. Hence if v
lies in C, there exists (1 + ε)v ∈ C also, and therefore ‖v‖C ≤ 1/(1 + ε) < 1.

Conversely, suppose ‖v‖C = r < 1. If r = 0, then cv lies in C for all c in R. Otherwise, v/r is on the
boundary of C—v/η ∈ C for η > r but v/η /∈ C for η < r. Since r < 1, there then exists some r+ < 1 such

that v/r+ ∈ C, and since C is convex and v lies between 0 and v/r+ the vector v also lies in C.

In general, linearly open sets are a very weak substitute for open ones in a vector space, but convex ones are

much better behaved. Linearly open sets will occur again in the discussion of the HahnBanach Theorem, in

which convex linearly open sets play a role. For now, I content myself with the following observation:

1.6. Proposition. In a finitedimensional vector space, every convex linearly open set is open.

Proof. Let U be a linearly open subset of V . We must show that for every point of U there exists some
neighbourhood contained in U . We may as well assume that point to be the origin. Let (ei) be a basis of V .

There exists c > 0 such that all ±cei are in U , and since U is their convex hull, which is a neighbourhood of
the origin.

2. Topologies

A topological vector space (TVS) is a vector space assigned a topology with respect to which the vector

operations are continuous. (Incidentally, the plural of “TVS" is “TVS", just as the plural of “sheep" is
“sheep".) After a few preliminaries, I shall specify in addition (a) that the topology be locally convex , in the

sense that its topology possesses a basis of neighbourhoods of 0 which are convex and (b) that the topology

be Hausdorff .

There are two ways to define such a structure, one in terms of seminorms and the other more directly in

terms of a basis of convex neighbourhoods of 0.

There are thus two questions: How do we define a locally convex vector space (a) by seminorms? (b) in
terms of a basis of neighbourhoods of 0? The first method is very simple. A basis of neighbourhoods of 0 is
made up of the finite intersections of open ‘semidisks’ ‖v‖ρ < ε, and a basis of neighbourhoods of any other

point is the collection of translates of those at 0. A subset is defined to be open if it contains a neighbourhood

of each of its points.

We can get some idea of what neighbourhoods of 0 look like from this:

2.1. Lemma. In a TVS, every neighbourhood of 0 (a) is absorbing and (b) contains a balanced neighbourhood
of 0.
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Proof of the Lemma. Let Y be a neighbourhood of 0 in V . Given v0 in V , 0·v0 = 0, so by continuity there

exists a δ > 0 and a neighbourhood X of v0 such that cv ∈ Y if |c| < δ and v ∈ X . This shows that Y is

absorbing.

Because scalar multiplication C × V → V is continuous at (0, 0), we can find ε > 0 and a neighbourhood X
of 0 such that ax ∈ Y for all |a| < ε and x ∈ X . Then ∪|c|≤1cεX is still a neighbourhood of 0 contained in

Y , and also balanced.

2.2. Proposition. Given any collection of seminorms on a vector space, vector addition and scalar multipli
cation are continuous in the topology defined by them. Conversely, given a locally convex topological vector
space, there exists a family of seminorms defining it.

Proof. All is straightforward, except perhaps the definition of seminorms. If U is a convex neighbourhood
of 0, you may assume that it is balanced, since you may replace it by the union of all cU with |c| ≤ 1. This
will still be a neighbourhood of 0. Now apply Proposition 1.3.

2.3. Remark. Any complex vector space V can be given a somewhat trivial topological structure, the one
with seminorms defined by arbitrary linear functions:

‖v‖f =
∣∣〈f, v〉

∣∣ .

I’ll call this the linear topology . In this topology, a basis of neighbourhoods of 0 is made up of finite
intersections ∣∣〈fi, v〉

∣∣ < ε for i = 1, . . . , n .

Every linear function is continuous in this topology, and every region RE(f) < c is open. This topology
is useful in formulating results for large classes of topological vector spaces that include spaces with no

interesting topological structure.

Next we look at the question, How do we define the structure of a topological vector space by specifying a
basis of neighbourhoods of 0?

2.4. Proposition. Suppose we are given a collection X of convex, balanced, absorbing subsets of the complex
vector space V satisfying these conditions:

(a) for every X , Y in X there exists Z in X with Z ⊆ X ∩ Y ;
(b) for every X in X and c > 0 there exists Y in X such that Y ⊆ cX .

There exists on V a unique structure as topological vector space with X as basis of neighbourhoods at 0. If
the sets in X are convex, V will be a locally convex topological vector space.

Proof. Straightforward.

In principle we know that every convex, balanced, absorbing set determines a seminorm, but in practice it

will occasionally be far simpler to work directly with X.

A seminorm ρ on a TVS V is continuous if and only if the region ρ < 1 contains a neighbourhood of 0.

• From now on, I shall assume unless specified otherwise that every TVS is locally convex, and
I adopt the convention that a seminorm on a locally convex TVS will be what I currently call a
continuous seminorm.

A basis of continuous seminorms is a collection of seminorms ρ whose semidisks ‖v‖ρ < ε form a basis

of neighbourhoods of 0. If F is a finite set of continuous seminorms, then supρ∈F ρ is also a continuous
seminorm, one whose disks are the intersections of the disks associated to the separate seminorms in the

collection. Thus if N is a collection of defining seminorms, the seminorms ρF = supρ∈F ρ, as F runs

through all finite subsets of N, form a basis of seminorms.
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Topological vector spaces offer a nice playground for those fond of logic. Theorems are usually based on

intuition, but intuition alone is a poor guide to separating true from false. One cannot rely on what is valid

for finitedimensional vector spaces. Careful reasoning alone can be relied upon, but rigourous proofs are
often difficult to find in an intricate maze of possibilities. Occasionally even experts allow intuition to lead

them into error. One sign of skill is to find axioms for various kinds of infinitedimensional vector spaces

that are useful. One tricky question is to what extent, and when, one needs various versions of the Axiom of
Choice.

Some odd features can be dealt with quickly. With no further assumption, it might happen that points in a
locally convex TVS are not closed. Since x = x+0, we need only see whether or not the origin itself is closed.

2.5. Proposition. In a locally convex TVS the closure of 0 is the intersection of the kernels of all defining
seminorms.

In particular, the closure of 0 is a linear subspace of V .

Proof. Closed sets are the complements of open ones, so a point v lies in the complement of the closure 0
if and only if it has a neighbourhood that does not contain 0, or in other words if there exists a continuous
seminorm ρ such that the disk ‖u− v‖ρ < ε does not contain the origin—i.e. if and only if ‖v‖ρ > ε for some

ε > 0.

2.6. Corollary. A locally convex TVS is Hausdorff if and only if 0 = 0 or, equivalently, whenever v 6= 0 there
exists a defining seminorm ρ with ‖v‖ρ 6= 0.

Proof. If ‖v‖ρ > ε then ‖x‖ρ = ε/2 separates 0 from v.

• From now on, I shall assume unless specified otherwise that every TVS is Hausdorff (as well as
locally convex).

This is sometimes part of the definition of TVS, as in [ReedSimon:1972]. The literature does not seem to be

uniform.

