
The computation of structure constants according to Jacque s Tits

Bill Casselman

University of British Columbia
cass@math.ubc.ca

Suppose g to be a complex semi­simple Lie algebra. In 1955, Chevalley showed that one can assign to it an

essentially unique Z­structure, with structure constants of a simple form, themselves unique up to some

choices of sign. An algorithm to compute these is also due implicitly to Chevalley, explained explicitly in
[Carter:1972] and more recently in [Cohen­Murray­Taylor:2004]. It is reasonably efficient, and has been

implemented in the computer algebra programMAGMA. The principle behind the algorithm is simple—it

is based on a straightforward transcription of the Jacobi identity. [Cohen­Murray­Taylor:2004] goes on to
explain in detail how to compute in semi­simple algebraic groups associated to the Lie algebra in terms

of the Bruhat decomposition.

Another account of structure constants was presented in [Frenkel­Kac:1980] for simply laced systems,

and this has been extended to all cases by [Rylands:2000], using the technique of defining the other
systems by ‘folding’ ones that are simply laced.

These algorithms are all very efficient, and work ell in practice. But there are reasons for trying another

approach to the computation of structure constants. The most obvious is that, as far as I can tell, they do
not extend to arbitrary Kac­Moody algebras. Although there are obvious problems due to the infinite

structure of the root system, the really essential reason is the interference caused by imaginary roots. I
shan’t elaborate on this, but instead simply offer a somewhat different approach that, at least in principle,

will work for all Kac­Moody algebras, finite­ or infinite­dimensional. For finite systems it does not seem

to be a lot less efficient than the one currently in use. Conjecturally, even the problems caused by a
possibly infinite root system can be overcome.

This method is one due implicitly to [Tits:1966a]. In this scheme, all computations take place in the
extended Weyl group. Tits himself has made remarks that indicate how his method may be applied to

arbitrary Kac­Moody algebras, but I do not believe he ever published details.

Much of this paper just explains results of Tits in a slightly different perspective. What is new here are

details that translate these results into a practical algorithm.

I might remark that this approach seems to me mathematically more interesting than the others.

Myprincipal general reference for finite systemhas been [Carter:1972], mostly Chapters 3 and 4, although

for proofs Carter often refers to [Jacobson:1962]. For Kac­Moody algebras mymain references have been
[Tits:1987] and [Tits:1990].

I am extremely grateful to the organizers of NolanWallach’s birthday conference for invitingme to speak
in San Diego. I also wish to thank my colleague Julia Gordon for inviting me to speak in a seminar on an

early version of this material. Without that stimulus, I might never have written this.

Contents

1. Introduction
2. Digression on root chains

3. Digression on representations of SL(2)

4. Carter’s algorithm
5. Structure constants and the extended Weyl group

6. The root graph

7. Processing admissible triples

Structure constants 2

8. Computation in the extended Weyl group
9. Summary

10. Examples

11. Stop the presses!
12. References

1. Introduction

Suppose

g = a semi­simple complex Lie algebra

h = a Cartan subalgebra

Σ = roots of g with respect to h

∆ = a basis of simple roots in Σ.

For each λ in Σ, let gλ be the one­dimensional root subspace of g on which h acts by λ. If for each root λ
we choose eλ 6= 0 in gλ, a basis of g will be made up of a basis (hi) of h together with all the eλ. Then

[eλ, eµ] =







some sum
∑

cihi if µ = −λ
Nλ,µeλ+µ if λ + µ is a root (with Nλ,µ 6= 0)

0 otherwise.

The Nλ,µ are called the structure constants of the system. The problem at hand is to find a way to

specify a good set of eλ and a good algorithm for computing the corresponding structure constants.

For each α in ∆ choose eα 6= 0 in gα and let E be the set {eα}, or rather the map

∆ −→ g, α 7−→ eα .

I call the pair h, E a frame for g (called an épinglage by the French). The importance of frames is that

they rigidify the algebra—the isomorphism theorem (3.5.2 of [Carter:1972]) asserts that if we are given
two semi­simple Lie algebras together with frames giving rise to the same Cartan matrix, there exists

a unique isomorphism of the two taking one frame into the other. In particular, all frames for g are
conjugate under the automorphism group of g, and may be taken as equivalent.

If α lies in ∆ and e±α lies in g±α then [eα, e−α] lies in h. Given eα there exists a unique e−α in g−α such
that

〈

α, [eα, e−α]〉 = −2. In these circumstances, let hα = −[eα, e−α] (so 〈α, hα〉 = 2). For example, if

g = sl2, we have the standard triplet

h =

[

1 ◦

◦ −1

]

e+ =

[

◦ 1
◦ ◦

]

e− =

[

◦ ◦

−1 ◦

]

.