A compact set in a TVS is one with the property that any covering of it by a collection of open sets is already

covered by a finite subset of that collection. Since a single point is certainly compact, we can’t expect all
compact sets to be closed in a locally convex TVS unless it is Hausdorff. But that suffices:

2.7. Proposition. Any compact set in a TVS is closed.

Proof. It has to be shown that the complement of every compact C is open. Suppose v not in C. For each

x in C we can find a continuous seminorm ρx and a positive Rx such that the disks ‖y − x‖ρx
< Rx and

‖y− v‖ρx
< Rx are disjoint. Because C is compact, there exists a finiteX such that the disks ‖y− x‖ρx

< Rx

for x in X cover C. Let ρ = maxX ρx, R = minX Rx. Then the disk ‖y − v‖ρ < R contains no point of C.

If U is a linear subspace of the vector space V , every seminorm ρ on V determines one on U by restriction,
making it into a TVS. It also induces a seminorm on the quotient V/U :

‖v‖ρ = inf
v 7→ v

‖v‖ρ .

Here inf means the greatest lower bound, so that (a) ‖v‖ρ ≤ ‖v‖ρ for every v 7→ v and (b) if r > ‖v‖ρ there

exists v 7→ v with ‖v‖ρ < r. A basis of seminorms on a TVS defines one on the quotient.

2.8. Proposition. A vector subspace U of the TVS V is closed if and only if the quotient topology on V/U is
Hausdorff.

Proof. The subspaceU is closed if and only if each point v in the complement ofU has an open neighbourhood

disjoint from U , which means that there is a seminorm ρ such that ‖u − v‖ρ < 1 for no point u in U . But

this happens if and only if in V/U the image of this disk separates the image of v from 0.
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In finite dimensional topological spaces the topology can be defined in terms of convergent sequences—a

set Y is closed, for example, if and only if every limit of a sequence in Y is also in Y . But in arbitrary

topological spaces sequences are not sufficient to deal with convergence. This is implicit in what we have
already seen—if a TVS is defined by an uncountable set of seminorms, it doesn’t seem likely that sequences

can capture the structure of the neighbourhood of a point. Instead, one uses nets .

The motivation for the definition of a net is that a point of V is specified as the unique intersection of all of

its neighbourhoods v + X as X ranges over a neighbourhood basis of 0. The characteristic property of a

neighbourhood basis is that if X and Y are in the basis then X ∩Y contains a set in the basis—it is a directed
set . I recall that a directed set A is a set together with an order relationship a � b (b is a successor of a), such
that any two elements have a common successor. For neighbourhoods of 0, X � Y when Y ⊆ X . A net in a

TVS V is a pair (A, f)where f is a map from a directed setA to V . A sequence is a special case, whereA = N

and m � n when m ≤ n. A net (A, f) converges to a point v if for every neighbourhood U of v there exists

an a in A such that f(b) is in U for all b � a. As suggested above, a typical example of a convergent net is
that where A is a basis of neighbourhoods of a point in a locally convex TVS, and f(a) for a neighbourhood
a is a point of A. The reason one has to allow general nets rather than just neighbourhood bases of points is

to allow one to deal with the image of a net under a continuous map.

Nets or something equivalent are necessary in dealing with convergence in arbitrary topological spaces, but

there is a difficulty, in that the analogue of a subsequence is not quite intuitive. A sequence in V is a map from
N to V , taking i to vi. A subsequence is the composite of a monotonic, injective map ni from N to N followed

by the original sequence, all in all taking i to vni
. If (A, f) is a net in V , a subnet is a a triple (B, g, ϕ) where

(i) B is a directed set; (ii) ϕ is a map from B to A; (iii) g is the composite of f with ϕ; (iv) given a in A there
exists b in B with a � ϕ(b). To this subnet is associated the net (B, g).

With these notions, we have the standard characterization of compact sets:

2.9. Proposition. (HeineBorel) For a subset C of any Hausdorff topological space, the following conditions
are equivalent:

(a) if Σ is a collection of open sets covering C, then C can be covered by a finite subset of sets in Σ;
(b) any net in C possesses a convergent subnet.

3. Finite-dimensional spaces

Finitedimensional spaces occur often in this business. It is nice to know, and should be no surprise, that they
are the same familiar objects that we are used to.

3.1. Proposition. Any Hausdorff topology on a finitedimensional vector space with respect to which vector
space operations are continuous is equivalent to the usual one.

It is not necessary to assume the topology to be locally convex.

Proof. A basis of V determines a linear isomorphism f : Rn → V , which is continuous by assumption on the

topology of V . By definition of continuity, if U is any neighbourhood of 0 in V there exists some disk B(r)
with f

(
B(r)

)
⊆ U .

It remains to show that the inverse of f is continuous. For this, it suffices to show that f
(
B(1)

)
contains a

neighbourhood of 0.

Since the topology of V is Hausdorff, for every point s in f
(
Sn−1

)
By Lemma 2.1 we may assume U to be

balanced. Since U is balanced, the neighbourhood U/2 is contained in U , and does not meet s + U/2. Since
the embedding of Sn−1 is continuous, we may find a neighbourhood Σs of s in Sn−1 such that f(Σs) is
contained in s + U/2, and which does not intersect U/2. Since Sn−1 is compact, we may find a finite number

of Σs covering Sn−1. The intersection of this finite collection of sets Us is still a neighbourhood of 0, and
does not intersect S

n−1. Since it is balanced, it does not contain any points exterior to S
n−1, either. So it is

contained in the open disk ‖v‖ < 1.
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3.2. Proposition. Any finitedimensional subspace E of a TVS is closed.

I am reverting here to the convention that a TVS is locally convex, although it is not a necessary assumption.

Proof. It must be shown that the complement of E in the TVS V is open, or that every point of V has a

neighbourhood containing no point of E. The previous Lemma tells us that we may find a neighbourhood

of 0 in V whose intersection with E is contained inside a unit sphere. There therefore exists a seminorm ρ
of V defining the topology of E. Since

‖e‖ρ ≤ ‖e − v‖ρ + ‖v‖ρ, ‖e − v‖ρ ≥ ‖e‖ρ − ‖v‖ρ .

Choose R = ‖v‖ρ. Then for ‖e‖ρ > 2R

‖e − v‖ρ ≥ ‖e‖ρ − ‖v‖ρ > 2R − R = R .

Therefore the minimum value m of ‖e− v‖ρ on the compact disk ‖e‖ρ ≤ 2R, which is at most ‖0− v‖ρ = R,

is the minimum value on all of E. The disk ‖x − v‖ρ < m is then a neighbourhood of v containing no point
of E.

3.3. Corollary. If U is a closed linear subspace of a Hausdorff TVS and F a finitedimensional subspace, then
U + F is closed.

Proof. Let V be the TVS. The claim is true because the image of F in V/U is closed.

3.4. Proposition. Suppose U to be of finite codimension in the TVS V . Then U is closed if and only if every
linear function on V vanishing on U is continuous.

Proof. Let E = V/U . According to Proposition 2.8 and Proposition 3.1, U is closed if and only if the quotient

topology on E is the usual one. But a finitedimensional TVS is Hausdorff if and only if every linear function

on it is continuous.

As a special case:

3.5. Corollary. If f is a linear function on V , it is continuous if and only if the hyperplane f = 0 is closed.

The following is used in the theory of partial differential equations, among other places, to verify that an

eigenspace has finite dimension, and in the theory of complex analytic manifolds to verify that certain
cohomology groups have finite dimension.

3.6. Proposition. Any locally compact Hausdorff TVS is finitedimensional.

Proof. Let Ω be a compact neighbourhood of 0. Given any 0 < c < 1 the set Ω may be covered by a finite

number of ei + c Ω. Let E be the space spanned by the ei, which is closed in V . Let V = V/E. The image
of Ω in V is contained in c Ω, which implies that each c−nΩ is contained in Ω. This implies that Ω = V . But

{0} is the only compact Hausdorff TVS.