The more usual convention is to require [eα, e−α] = hα, but the choice made here, as [Tits:1966a]

emphasizes, has virtues that ought not to be ignored.

The triple hα, e±α span in g a copy sl2,α of sl2, which therefore acts on g through the adjoint action.

Since SL(2, C) is connected and simply connected, this comes from a unique representation of SL(2, C)
as well. From this observation, it is not difficult to deduce thatC = (cα,β) = (〈α, hβ〉) is a Cartan matrix,
which means

Structure constants 3

(a) all cα,β are integral;
(b) cα,α = 2;
(c) cα,β ≤ 0 for α 6= β;
(d) there exists a diagonal matrix D with positive entries such that CD is positive definite.

In particular, the roots Σ are contained in the lattice L∆ spanned by ∆, and the hα may be identified

with elements α∨ of its dual lattice L∨
∆. The positive definite matrix CD gives rise to Euclidean norms

on L and h:

α •β = 〈α, β∨〉dβ,β .

This implies that

〈α, β∨〉 = 2·
α •β

β •β
,

hence that each linear transformation

sα: v 7−→ v − 〈v, α∨〉α

is an orthogonal reflection in L∆ taking Σ to itself. The group generated by these reflections may be

identified with theWeyl groupW of (g, h), and the set Σ is the W ­orbit of ∆. The adjoint groupGadj(C)
acts by the adjoint action as automorphisms of g. Let Hadj be the torus of Gadj whose Lie algebra is h. If

λ = wα and g in the normalizer of Hadj in Gadj has image w in W then the subalgebra

sl2,λ = Ad(g) sl2,α .

depends only on w, although its identification with sl2 depends on g.

To each root λ is associated a coroot according to the formula (wα)∨ = wα∨. The definition of the

inner product and the root reflections may be generalized to arbitrary roots. This leads to the following
observation:

Lemma 1.1. If λ and µ are roots, then 〈λ, µ∨〉〈µ, λ∨〉 ≥ 0. This product vanishes only if both factors
vanish.

Proof. From the calculation

〈λ, µ∨〉〈µ, λ∨〉 = 4
(λ •µ)2

‖λ‖2‖µ‖2
.

There is a canonical W ­invariant Euclidean norm on the lattice L∆. Define the linear map

ρ: L∆ 7−→ L∆∨ , λ 7−→
∑

µ∈Σ∨

〈λ, µ∨〉µ∨ ,

and then define the positive definite norm

‖λ‖2 = λ •λ = 〈λ, ρ(λ)〉 =
∑

Σ∨

〈λ, µ∨〉2 .

Lemma 1.2. For every root λ
‖λ‖2λ∨ = 2ρ(λ) .

Thus although λ 7→ λ∨ is not linear it deviates from linearity in a manageable way.

Structure constants 4

Proof. For every µ in Σ
sλ∨µ∨ = µ∨ − 〈λ, µ∨〉λ∨

〈λ, µ∨〉λ∨ = µ∨ − sλ∨µ∨

〈λ, µ∨〉2 λ∨ = 〈λ, µ∨〉µ∨ − 〈λ, µ∨〉sλ∨µ∨

= 〈λ, µ∨〉µ∨ + 〈sλλ, µ∨〉sλ∨µ∨

= 〈λ, µ∨〉µ∨ + 〈λ, sλ∨µ∨〉sλ∨µ∨

But since sλ∨ is a bijection of Σ∨ with itself, we can conclude by summing over µ in Σ.

As a consequence of the isomorphism theorem, there exists a unique automorphism θ of g acting as −1
on h and taking eλ to e−λ. It is called the canonical involution determined by the frame. For SLn as well

as classical groups embedded in it suitably, it is the map taking X to tX−1.

By construction θ(eα) = e−α for α in ∆. More generally, if λ is any root and eλ 6= 0 lies in gλ then there

exists a unique e−λ in g−λ such that

〈λ, hλ〉 = 2
(

[eλ, e−λ] = −hλ

)

.

We must have θ(eλ) = ae−λ for some a 6= 0. If we replace eλ by beλ, we replace e−λ by (1/b)e
λ
. We

shall have θ(beλ) = (1/b)e−λ if and only if b2a = 1, so there exist exactly two choices of eλ such that
θ(eλ) = e−λ. We get in this way a family of bases of g well behaved under θ. I shall call these Chevalley
bases , although there is a difference in sign from the standard meaning of that term (since the standard
convention is to require [eλ, e−λ] = hλ).