4. The Hahn-Banach theorem

• I repeat that I include in the definition of TVS the condition that it be Hausdorff.

A linear function f from a locally convex TVS V to R (or C) is continuous if and only if there exists a

seminorm ρ of V such that |f(v)| ≤ ‖v‖ρ. Let V̂ be the space of all continuous linear functions on V . It is

not immediately clear that V̂ is reasonably large—large enough to separate points in V , for example. But it
is, as we’ll see in this section, and the consequences of this fact are among the most basic tools in the subject.

To begin with, we work with arbitrary vector spaces, not necessarily assigned a topology.

I recall that a subset of a vector space is linearly open if its intersection with any real line is open. The

following Lemma is straightforward:
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4.1. Lemma. The image of a linearly open set under a surjective real linear map is linearly open.

A linearly open half space (as opposed, say, to linearly closed) is a region f > c where f is a real linear
function. The following result about linearly open sets is the main step towards the HahnBanach theorem.

4.2. Proposition. (Geometric HahnBanach) Suppose V to be any real vector space, U ⊆ V a linear subspace
and Ω a convex and linearly open subset of V whose intersection with U is contained in a linearly open half
space H . There exists a linearly open half space in V containing all of Ω, whose intersection with U is H .

Proof. By translating if necessary we may arrange that the linearly open half space in U has the origin in its
boundary, or in other words is the region f > 0 for some linear function defined on U . So an equivalent way

to state this result is this:

4.3. Proposition. (Algebraic HahnBanach) If (a) U is a linear subspace of V , (b) Ω a convex, linearly open
subset of V , and (c) fU a linear function on U with fU > 0 on Ω ∩ U , then there exists a linear function f on
all of V extending fU and > 0 on all of Ω.

Proof. In several steps.

Step 1. Suppose that the dimension of V is two and that U is a line in V , which we may assume to be the

xaxis. The intersection of Ω with the xaxis is contained in a half line starting at the origin, but does not

contain the origin. Let Ω∗ be the union of the multiples λΩ for λ > 0. This also does not contain the origin,
and is a homogeneous, open, convex cone. We may in effect replace Ω by this cone.

4.4. Lemma. Suppose Ω to be an open, homogeneous cone in R2 whose intersection with some line is a
halfline. It is either an open halfplane or the region lying between two half rays intersecting in an acute
angle.

Proof. We may assume the halfline to be the positive xaxis. According to Proposition 1.6, Ω is open. Let P
be a point in Ω on the halfline, choose v small enough so P± = P ± v are both in Ω. If the line through P+

parallel to the xaxis does not exit Ω, then −P− will lie on that line, and Ω will contain the origin. Similarly
for the parallel line through P−. Suppose these horizontal lines from P ± v to exit Ω at points Q± not in Ω.

P

Q+

Q−

The point Q+ will lie in the closed half plane whose boundary is the line through 0 and Q−, again because
otherwise 0 would be in Ω. If the points Q± are colinear, Ω must be a half plane. Otherwise Ω is the interior

of the acute cone spanned by the rays through Q±.

Step 2. We go on to the case where V is arbitrary but U has codimension one. Suppose H is the region

fU > 0. We can reduce to the previous case by considering the quotient of V by the kernel of f . The kernel
is a subspace of U of codimension one, so this quotient is a vector space of dimension two. The image of Ω
will be linearly open, and the image of U is a line, so the elementary case just done implies what we want.

Step 3. If V is finitedimensional, the theorem follows easily by induction. Otherwise, let V and U be
arbitrary vector spaces. We are looking for a linearly open half space containing Ω whose intersection with

U is H . Let F be the set of all pairs (U∗, H∗) with U ⊆ U∗, H∗ ∩ U = H , Ω ∩ U∗ ⊂ H∗. This set is not
empty since it contains (U, H). It can be partially ordered by double inclusion. A chain (Uα, Hα) in this

order has a bounding element, namely (∪Uα,∪Hα). Therefore by Zorn’s Lemma there exists a maximal pair
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(Umax, Hmax). If Umax is not all of V then we can pick v not in Umax, and by the case just done find an

extension of Hmax to the subspace spanned by Umax and v, which contradicts maximality.

If F is any real function on a set X , its graph ΓF is the set of all
(
x, F (x)

)
. The region Γ+

F is the subset

of X × R of (x, c) where c > F (x). If X is a vector space, the convexity of the set Γ+
ρ is equivalent to the

convexity of the function ρ. Lemma 1.4 implies:

4.5. Lemma. If ρ is convex then the region Γ+
ρ is linearly open.

4.6. Corollary. Suppose ρ to be a convex function on the real vector space V , f a linear function on a linear
subspace U satisfying f(u) ≤ ρ(u) there. Then f extends to a linear function on all of V satisfying the same
inequality.

Proof. The inequality f ≤ ρ is equivalent to the condition Γ+
ρ ⊆ Γ+

f .

Γ
+

f

Γ
+
ρ

Apply the Theorem to the regions Γ+
f and Γ+

ρ inside U ⊕ R, then inside V ⊕ R.

This suffices to prove:

4.7. Theorem. (Real HahnBanach) Suppose U to be a linear subspace of the real TVS V . Any continuous
linear function f on U extends to one on V .

Proof. The topology on U is induced by seminorms on V . Since f is continuous on U , there exists a

seminorm ρ on V such that |f(u)| ≤ ρ(u) on U . According to Corollary 4.6, there exists a linear function F
extending f and satisfying the inequality F (v) ≤ ρ(v). But F (−v) = −F (v), so −F (v) ≤ ρ(v) as well, and

|F (v)| ≤ ρ(v).

The complex case requires a simple trick.

4.8. Corollary. Supposeρ to be anonnegative functionon the complexvector spaceV satisfying the inequality

ρ(ax + by) ≤ |a| ρ(x) + |b| ρ(y)

whenever |a|+ |b| = 1. (This is a complex analogue of convexity.) If f is a linear function on the subspace U
satisfying |f(u)| ≤ ρ(u) there, then f extends to a linear function on all of V satisfying the same inequality.

Proof. Note that for |s| = 1
ρ(x) = ρ(s−1 sx) ≤ ρ(sx) ≤ ρ(x)

which implies that ρ(sx) = ρ(x). Apply the previous corollary to the real linear function ℓ(u) = RE
(
f(u)

)

to get an extension I’ll also call ℓ. Then ℓ(v)− iℓ(iv) is a complex linear function that agrees with f on U and

extends f correctly.

4.9. Theorem. (The HahnBanach Theorem) If U is a linear subspace of the locally convex TVS V , then any
continuous linear function defined on U may be extended continuously to all of V .
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This is immediate from the previous Corollary.

4.10. Corollary. If U is a closed subspace of the TVS V and v /∈ U , there exists a continuous linear function
f on V such that f |U = 0, f(v) = 1.

Proof. According toCorollary 3.3 the vector space spanned byU and v is closed, and on this the linear function

defined to be 0 on U and 1 on v is, according to Corollary 3.5, continuous. Extend it by the HahnBanach
Theorem.

4.11. Corollary. In order for a subspace U to be dense in a TVS V , it is necessary and sufficient that every
continuous linear function on V that vanishes on U vanish everywhere.

Proof. Immediate from the preceding corollary.

4.12. Corollary. Vectors in a TVS are distinguished by values of continuous linear functionals.

4.13. Corollary. If U is a finitedimensional subspace of the TVS V , there exists a continuous projection from
V onto U which is the identity on U .