For Chevalley bases, the structure constants are particularly simple. For roots λ, µ, the set of roots in

Z ·λ + µ is called the λ-chain through µ. The sum of the spaces gν as ν ranges over this chain is stable
under SLλ(2), hence under the image in it of the reflection

[

◦ 1
−1 ◦

]

.

The λ­chain consists of all roots of the form µ+nλwhere n lies in an interval [−p, q]. (What is important

is that there are no gaps.) Define pλ,µ to be the least integer p such that µ − pλ is a root, and qλ,µ to be

the maximum q such that µ + qλ is one. Since every pair of roots is contained in the W ­transform of
the root system spanned by some α, β in ∆, the possibilities are limited by what happens for systems of

rank two. We’ll look at these more closely later.

The fundamental fact about Chevalley’s Z­structure on g is that with a Chevalley basis

|Nλ,µ| = pλ,µ + 1 .

(See §4.2 of [Carter:1972]. I’ll recall later Tits’ argument.) The Nλ,µ are thus determined up to a sign.
Some of these are arbitrary, since we can always change the sign of the eλ. After such a basic choice, one

is faced with the problem of computing all the other signs. The computational problems that the rest of
this paper is concerned with are these:

Given the Cartan matrix C: (1) construct the root system Σ; (2) specify a Chevalley basis for the
corresponding Lie algebra; (3) calculate the set of structure constants for the system.

I’ll pose this last problem in terms close to those of Tits:

Given Chevalley basis elements eλ, find the functions ε such that

[eλ, eµ] = ε(λ, µ, ν)(pλ,µ + 1) e−ν

whenever λ, µ, ν are roots with λ + µ + ν = 0.

Chevalley’s theorem tells us that ε = ±1, but I’ll not assume that to start with, and in fact deduce it along
the way.

Structure constants 5

2. Digression on root chains

I recall that pλ,µ is the largest integer p such that µ − pλ is a root, qλ,µ the largest q such that µ + qλ is
one. The reflection

sλ: µ 7−→ µ − 〈µ, λ∨〉λ

inverts this chain, and swaps p and q. A quick sketch will convince you that

pλ,µ − qλ,µ = 〈µ, λ∨〉 .

In particular at the right­hand end where qλ,µ = 0 and pλ,µ takes its maximum value, we have pλ,µ =
〈µ, λ∨〉. Because the paiur λ, µ lie in some subsystem of rank two, this implies that pλ,µ must be one of

the integers 0, 1, 2, 3, giving a definite bound to the lengths of λ­chains. Since every pair λ, µ lies in a

root system of rank two, and these can be easily classified, one can easily classify them:

λ

µ

Length 1

λ

µ

Length 2

For the first, the only condition imposed is that the roots be perpendicular, and in the second that

‖λ‖ ≥ ‖µ‖.

λ

µ

Length 3

λ

µ

Length 4

In this group, the first may be embedded into a system of type C2, the second into one of type G2, so
angles and the ratios of lengths are uniquely determined. What is especially important is that we cannot

have this configuration in a root system:

An easy geometric argument will show this directly. What this means is:

Lemma 2.1. Given roots λ, µ, ν with λ + µ + ν = 0, we can so name them that

‖λ‖ ≥ ‖µ‖ = ‖ν‖ .

This makes the following result interesting.

Lemma 2.2. Suppose λ, µ, ν to be roots with λ + µ + ν = 0. The following are equivalent:

Structure constants 6

(a) sλµ = −ν;
(b) 〈µ, λ∨〉 = −1;
(c) ‖λ‖ ≥ ‖µ‖ and ‖λ‖ ≥ ‖ν‖.

Proof. This is a consequence of the inadmissibility of the configuration in the figure.

I define a triple (λ, µ, ν) to be admissible if λ > 0 and one (hence all) of these hold. Properties of

admissible triples are crucial in Tits’ calculation of structure constants.

Lemma 2.3. Given roots λ, µ, ν with λ + µ + ν = 0

pλ,µ + 1

‖ν‖2
=

pµ,ν + 1

‖λ‖2
=

pν,λ + 1

‖µ‖2
.

Proof. This can be seen by perusing rank two systems. It can also be proved slightly more directly, using

the fact that λ­chains are of length at most four.

µ

λ

ν

pλ,µ +1 = 1 1 = pν,λ +1

pµ,ν +1 = 1

µ

λ

ν

2 2

2

µ

λ

ν

1 1

2

µ

λ

ν

1 1

3

The case where all three lengths are the same can be seen directly, since there exists a symmetry of the

root system cycling the three roots.

Lemma 2.4. Given roots λ, µ, ν with λ + µ + ν = 0 we have

(pλ,µ + 1)ν∨ + (pµ,ν + 1)λ∨ + (pν,λ + 1)µ∨ = 0 .

Proof. According to Lemma 1.2 the linear map 2ρ takes the root λ to the vector

‖λ‖2λ∨ ,

so if λ + µ + ν = 0 we also have

‖λ‖2λ∨ + ‖µ‖2µ∨ + ‖ν‖2ν∨ = 0 .

Apply the previous Lemma.

Structure constants 7

3. Digression on representations of SL(2)

Representations ofSL(2)play an important role in bothCarter’s andTits’ approach to structure constants.
In this section I recall briefly what is needed.

Let

u =

[

1
0

]

, v =

[

0
1

]

be the standard basis of C2, on which SL(2, C) and sl2 act. They also act on the symmetric space Sn(C),
with basis ukvn−k for 0 ≤ k ≤ n. Let πn be this representation, which is of dimension n + 1.

πn

([

ex
◦

◦ e−x

])

: ukvn−k 7−→ e(2k−n)xukvn−k

πn

([

1 x
◦ 1

])

: ukvn−k 7−→ uk(v + xu)n−k

πn

([

1 ◦

−x 1

])

: ukvn−k 7−→ (u − xv)kvn−k .

Now to translate these formulas into those for the action of g. Let wk = ukvn−k.

πn(h): wk 7−→ (2k − n)wk

πn(e+): wk 7−→ (n − k)wk+1

πn(e−): wk 7−→ (−1)kkwk−1 .

For many reasons, it is a good idea to use a different basis of the representation. Define divided powers

u[k] =
uk

k!
,

and set w[k] = u[k]v[n−k]. Then

πn(h): w[k] 7−→ (2k − n)w[k]

πn(e+): w[k] 7−→ (k + 1)w[k+1]

πn(e−): w[k] 7−→ (−1)k(n − k + 1)w[k−1] .

If

σ =

[

◦ 1
−1 ◦

]

then we also have
πn(σ): w[k] 7−→ (−1)kw[n−k] .

u[3]v[3] u[2]vuv[2]
e+e−

−3 2 −1

321

31−1−3

The representation π3

The πn exhaust the irreducible finite dimensional representations of both SL(2, C) and sl2, and every
finite­dimensional representation of either is a direct sum of them.

Let d = n + 1, the dimension of πn, assumed even. The weights of this with respect to h are

−d, . . . ,−1, 1, . . . , d ,

Structure constants 8

The formulas above imply immediately:

Lemma 3.1. Suppose v to be a vector of weight −1 in this representation. Then π(e+)v and π(σ)v are
both of weight 1, and

π(e+)v = −(−1)d/2

(

d

2

)

π(σ)v .

I recall that the sum of weight spaces gµ for µ in a given λ­chain is a representation of sl2. The formulas
laid out in this section relate closely to the numbers pλ,µ and qλ,µ. For one thing, as the picture above

suggests and is easy to verify, they tell us that we can choose basis elements eµ for each µ in the chain so

that
[eλ, eµ] = (pλ,µ + 1)eµ+λ

[e−λ, eµ] = (−1)pλ,µ(qλ,µ + 1)eµ−λ

The choice of basis for one chain unfortunately affects other chains as well, so this observation doesn’t

make the problem of structure constants trivial. But it is our first hint of a connection between structure
constants and chains.

Although the explicit formulas for πn depend on the choice of the basis, the product π(e+)π(e−) acts as
scalars, independent. So we can conclude that with respect to any basis of g.

Nλ,µN−λ,λ+µ = −(−1)pλ,µ(pλ,µ + 1)qλ,µ .

4. Carter’s algorithm

It will be useful for purposes of comparison to know something about the standard approach to the
problem. Suppose given a root system Σ and a basis ∆ in Σ of positive roots. Fix a vector space with

basis hα for α in ∆, and eλ for λ in Σ. Assume

[eλ, e−λ] = −hλ, 〈λ, hλ〉 = 2

for all roots λ. Automatically, we have

[hα, hβ] = 0

[hα, eλ] = 〈λ, α∨〉eλ .

Lemma 4.1. Together with the formulas above, the formulas

[eλ, eµ] =

{

0 if λ + µ is not a root
Nλ,µeλ+µ if λ + µ is a root

define a Lie algebra if and only if

(a) Nµ,λ = −Nλ,µ;

(b) Nλ,µN−λ,λ+µ = (−1)pλ,µ+1(pλ,µ + 1)qλ,µ;

(c) whenever λ + µ + ν = 0
Nλ,µ

‖ν‖2
=

Nµ,ν

‖λ‖2
=

Nν,λ

‖µ‖2
;

(d) whenever λ + µ + ν + ρ = 0 but no pair is opposite

Nλ,µNν,ρ

‖λ + µ‖2
+

Nµ,νNλ,ρ

‖µ + ν‖2
+

Nν,λNµ,ρ

‖λ + µ‖2
= 0 .