Proof. The subspace U is closed by Proposition 3.2. By the HahnBanach theorem, coordinate functions on
U may be extended to continuous linear functions on all of V .

The general idea is that on a Hausdorff TVS there are lots of continuous linear functions. Here are some
expansions upon this general principle:

4.14. Proposition. Given a closed convex subset Ω of a TVS V and a point v of V not in Ω, there exists a
closed affine hyperplane strictly separating v from Ω.

Proof. We may as well assume the point to be the origin. Because Ω is closed, there exists a convex, balanced
neighbourhoodX notmeeting it. Equivalently, the convex open setΩ+X does not contain the origin. Apply

Proposition 4.3 to this convex set to obtain a real linear function f which is positive on it. If ω is a point of Ω,

the open set ω + X is contained in Ω + X . Since |f(X)| < |f(v)|, the function is continuous.

4.15. Proposition. A closed convex set Ω in a TVS is the intersection of all the closed affine halfspaces f ≤ 0
with f ≤ 0 on Ω.

Proof. Immediate from the preceding result.

The weak topology on a TVS V is that whose neighbourhood basis at 0 is the intersection of open cylinders
|f | < ε for continuous linear f .

4.16. Corollary. A convex set Ω in the TVS V is closed if and only if it is closed in the weak topology of V .

Proof. This follows from Proposition 4.15 once we know that a real linear function is continuous if and only

if it is weakly continuous. But this is true of complex continuous functions, and the map f 7→ RE(f) is a
bijection between complex linear and real linear functions (see the elementary Lemma 8.6).

The closed convex hull of a set X is the smallest closed convex set containing it.

4.17. Corollary. The closed convex hull of a subset X ⊆ V is the set of all x with f(x) ≤ 0 for all continuous
affine functions f ≤ 0 on X .

Similarly:

4.18. Corollary. A closed convex cone in a TVS is the intersection of all the closed linear halfspaces f ≤ 0
with f ≤ 0 on C.
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5. Complete spaces

In a finitedimensional TVS every Cauchy sequence converges to a unique vector—the TVS is said to be
complete . Completeness is a crucial property in analysis, which is by tradition all about limits. The notion of

completeness, as well as several related ones, can be generalized to a larger class of topological vector spaces.

but there are a few technical problems.

One difficulty is that in general we must work with nets instead of sequences. This makes sense—a point in

R is the unique intersection of all intervals of intervals (−1/n, 1/n), and a point v in a vector space V is the
intersection of all subsets v + X as X ranges over a basis of neighbourhoods of 0 in V . A Cauchy net in a

TVS V is a net (A, f) in V with the property that for every neighbourhoodU of 0 there exists a in A such that

f(b) − f(c) is in U if b, c � a. A subset U of a TVS, possibly V itself, is said to be complete if every Cauchy
net in U converges to a point of U . If (A, f) is a Cauchy net and F is a continuous map, then (A, F ◦f) is also
a Cauchy net.

The next several results are special cases of results about uniform spaces (for this I refer to Chapter 6 of

[Kelley:1955]).

5.1. Lemma. A complete subset of a TVS is closed, and a closed subset of a complete TVS is complete.

Proof. These claims follow directly from definitions.

The point of completeness is this:

5.2. Theorem. Suppose that U and V are TVS, with V complete. If A is a subset of U and f a uniformly
continuous function from A to V , then f may be extended to a unique continuous function f from A to V .
It, too, is uniformly continuous.

Proof. Because the image of a Cauchy net under a continuous map is also a Cauchy net.

The most common case is where A is dense in U and f is linear, in which case (as it is straightforward to
verify) f is also linear.

If V is a TVS, a completion of V is a pair (ι, V ) where V is a complete TVS and ι is an embedding of V into
V such that (a) the image of V is dense in V ; (b) the topology of V is that induced by this embedding.

5.3. Proposition. Every TVS possesses a completion, unique up to isomorphism.

Proof. It will be useful later on to know what the construction is.

There is one useful type of TVS in which the complication of arbitrary Cauchy nets is not necessary. A
Cauchy sequence in a TVS is a sequence (vn) with the property that for every seminorm ρ of V and ε > 0
there exists N such that ‖vn − vm‖ρ < ε for n, m > N . A normed TVS is one whose topology is defined by

a single norm ‖v‖—that is to say, the sets ‖v‖ < 1/n are a basis of neighbourhoods of 0. A Banach space
is a normed TVS which is sequentially complete in the sense that every Cauchy sequence converges. If V
is any normed TVS then its completion is no more complicated to define than to define the real numbers as
completions of the rational numbers. If (um) and vm) are two Cauchy sequences in a normed space, they

are said to be equivalent if the sequence u1, v1, u2, v2, . . . obtained from them by merging is also a Cauchy

sequence, or equivalently if for every ε > 0 there exists N such that ‖um − vm‖ < ε for m > N . Define V
to be the set of Cauchy sequences modulo this equivalence. I leave as an exercise to show that the natural

embedding of V into V identifies it as a completion of V .

If V is an arbitrary TVS and ρ is a seminorm, then Vρ = V/ ker(ρ) is a normed space, and V ρ a Banach space.

We can make a basis of seminorms into a directed set by the condition ρ � σ if ρ ≤ σ, and then define the

completion V of V to be the projective limit of the Banach spaces V ρ.

I claim that (a) this space is, up to isomorphism, independent of the choice of basis of seminorms; (b) the

embedding of V into V identifies it as a completion of V . Claim (a) is true because any two defining sets of
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seminorms have a common refinement. As for (b), the first thing to verify is that V is dense in V , which

is an immediate consequence of the definition of a defining set of seminorms. The second is to show V is

complete. I leave this as an exercise.

If one combines Theorem 5.2 and the construction of the completion, one sees:

5.4. Proposition. The space of continuous linear functions from a TVS to C and from its completion to C are
the same.

It is common for one TVS to be defined simply as the completion of another, and often that is the only
description needed. Even where there is another description, that it is the completion of one of its subspaces

is often important. For example, for many purposes all we need to know about the Hilbert space L2(R) is

that it is the completion of Cc(R) in the norm

‖f‖ =

(∫

R

|f(x)|2 dx

)1/2

.

Completeness is a useful property of a TVS, but not all useful TVS are complete. For example, the continuous

duals of reasonable spaces are rarely complete in natural topologies. We shall see some examples later on, in
the discussion of dual spaces.

6. Metrizable and Fr échet spaces

It is often very useful to know that the topology on a TVS is that defined by a translationinvariant metric, in

which case it is called metrizable . Metrizable TVS have many significant properties the rest do not. There is
a natural criterion in terms of data we have been discussing:

6.1. Theorem. A TVS is metrizable if and only if it possesses a countable basis of seminorms.

Proof. A metrizable TVS possesses as countable basis of neighbourhoods of 0 the sets where d(0, v) < 1/n.
So the interesting point is the converse.

If V possesses a countable basis of seminorms ρi then letting σk = supi≤k ρi we have a monotonic basis of

seminorms σ1 ≤ σ2 ≤ . . . Define a length on vectors:

|v| =

∞∑

1

(
1

n2

)
‖v‖σi

1 + ‖v‖σi

and then assign to V the manifestly translation invariant metric |u − v|. There are three things to be proven:
(1) that |u| = 0 if and only if u = 0; (2) that |u + v| ≤ |u| + |v|; (3) that the topology defined by this metric is

the same as that defined by the σi. The first is trivial. I leave the others as an exercise (see also Chapter 8 of

[Trèves:1967]).