Structure constants 9

For discussion and proof, see §4.1 of [Carter:1972].

These properties are directly related to the two defining properties of a Lie bracket. Property (a) is

equivalent to [x, y] = −[y, x]. The rest are deductions in various cases from the Jacobi identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 .

Property (b), as we have seen in the previous section, is related to the adjoint representation of the copy
of sl2 associated to the λ­chain. It can also be deduced directly from the Jacobi identity for eλ, e−λ, eµ as

is done in [Carter:1972]. The norms in the formulas appear as a consequence of the identification of µ∨

with 2µ/‖µ‖2 induced by the Euclidean metric.

The first step in Carter’s algorithm is to specify certain eλ for λ > 0. The eα for α ∈ ∆ are arbitrary.
After that, one way to proceed is to first order ∆, then for µ > 0 but µ /∈ ∆ set eµ = [eα, eλ]/(pα,λ + 1)
if α is least with µ − α ∈ Σ. The calculation uses the equations of Lemma 4.1 in a straightforward

manner together with recursion on root height to compute the structure constants. Details can be found
in [Cohen­Murray­Taylor:2004].

5. Structure constants and the extended Weyl group

In this section, I start describing the method I have in mind for computing structure constants based on

ideas of [Tits:1966a].

Choosing a frame and Chevalley basis elements eλ determines on g the structure of a Lie algebra defined

over Z. Let G be the split, simply connected group scheme defined over Z with Lie algebra gZ, and let

H be the torus in G whose Lie algebra is hZ. Let L be the weight lattice of H , which may be identified
with the dual of the lattice L∆∨ spanned by ∆∨. The group H(Z) of integral points on H is isomorphic

to Hom(L,±1) ∼= {±1}∆. More explicitly, since

0 −→ L∆∨ −→ L∆∨ ⊗ C
exp
−→ H(C) −→ 1

is exact, it may be identified with

(1/2)L∆∨/L∆∨
∼= L∆∨ ⊗ {±1} ,

which may be in turn identified for computational purposes with L∆∨/2L∆∨. A basis of this is made
up of the images of α∨ for α in ∆.

To each root λ and choice of eλ corresponds an embedding

λ∗: sl2 →֒ g,

[

◦ 1
◦ ◦

]

7−→ eλ,

[

1 ◦

◦ −1

]

7−→ hλ ,

and also one of SL(2) into G. The elements λ∗(−I) may be identified with λ∨ in L∆∨/2L∆∨.

The normalizer of H(Z) in G(Z) fits into an exact sequence

1 −→ H(Z) −→ NH(Z) −→ W −→ 1 .

This is a non­trivial extension but, as we shall see shortly, we can describe it very conveniently purely in
terms of the root system. In particular, computation in this group reduces essentially to computation in

the Weyl group itself.

As an example, the group H(Z) in SLn(Z) consists of all diagonal matrices in it with entries ±1, and
the normalizer is the subgroup of monomial matrices with all entries ±1. Equivalently, it consists of

products tw with det(tw) = 1 in which t is a diagonal matrix with ti = ±1 and w a permutation matrix.

The basic result upon which this paper depends is this:

Structure constants 10

Theorem 5.1. (Jacques Tits) The computation of bracket operations in gZ can be carried out entirely
within NH(Z).

This rather vague if surprising statement will eventually be expanded into an algorithm.

The connection between NH and nilpotent elements of the Lie algebra can be seen already in SL(2). In
this group, the normalizer breaks up into two parts, the diagonal matrices and the inverse image M of

the non­trivial element of the Weyl group, made up of matrices

σ(x) =

[

◦ x
−1/x ◦

]

with x invertible. The matrix σ = σ(x) satisfies

σ2 =

[

◦ x
−1/x ◦

]2

=

[

−1 ◦

◦ −1

]

, σ−1 = −σ .

According to the Bruhat decomposition, every element of G is either upper triangular or can be factored

as n1σ(x)n2 with the ni unipotent and upper triangular. Making this explicit:

[

1 ◦

x 1

]

=

[

1 1/x
◦ 1

] [

◦ −1/x
x ◦

] [

1 1/x
◦ 1

]

which implies that

[

◦ x
−1/x ◦

]

=

[

1 x
◦ 1

] [

1 ◦

−1/x 1

] [

1 x
◦ 1

]

.

Some easy calculating will verify further the following observation of Tits:

Lemma 5.2. For any σ in the non­trivial coset of NH in SL(2) there exist unique e+ in g+ and e− such
that

σ = exp(e+) exp(e−) exp(e+) .

In this equation, any one of the three determines the other two.

Applying the involution x 7→ tx−1 we see that the roles of e+ and e− may be reversed. In other words,

specifying an upper triangular nilpotent e+ or a lower triangular nilpotent e− is equivalent to specifying
an element of M .

We shall apply these considerations in the case x = ±1, that is to say in SL(2, Z). Let Hλ(Z) be the
image of the diagonal matrices in SL(2, Z), and let Mλ(Z) be the image of the matrices

[

◦ ±1
∓1 ◦

]

in NH(Z). According to Tits’ observation, for each root λ we have bijections

Mλ(Z)

gλ(Z) g−λ(Z)

Map σ ∈ Mλ(Z) to eλ,σ . The ambiguity in choice of eλ is the same as the ambiguity in choosing σλ.

For g in NH(Z) with image w in W we have

gMλ(Z)g−1 = Mwλ(Z) .

and furthermore for σ in Mλ

Ad(g)eλ,σ = ewλ,gσg−1 .

Structure constants 11

So now we can at least see some connection between structure constants and the extended Weyl group.
At the very beginning of the computation, we have to choose basis elements eλ (in a Chevalley basis)

for λ > 0. We now see that this is equivalent to choosing for each λ > 0 an element σλ in Mλ(Z). In the

classical algorithm, we can choose eλ+α to be [eα, eλ]/(pα,λ + 1) according to some suitable rule. In the
new scheme we’ll choose some σλ in Mλ(Z) in a similar fashion. I’ll explain precisely how this goes in

the next section.

In Carter’s algorithm, once we have chosen the eλ we then find Nλ,µ,ν so that

[eλ, eµ] = Nλ,µ,νe−ν

whenever λ + µ + ν = 0. What is the equivalent in the new scheme?

Suppose λ + µ + ν = 0. Choose elements σλ etc. in Mλ(Z) etc. These determine nilpotent elements

e±λ,σλ
in sl2,λ(Z). According to our definitions,

[eλ,σλ
, eµ,σµ

] = ε(λ, µ, ν, σλ, σµ, σν)(pλ,µ + 1)e−ν,σν
.

The dependence on the roots λ, µ, ν is manifest but weak, in that σλ determines both eλ and e−λ. In fact
we don’t need to take it into account at all. If λ + µ + ν = 0 then the only other linear combination that

vanishes is−λ − µ − ν. Since θ(e+) = e− we know that ε(−λ,−µ,−ν, . . .) = ε(λ, µ, ν, . . .), so we can

just write ε(σλ, σµ, σν):
[eλ,σλ

, eµ,σµ
] = ε(σλ, σµ, σν)(pλ,µ + 1)e−ν,σν

.

How do we compute ε(σλ, σµ, σν)? From §2.9 of [Tits:1966a], we get four relevant facts. Assume in the
hypotheses of all four that λ, µ, ν are roots with λ + µ + ν = 0.

Lemma 5.3. We have
ε(σλ, σµ, σν) = −ε(σµ, σλ, σν) .

Proof. This is elementary, since [eλ,σλ
, eµ,σµ

] = −[eµ,σµ
, eλ,σλ

]. It can also be proven directly that

σλσµσ−1
λ = σν if and only if σλσνσ−1

λ = µ∨(−1)·σµ, and as the next result shows this is an equivalent
claim.

Lemma 5.4. We have
ε(σλ, σµ, σ−1

ν) = −ε(σλ, σµ, σν) .

Proof. This is also elementary, since eν,σ−1
ν

= −eν,σν
.

It is the next two results that are significant. The first tells us that there is one case in which we can

calculate the constant explicitly, and the second tells us that we can manipulate any case so as to fall in
this one.

Lemma 5.5. Suppose ‖λ‖ ≥ ‖µ‖, ‖ν‖. In this case sλµ = ν and sν = sλsµsλ, so σλσµσ−1
λ lies in Mν(Z)

and satisfies
ε(σλ, σµ, σλσµσ−1

λ) = (−1)pλ,µ .

Proof. Lemma 3.1 tells that in this case

[eλ,σλ
, eµ,σµ

] = (−1)pλ,µ(pλ,µ + 1)Ad(σλ)eµ,σµ
= (−1)pλ,µ(pλ,µ + 1)esλµ,σλσµσ−1

λ

.