For metrizable spaces, the somewhat cumbersomemachinery of nets is unnecessary to describe convergence,

because sequences suffice. For example:

6.2. Corollary. Suppose V to be metrizable. In order for a subset C of V to be closed, it is necessary and
sufficient that whenever a sequence vi in C converges in V , the limit is in C. In order for it to be compact, it
is necessary and sufficient that every sequence in it possess a convergent subsequence.

AFréchet space is a complete TVSpossessing a countable basis of neighbourhoods of 0. According toTheorem

6.1, its topology is described by ametric, and convergence by sequences. One nice feature of Fréchet spaces is
heritability: closed subspaces and quotients of Fréchet by closed subspaces are again Fréchet spaces. Fréchet

spaces are ubiquitous.

—————



Introduction to TVS 14

Example. C∞(U)

SupposeU to be an open subset ofRn. The spaceC∞(U) is that of all smooth functions onU . The seminorms
defining its topology are the

‖f‖k,Ω = sup
Ω

∣∣∂kf(x)/∂xk
∣∣

for k an ntuple of nonnegative integers, andΩ a compact subset ofU . A basis is determinedby an increasing

sequence of sets Ωn exhausting U .

Example. C∞
c (U)

Here U is an open relatively compact subset of Rn. The functions in this space are the smooth functions on
all of Rn with support in U . Seminorms:

‖f‖k = sup
U

∣∣∂kf(x)/∂xk
∣∣

for k an ntuple of nonnegative integers.

Example. C∞(M)

Here M is a compact ndimensional manifold. Each point of M has a neighbourhood that looks like a

relatively compact open subset of Rn, and there is a unique locally convex topology on C∞(M) agreeing
with the topology defined in the previous paragraph on the corresponding images of the spaces C∞(U).
This can be seen easily by using partitions of unity on M .

Example. S(Rn)

This is the Schwartz space of Rn, that of all smooth functions f on Rn such that

‖f‖k,m = sup
Rn

(
1 + |x|

)k
∂mf(x)/∂xm

is finite, where k and m range over ntuples of natural numbers nonzero integers.

There is an interesting relationship between the last two examples. There is an analogue of stereographic
projection, mapping Rn into the nsphere Sn in Rn+1 and identifying it with one of the poles. The recipe is

that a point x in Rn is taken to the point (sx, 1 − s) on the sphere |sx|2 + z2 = 1 intersected by the line from
(x, 0) to (0, 1):

x 7−→

(
2x

1 + |x|2
,
1 − |x|2

1 + |x|2

)
.

Any smooth function on Sn thus pulls back to a function on Rn.

6.3. Proposition. The pull back via stereographic projection of a smooth function on Sn lies in the Schwartz
space S(Rn) if and only if it vanishes of infinite order at the north pole (0, 1).

The first step in proving this is to note that the functions ti = xi/
∑

x2
i are in effect parameters at the pole on

Sn. The theorem can then be verified by showing that

∂m/∂tm =
∑

Pm,k(x) ∂k/∂xk

where k and m are multiindices.

The idea of analyzing growth conditions at ∞ by making them local on some extended space is a valuable

one.
—————
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Suppose U and V to be TVS, F a linear map F : U → V . The function F is continuous if it satisfies this

condition: for every seminorm σ on V and ε > 0 there exists a seminorm ρ on U and δ > 0 such that
‖F (u)‖σ < ε whenever ‖u‖ρ < δ. Scaling the seminorms, this is equivalent to the condition that for every
seminorm σ on U there exists a seminorm ρ on U such that ‖u‖ρ < 1 implies that ‖F (u)‖σ < 1, or yet
again equivalently every seminorm σ on V there exists a seminorm ρ on U such that ‖F (u)‖σ ≤ ‖u‖ρ. For
finitedimensional spaces, every linear map is continuous, but this is far from true for infinitedimensional
ones. In fact, even being continuous is a relatively weak condition—you might also want that it be a

homomorphism , which means that the quotient topology on F (U) is the same as that induced from the
embedding of F (U) ⊆ V ; or that it have closed range , which means that F (U) is a closed linear subspace of

V . Fréchet spaces have one useful property that makes them look pleasantly like finitedimensional spaces.

For Fréchet spaces, these last two conditions are the same:

6.4. Proposition. (Open mapping theorem)A continuous linear map T : U → V of Fréchet spaces has closed
range if and only if it is a homomorphism.

Proof. Suppose that T has closed range. It may be assumed to be surjective. It has to be shown that the image

under T of any disk B = Bρ,r in U (where ρ is a seminorm) contains a neighbourhood of 0 in the image
space. In order to prove this, we have to use the Baire Category Theorem, which asserts that if a countable

union of closed subsets of a complete metric space is never the union of a countable union of nowhere dense

sets. In our situation, the union of the sets T (nB) = nT (B) is all of V , so the closure of one of them, say
nT (B), contains some open set Ω. But then Ω − Ω will also be open, contain 0, and be in the closure of the

image of 2nB. Scaling, this tells us that the closure of T (B) contains a neighbourhood of 0.

Now we switch to using the topologies in both spaces defined by a translationinvariant metric. For each

r let Br be the metric disk |v| < r. We know at this point that for every r > 0 there exists ρ > 0 with the

closure of T (Br) containing B∗
ρ . Given one choice ofρ, a smaller choice will be equally valid.

We must show that each T (Br) contains some Bρ. Fix r, choose some 0 < q < 1, and let R = r(1 − q), or

r = R(1 + q + q2 + · · · )

For each k > 1 let ρk be such that Bρk
is contained in T (BRqk). We may assume that ρk+1 < ρk and that

ρk → 0 since we cam always make them smaller.

I claim that T (Br) ⊃ Bρ0
. Suppose y to be in Bρ0

.

Let y0 = y. We know that T (BR0
) is dense in Bρ0

, so we can find x0 in BR0
such that |T (x0) − y| < ρ1. Let

y1 = y −T (x0). Since y1 lies in Bρ1
, we can find x1 in Brq such that |y1 −T (x1| < ρ2. By induction we may

choose xk in Brqk such that yk+1 = yk − T (xk) lies in Bρk+1
. But then

y = yk + T (x0) + T (x1) + · · · + Txk
, |xk| < rqk, |yk| < ρk+1 .

Therefore the series

x = x0 + x1 + x2 + · · ·

converges in U to an element of Br and T (x) = y.

Now suppose that T is a homomorphism. The quotient topology on T (U) makes it a Fréchet space, hence
complete, and since its topology is also that induced from its embedding intoV it is complete in the embedding

topology. Hence it is closed in V .

An exact sequence of TVS is an exact sequence in the algebraic sense

0 → U → V → W → 0 ,

inwhich themaps are linear and continuous. I call it a topological exact sequence if quotients are isomorphic
to images—i.e. if the maps are homomorphisms.
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6.5. Corollary. Any exact sequence of Fréchet spaces is topologically exact.

This is a first step towards finding a large and useful category of TVS that behave almost as well as finite
dimensional vector spaces. Another way to phrase results of this section is to say that the category of Fréchet

spaces together with homomorphisms of TVS as its morphisms form an abelian category.

I should add that although these results are very pretty, it is often quite difficult to verify that amap has closed
range (or, equivalently, that it is a homomorphism). Often such a theorem is in fact a major accomplishment.

However, there are some useful examples that are not too complicated, variants of a well known theorem of
Émile Borel.

7. Weakly bounded means strongly bounded

Corollary 4.16 tells us that a convex set that is closed in the weak topology is also closed in the original

topology. The following result is much deeper, but perhaps not a complete surprise:

7.1. Theorem. A subset of the TVS V is bounded if and only if for each continuous linear function f on V the
function |〈f, v〉| is bounded on V .

In other words, the subset is bounded if and only if it is weakly bounded.

This is V.23 of [ReedSimon:1972]. This entire section will be devoted to proving it, and since their exposition
is quite clear, I refer to them for details of the proof. The hard part is proving the claim for Banach spaces.

BANACH-STEINHAUS. If V is a Banach space, a continuous linear function on V is a linear function such that

|f(x)| ≤ C‖x‖

for some C > 0, so we may define

‖f‖ = sup
‖x‖=1

∣∣f(x)|

‖x‖
.

This is a norm on V̂ .

7.2. Lemma. If V is a Banach space, so is V̂ .

Proof. It must be shown that V̂ is complete. This means that a Cauchy sequence of functions fn in V̂ converge

in norm to a bounded linear function f . The limit must be defined, shown to be bounded, and shown to be
the norm limit of the fn. I leave these claims as exercises. (See [ReedSimon:1972], III.2.)

Any v in V determines a continuous linear function on V̂ , giving in effect a linear map from V to the

continuous linear dual of V̂ . It rarely haopens that this is an isomorphism, but we do have:

7.3. Lemma. If V is a Banach space, the canonical map from V to the continuous linear dual of V̂ is an
isometric embedding.

Proof. I leave this as an exercise, too. (See [ReedSimon:1972], III.4.)

7.4. Proposition. (BanachSteinhaus) Suppose V a Banach space, F a set of continuous linear functions in V̂ .
Suppose that for each v in V the set of all |〈F, v〉| for F in F is bounded. Then the set F is bounded.

Proof. Also an exercise. The standard proof uses the Baire Category Theorem. (See [ReedSimon:1972],

III.8–9.)

7.5. Corollary. Suppose V to be a Banach space, Ω a subset of V satisfying the condition that for every v̂ in

V̂ the set |〈v̂, v〉| as v ranges over V is bounded. Then Ω is bounded.

Proof. Apply the combination of Lemma 7.3 and Proposition 7.4 with Ê replacing V in the latter.
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PROOF OF THE THEOREM. The proof of Theorem 7.1 is now straightforward. Let Ω be a weakly bounded

subset of V . It must be shown that for every seminorm ρ the values of ‖v‖ρ are bounded on Ω. Let Vρ be the

quotient of V by the kernel of ρ, and E = V ρ be its completion, which is a Banach space. Apply the previous
result.

8. Duals

For every TV S V I define V̂ to be the vector space of continuous linear maps from V to C. (This is, once

again, not standard notation, but as elsewhere there is no single accepted convention. Many Americans
and all French write V ′ but others, including perhaps all Russians, go for V ∗. Me, I am neither French nor

Russian, and I use V ∗ for the conjugate linear dual.)

The dual is well defined by the space V and its topology, but several natural questions arise here that do not

arise for finitedimensional spaces:

• What topology is to be assigned to V̂ ?

• To what extent does V̂ determine the space V ?

• What properties of V can be deduced from those of V̂ ?

Duals are often easier to work with than the original TVS. For example, there exists a fundamental criterion,

in terms of dual spaces, for a continuous map from one Fréchet space to another to be a homomorphism. It
is a relatively straightforward application of this criterion to prove Émile Borel’s theorem that every power

series in x is the Taylor series of some smooth function on R. The proof uses the dual of the vector space of

formal power series, which is isomorphic to the vector space of polynomials in x—for most people a more
comfortable object to deal with.

Also, in many cases, important spaces are defined—or at least characterized—in terms of duality. This
includes, in a straightforward way, distributions, but also includes the π and εtensor products.

DUAL PAIRS. It is best to treat V and V̂ as symmetrically as possible, and to do this I look at a slightly

more abstract situation. Suppose V ,
◦

V to be a pair of complex vector spaces together with a bilinear map

(v,
◦

v) 7−→ 〈
◦

v, v〉 from V ×
◦

V to C. Any fixed
◦

v in
◦

V determines a linear function

ϕ◦

v : V → C, v 7−→ 〈
◦

v, v〉

on V , and similarly each v determines a linear function ϕv on
◦

V . These give linear maps from
◦

V to

Ṽ = the algebraic linear dual of V ,

and also from V to the algebraic dual of
◦

V . I say that the pair together with the bilinear pairing form a dual

pair if each of these maps is an embedding, or more informally if each of V ,
◦

V separates points in the other.

From now on, unless specified otherwise, V and
◦

V will always be a dual pair.

Functions in
◦

V determine on V the structure of TVS endowed with a locally convex Hausdorff topology

σ(V,
◦

V ). It is called the weak topology determined by
◦

V , and it has as basis of seminorms

‖v‖F = sup
◦

v∈F

|〈◦v, v〉|

where F is a finite subset of
◦

V . Symmetrically, those in V define the weak topology σ(
◦

V , V ) on
◦

V .

8.1. Proposition. If
◦

V is assigned the weak topology σ(
◦

V , V ), the embedding of V into the algebraic dual of
◦

V identifies it with the continuous linear dual of
◦

V .
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That is to say, every linear function on
◦

V that is weakly continuous lies in V . For reasons of symmetry, the

same holds for
◦

V and V .

Proof. A linear function f is continuous in the topology σ(V,
◦

V ) if and only if |f | < 1 on some region where

|〈
◦

vi, v〉| < 1 for a finite number of
◦

vi in
◦

V . Let U be the linear subspace of V where all
◦

vi = 0. If f is not 0 on
U then it is unbounded there, which is a contradiction. So f factors through the quotient V/U , and f must

be a linear combination of these
◦

vi, hence in
◦

V .

TheHahnBanach theorem and the definition of V̂ imply that if V is endowedwith an initial structure of TVS,

then (V, V̂ ) make up a dual pair. The initial topology of V is finer than the corresponding weak topology in

the sense that weakly open sets in V are open in the initial topology. A closed subset in V is clearly weakly

closed with respect to
◦

V , and according to Theorem 7.1 a subset of V is bounded if and only if it is weakly

bounded. These considerations apply in particular to an arbitrary complex vector space and its algebraic
dual, the first endowed with what I have called elsewhere the linear topology.

The space V̂ , together with its weak topology, is traditionally expressed as V̂σ , but I’ll express it as V̂ω . There

exists a canonical map from V to the continuous linear dual of V̂ω , taking v to ̂̂v, where

〈 ̂̂v, v̂〉 = 〈v̂, v〉 .

In a somewhat different language, the previous Proposition asserts that:

8.2. Proposition. The map v 7→ ̂̂v from V to the continuous dual of V̂σ is a linear isomorphism.

If F : U → V is a linear map and f : V → C is a linear map, then f◦F is also linear. I say that, by definition,

F : U → V is weakly continuous (with respect to the given pairings) if f◦F lies in
◦

U for every f in
◦

V . This

composition is called the adjoint
◦

F of F , and another way to formulate its definition is by the equation

〈
◦

F (◦v), u〉 = 〈◦v, F (u)〉 .

Let me make this more reasonable, by pointing out that if U and V is a TVS and
◦

U = Û ,
◦

V = V̂ , every

continuous map is weakly continuous. This is trivial to verify.