The representations of sl2 associated to the λ­chain that occur are those with dimensions 2 and 4, and in
those cases pλ,µ = 0 and 1. (The second occurs only for system G2.)

Structure constants 12

Lemma 5.6. The function ε is invariant under cyclic permutations:

ε(σλ, σµ, σν) = ε(σµ, σν , σλ) .

Proof. This reduces to the fact that the Jacobi relation has cyclic symmetry. That relation for eλ, eµ, and
eν tells us that

[[eλ,eµ], eν] + [[eµ, eν], eλ] + [[eν , eλ], eµ]

= ε(σλ, σµ, σν)(pλ,µ + 1)[e−ν, eν]

+ ε(σµ, σν , σλ)(pµ,ν + 1)[e−λ, eλ]

+ ε(σν , σλ, σmu)(pν,λ + 1)[e−µ, eµ]

= ε(σλ, σµ, σν)(pλ,µ + 1)hν + ε(σµ, σν , σλ)(pµ,ν + 1)hλ + ε(σν , σλ, σµ)(pν,λ + 1)hµ

= 0 .

But according to Lemma 2.4,

(pλ,µ + 1)hν + (pµ,ν + 1)hλ + (pν,λ + 1)hµ = 0 .

The vectors hλ and hµ are linearly independent, so the conclusion may be deduced from the following
trivial observation: if u, v, w are vectors, two of them linearly independent, and

au + bv + cw = 0

u + v + w = 0

then a = b = c.

The relevance to computation should be evident. If λ+µ+ ν = 0, then one of the three roots will at least

weakly dominate in length, and by Lemma 5.6 we can cycle to get the condition assumed in Lemma 5.5.

From this result follows incidentally:

Proposition 5.7. (Chevalley) The function ε always takes values±1.

There is a hint of circular reasoning involved here, which I shall ignore. The problem is that I have used

the simply connected group schemeG defined overZ to get to this point, but Chevalley uses his theorem

to construct it. Since we don’t really need all of G(Z) but only its subgroup NH(Z), this shouldn’t be a
difficult obstacle to get around.

At any rate, we are now faced with two algorithmic problems:

(1) How to assign to each λ > 0 an element σλ in Mλ(Z)?
(2) Suppose λ+µ+ ν = 0with ‖λ‖ ≥ ‖µ‖ = ‖ν‖. Then ν = sλµ and σλσµσ−1

λ lies in Mν . Is it equal
to σν or σ−1

ν ?

If σλσµσ−1
λ = ν∨(±1)σν we can deduce now:

[eλ,σλ
, eµ,σµ

] = ±(−1)pλ,µ(pλ,µ + 1)eν,σν
.

In the next section, I begin detailed discussion of the calculations involved in answering these questions.

Structure constants 13

6. The root graph

There are now several computations to be explained. The starting point (input datum) will be a Cartan

matrix C. From it we must (a) construct the full set of roots and associated data; (b) specify a Chevalley
basis in terms of a choice of σλ in Mλ(Z); (c) compute conjugates σλσµσ−1

λ as σ±1
ν when λ + µ + ν = 0

and ‖λ‖ ≥ ‖µ‖ = ‖ν‖.

Constructing the full set of roots is equivalent to constructing the full set of positive roots. The basic idea

is quite simple—the set Σ is the smallest subset ofL∆ containing ∆ that’s stable under the reflections sα.

To find it, I build what I call the positive root graph . Recall that the height of
∑

λαα is
∑

λα. The nodes
of the root graph are, with one exception, the positive roots λ. The edges are oriented, with an edge

λ ≺ µ from λ to µ = sαλ if the height of µ is greater than or equal to that of λ. This happens precisely
when 〈λ, α∨〉 ≤ 0. This edge will be labeled by sα. I add also a ‘dummy’ node at the bottom, with an
edge from it to α labeled by sα.

α

β

The roots of G2

sα sβ

sβ sα

sα sβ

sαsβ

The positive root graph of G2

In drawing the root graph, the loops are redundant, since the total number of edges in and out of a node

must be equal to the rank.

There are several ways to label the positive roots. One is by the array of λα with λ =
∑

α∈∆ λαα.
Another is by the array of 〈λ, α∨〉. The first identifies it as an element in the free module Z∆ spanned by

∆, the second as an element of the dual of the free Z­module spanned by the coroots in ∆∨. There is a
third, which will be important later on. Assign an order (arbitrary) to ∆. Inside the root graph is what I

call the ISL tree—same nodes, but an edge from λ to µ = sαλ only if α is the least in ∆ with sαµ ≺ µ.

sα
sβ sγ

sβ sα sγ
sβ

sγ sα

The root graph of A3

sα
sβ sγ

sα
sβ

sα

The ISL tree of A3

To every root is a unique path in the ISL tree from the base, and hence the roots may be labeled by these

paths. (This is the point of adding the ‘dummy’ root.)