POLARITY. Assume V ,
◦

V to be a dual pair. If X is any subset of V , its polar in
◦

V is the subset

X◦ =
{

◦

v ∈
◦

V
∣∣ |〈◦

v, x〉| ≤ 1 for all x ∈ X
}

.

(In older literature, this is called the absolute polar .) For example, for Euclidean space paired with itself the

polar of the ball of radius r is the closed ball of radius 1/r. The polar of the band |xn| < 1 in Euclidean space
of n dimensions is the line segment |xn| ≤ 1 in the xnaxis.

There are a few basic properties of this construction worth stating, all of them easy to verify.

8.3. Proposition. Polars have the following properties:

(a) every polar X◦ is closed, balanced, and convex;
(b) a set and its closed, balanced, convex hull have the same polar;
(c) X ⊆ Y if and only if Y ◦ ⊆ X◦;
(d) (X ∪ Y )◦ = X◦ ∩ Y ◦;
(e) if X is bounded in the weak topology then X◦ is absorbing.

8.4. Proposition. If U is a linear subspace of V then

U◦ =
{

◦

v ∈
◦

V
∣∣ 〈◦

v, u〉 = 0 for all u ∈ U
}

.
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This is the annihilator of U in
◦

V .

Proof. Suppose u in U and
◦v in U◦. Then |〈◦v, cu〉| = c|〈◦v, u〉| < 1 for all c > 0, hence 〈◦v, u〉 = 0.

The polar can be interpreted in terms of real convex hulls. First a few very elementary lemmas.

8.5. Lemma. The region |z| ≤ 1 in C is the intersection of the regions RE(ζz) ≤ 1 as ζ ranges over the unit
circle in C.

8.6. Lemma. The map f 7→ RE(f) is a bijection between complex linear and real linear functions on V .

Proof. If f(v) = a(v) + ib(v) is a complex linear function then f(iv) = if(v) = −b(v) + ia(v), so
b(v) = −a(iv). Thus we can reconstruct f from a, and themap from f to its real part is injective. Conversely,

given a real linear function a we set f(v) = a(v) − ia(iv).

Combining these two:

8.7. Lemma. The polar of X is the set of all complex linear functions f in
◦

V with the property that RE(f) ≤ 1
on the closed, convex, balanced hull of X .

8.8. Proposition. For X in V , the weakly closed, convex, balanced hull of X is the intersection of all regions
|〈◦x, x〉| ≤ 1 as

◦x ranges over X◦.

Proof. By Proposition 4.15, the weakly closed, convex, balanced hull of X is the intersection of all affine half
planes f ≤ 0 for real continuous affine functions f such that f(ζx) ≤ 0 onX . But sinceX is a neighbourhood

of 0, no linear function can be ≤ 0 on X , so every such f can be scaled to be of the form RE(ζv̂) − 1 for v̂ in

X◦. Thus X is the same as the region where |〈v̂, x〉| ≤ 1 for all v̂ in X◦.

By Proposition 8.1, V may be identifiedwith theweak dual of
◦

V . The following is therefore just a restatement

of the Proposition.

8.9. Corollary. For X ⊆ V , its double polar X◦◦ is the weakly closed, balanced, convex hull of X .

From the Proposition and Proposition 8.4:

8.10. Corollary. If U is a linear subspace of V , U◦◦ is its closure.

In summary:

8.11. Proposition. The map X 7→ X◦ is a bijection of the weakly closed, balanced, convex subsets of V with

those of
◦

V .

Recall that if ρ is a seminorm on V then Bρ(1) is the set of all v with ‖v‖ρ ≤ 1. The following is a
straightforward exercise.

8.12. Lemma. If ρ is a seminorm on V and X = Bρ(1) then

‖v‖ρ = sup
v̂∈X◦

|〈v̂, v〉| .

The polars of neighbourhoods of 0 in V are of particular interest.

8.13. Lemma. If V is a TVS, then V̂ is the union in Ṽ of polars X◦, as X ranges over neighbourhoods of 0 in
V .

Proof. For X a neighbourhood of 0 in V , its polar in Ṽ is the set of all linear functions v̂ on V such that

|〈v̂, x〉| ≤ 1 for all x in X . But by definition every v̂ lies in such a set.
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TOPOLOGIES ON THE DUAL. Now suppose V to be a TVS and
◦

V = V̂ . So far, we have seen only the weak

topology σ(V̂ , V ) on V̂ . But there are several other useful ones, determined by certain familiesS of bounded
sets in V .

A covering of V is any collection of V that . . . well . . . covers V —i.e. the union of all the sets in the collection

is V itself. I call a covering S adequate if it satisfies these three conditions:

(S0) the sets in S are bounded;

(SI ) if X , Y are in S then there exists Z in S with X ∪ Y ⊂ Z ;
(SII ) if λ ∈ C and X in S there exists Y in S such that λX ⊂ Y .

The topology determined by S on V̂ is defined by specifying as basis of seminorms the functions

‖v̂‖X = sup
x∈X

∣∣〈v̂, x〉
∣∣

for X in S. This is well defined since continuous linear functions are bounded on bounded sets. A set X
and its closed, balanced, convex hull determine the same seminorm.

Frequently used examples of S are the finite subsets of V , which give the weak topology on V , and the
bounded subsets of V , which give the strong topology .

8.14. Proposition. If S is adequate, the disks

BX,ε =
{
v̂ ∈ V̂

∣∣ ‖v̂‖X < ε
}

(X ∈ S)

form a basis of neighbourhoods of 0 in the Stopology.

Proof. The conditions laid out in Proposition 2.4 correspond exactly to those for S.

This topology is called the topology of uniform convergence on sets inS. Two collectionsS andT determine

the same topology if and only if they are cofinal with respect to each other. The space V̂ with this topology

is expressed as V̂S. I’ll repeat for emphasis: the space of continuous linear functions from V to C is V̂ , and

this space together with the particular choice of topology determined by S is V̂S. The weak topology, as I

recall, is that corresponding to the set of finite subsets of V and denoted as V̂ω .

According to Lemma 8.13, the set of all X◦ for X a neighbourhood of 0 in V is an adequate cover of V̂ .

The following is just a restatement of Lemma 8.12:

8.15. Theorem. The topology on a TVS V is that determined by the set S of all polars X◦ ⊂ V̂ as X ranges
over all neighbourhoods of 0 in V .

This is a step towards the idea that the notion of Stopologies is sufficient—that there might not be any

reason to look for others.

EQUICONTINUOUS SETS. A linear function v̂ on V is continuous if there exists a neighbourhood X of 0

in V such that |〈v̂, x〉| ≤ 1 for every x in X . A subset E of V̂ is called equicontinuous if there exists a

neighbourhood X of 0 in V such that |〈v̂, x〉| ≤ 1 for all v̂ in E, x in X or, equivalently, if it is contained in
the polar X◦ of a neighbourhood X of 0 in V .

Motivation for the name:

8.16. Lemma. If E is an equicontinuous subset of V̂ and B a bounded subset of V , then for some C > 0 and
all v̂ in E, b in B we have

∣∣〈v̂, b〉
∣∣ ≤ C.

In other words, an equicontinuous subset of V̂ is bounded for the strong topology.
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Proof. Suppose E ⊆ X◦. Since B is bounded, B ⊂ cX for some c > 0. But then |〈v̂, b〉| ≤ c for all v̂ in E, b
in B.

8.17. Proposition. The topology of a TVS V is that determined by the set S of all equicontinuous sets in V̂ .

Proof. Lemma 8.12 says that the topology on V is determined by the set of polars, and the definition of an

equicontinuous set is that it be a subset of a polar of a neighbourhood of 0. The Stopology is not changed
by adding to S the subsets of sets in S.

The strong topology on V̂ is defined by the collection of all bounded subsets of V . I denote the space together

with this topology as V̂β .

There exists a canonical injection of the algebraic dual Ṽ into the topological direct product CV , the set of all

functions from V to C, taking ṽ to
(
〈ṽ, v〉

)
. The direct product has a canonical topology, whose open sets are

the products (Xv) with Xv open in C for all v and Xv = C for all but a finite number of v. The restriction to

V̂ of the injection of Ṽ into C
V is continuous in the weak topology, by definition of that topology. The image

of Ṽ consists of all (xv) satisfying conditions of linearity (a) xu+v = xu + xv and (b) xcv = cxv . It is closed,

because each linearity condition is on only a finite number of coordinates. In other words, the space of linear
maps from V to C may be identified with a closed subspace of CV .

So we have inclusions

V̂ ⊆ Ṽ ⊂ C
V ,

The image of V̂ in CV is not necessarily closed. The closure of a subset of V̂ may contain points of CV that

do not come from continuous maps. However, according to Lemma 8.13 the image of V̂ in Ṽ is the union of
polars X◦ for X a neighbourhood of 0 in V , and:

8.18. Lemma. If X is a neighbourhood off 0 in V then the closure of the image of X◦ is also contained in the
image of X◦.

In particular, the closure of every equicontinuous subset off V̂ is contained in the image off V̂ .

Proof. Let X be a neighbourhood of 0 in V , E = X◦. For each c in E we want to show that |cx| ≤ 1 for all

x in X . Since E is equicontinuous we may find a neighbourhood X such that |〈v̂, x〉| < 1/2 for all v̂ in E.

Since c is in the closure of E we may find for each x in X some v̂ in E such that |cx − 〈v̂, x〉| < 1/2. But then

|cx| < |〈v̂, x〉| + 1/2 < 1 .

Any finite set of points in V̂σ is compact, but a priori it is not evident that there are any more interesting ones.

The following result guarantees that there are lots of them.

8.19. Proposition. (The BanachAlaoglu theorem) The weak closure of an equicontinuous subset of V̂ is
weakly compact.

In particular, if X is a neighbourhood of 0 in V then X◦ is compact in V̂ . As a consequence of this result and

Proposition 8.17, the topology on V is determined by compact subsets of V̂ .

Proof. Let E be an equicontinuous subset of V̂ . Its closure in V̂σ may be identified with its closure in CV .

For each v in V let E(v) be the image of the set of values 〈v̂, v〉 in Cv, as v̂ ranges over the closure of E.

By Lemma 8.16, the set E(v) is compact. A well known theorem of Tychonoff implies that the product of
compact sets is compact, so the closure of E is compact.
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9. Distributions

One important space is C∞
c (U) where now U is any open subset of Rn. It is the union of all the spaces

C∞
c (Ω), where Ω is a relatively compact open set with Ω ⊆ U . It therefore fits into the scheme now to be

described.

An LF-sequence is a sequence of Fréchet spaces

V1 ⊆ V2 ⊆ V3 ⊆ . . .

where each one is embedded as a closed subspace of the next. A locally convex topology is assigned to the

union V∗ of the Vi according to the following specification: A convex subset U of the union is defined to be
a neighbourhood of 0 if and only if U ∩ Vi is a neighbourhood of 0 in Vi. This definition is unusual in these

notes, since the topology is not defined by seminorms. In principle it would be possible to do so, but would
not be a natural step to take. It has to be verified that this specification of the topology makes the union into

a topological vector space, but that’s easy. What’s not so easy is seeing that the Vi are closed subspaces of V∗,

and that the induced topology is the original one. This is assured by:

9.1. Proposition. Suppose V to be a closed vector subspace of the TVS V∗, X to be a convex neighbourhood
of 0 in V . For any x∗ in V∗ not inX , there exists a convex neighbourhoodX∗ of 0 in V∗ such that V ∩X∗ = U ,
and not containing x∗.

Proof. Because V is closed in V∗ we can find Ω∗ be a neighbourhood of 0 in V∗ such that V ∩ Ω∗ ⊆ X .
The convex hull X∗∗ of Ω∗ and X will be a neighbourhood of 0 in V∗ with X∗∗ ∩ V = X . It might contain

v∗, though. Consider the quotient V∗/V , a TVS. If the image of v∗ is 0 in it, then v∗ lies in V , hence

not in X∗. Otherwise, we can find a neighbourhood Y of 0 in V∗/V not containing the image of v∗. Let
X∗ = f−1(Y ) ∩ X∗∗.

The standard example isC∞
c (U)with U open in Rn. In this case, for each i let Ωk be the subset ofU of points

at distance greater than 1/2k from the complement of U . Set Vk = C∞
c (Ωk). This satisfies all the criteria of

Proposition 9.1. We’ll explore this example in more detail a bit later on.

The most important result about LFspaces is this, which follows easily from the previous result:

9.2. Proposition. If W is a TVS then a linear map from V∗ to W is continuous if and only if it is continuous
on each Vk.

9.3. Proposition. The space V∗ is complete.

If V = C∞
c (R), its continuous dual is the space of distributions on R. The space C∞

c (R) is an LFspace, the

direct limit of the spaces C∞
c (Ω), the subspace of C∞(R) of functions with support in Ω. Each of these is a

Fréchet space with norms ∥∥f
∥∥

Ω,m
= supΩ

∑

k<m

∣∣ dkf/dxk
∣∣ .

By definition, if D is a distribution then for each relatively compact open subset Ω of R, there exits m such

that ∣∣〈D, f〉
∣∣ ≪ ‖f‖Ω,m .

In other words, on any relatively compact open set a distribution has finite order .

For the moment, the most important distribution is the Dirac δ0, where

〈δ0, f〉 = f(0) .
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Any continuous function F (x) on R determines a distribution by integration

〈F, f〉 =

∫ ∞

−∞

F (x)f(x) dx .

If F (x) is smooth and f lies in C∞
c (R) then integration by parts tells us

〈F ′, f〉 =

∫ ∞

−∞

F ′(x)f(x) dx = −

∫ ∞

−∞

F ′(x)f(x) dx

so consistently with that formula the derivative of any distribution is defined by the formula

〈D′, f〉 = −〈D, f ′〉 .

For example,
〈δ′0, f〉 = −〈δ0, f

′〉 = −f ′(0)

and 〈δ
(m)
0 , f〉 = (−1)mf (m)(0).

The distribution D is said to have support on the closed subset Ω of R if

〈D, f〉 = 0

whenever f lies in Cc(R − Ω).

9.4. Proposition. The Dirac distributions δ0 and its derivatives span the subspace of distributions with
support at the single point 0.

Proof. SupposeΩ an interval around 0,m a bound on the order ofD. It must be shown thatD vanishes on the
ideal ofC∞

c (Ω) generated by xm. This will follow if we can show that every function in (xm) is approximated

with respect to the norm ‖f‖Ω,m in C∞
c (Ω) by functions with support outside any given interval |x| ≥ ε. For

this choose a function χ which is 1 outside |x| ≥ 1, vanishing inside the interval |x| ≤ 1/2, and monotonic
in the intervals [±1,±1/2]. Then

lim
ε→0

∥∥f(x) − f(x)χ(x/ε)
∥∥

[−1,1],m
= 0 .
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