How to construct the positive roots? We want to make a list of them, and for each λ also a list of its

reflections sαλ (α ∈ ∆), along with some other data such as its norm ‖λ‖2 scaled suitably.

Structure constants 14

(1) We maintain a list of roots we have found, and also a second dynamic list of roots λ we have found
for which not all sαλ have been calculated. This last list will be a queue , for reasons that will become

apparent later on. This is a dynamic array from which items are removed in the order in which they are

put on. This requires that they are placed on one end and removed from the other. (This is as opposed
to a stack , an array in which items are placed and removed from the same end.) I call these two lists the

root list and the process queue . I also maintain a look­up table of roots, using one of the three labeling

schemes I mentioned above (although for other reasons, it is probably best to index by (λα)). Of course
I also have to decide, what exactly is a root? For me the answer is a largish collection of data including

the arrays (λα) and (〈λ, α∨〉) mentioned above, similar data for the coroots λ∨, the reflection table, and
the norms ‖λ‖2.

(2) As a simple preliminary, I run through the roots in ∆, assigning the short ones length 1 and the long

ones their lengths accordingly. I also compute the other data for the simple roots. Formally, I set sαα to
be the dummy root. (For all other positive roots λ, sαλ will be another positive root.)

(3) I start the interesting part of the computation by putting the roots of ∆ in both the root list and the
process queue.

(4) While the process queue is not empty, we remove items from it and calculate their reflections. Say we
removeλ. Since the process list is a queue, all of the reflections sαλ ≺ λ have been calculated (since when

we set sαλ = µ we also set sαµ = λ). So we go through the α for which sαλ has not been calculated. We

have the array (〈λ, α∨〉, so we can tell when sαλ = λ, and in the other cases 〈λ, α∨〉 < 0 and sαλ ≻ λ.
Using the look­up table, we add new roots to the root list and the process queue when necessary.

From the full root graph it is easy to construct the ISL tree. There are many circumstances in which
it is useful to traverse the roots by traversing it. There will be two in this paper. The first lays out

a procedure for assigning the elements σλ for roots λ. First of all, for α in ∆ I assign σα arbitrarily
in Mα(Z). This makes absolutely no difference at all, since all choices are conjugate by an element of

Gadj(Z). Then we proceed by induction. Given an edge λ ≺ µ = sαλ in the ISL tree, set σµ = σασλσ−1
α .

By specifying these σλ we also specify, according to Tits trijection, nilpotent elements eλ according to the
rule eµ = σαeλσ−1

α .

7. Processing admissible triples

I have now outlined how to deal with (a) and (b) among the tasks mentioned at the beginning of this
section. I now assume we are given the ISL tree and have constructed all the σλ. I’ll now begin to

describe (c)—how to compute all the σλσµσ−1
λ when λ + µ + ν = 0.

According to Lemma 5.6, we can reduce the computation of the factors ε to the case in which the
arguments form an admissible triple, and in this case it reduces more precisely to a comparison of

σλσµσ−1
λ and σν for admissible triples (λ, µ, ν). We therefore want to make a list of admissible triples,

and the ISL tree can be used to do this. We start by dealing directly with all cases in which λ = α lies

in ∆ and µ > 0, following from λ up the ISL tree. The cases where µ < 0 can be dealt with at the same

time, since if α + µ = ν then −ν + α = −µ. Then we add the ones where λ is not in ∆. If (λ, µ, ν) is
admissible with sαλ > 0, then so is

sα(λ, µ, ν) = (sαλ, sαµ, sαν) .

Thus we can compile a complete list of admissible triples by going up the ISL tree.

We must then compare σλσµσ−1
λ to σν for all admissible triples (λ, µ, ν) This computation may also be

done inductively in the ISL tree, since

σασλσ−1
α · σασµσ−1

α · σασ−1
λ σ−1

α = σα·σλσµσ−1
λ ·σ−1

α .

Structure constants 15

To see exactly how this goes, fix for the moment assignments λ 7→ σλ. For every triple (λ, µ, ν) with
sλµ = ν (not just admissible ones) define the factor τ∨

λ,µ,ν by the formula

σλσµσ−1
λ = τ∨

λ,µ,ν ·σν .

The factor τ∨
λ,µ,ν will lie in Hν(Z), hence will be either 1 or ν∨(−1). I’ll show in the next section how to

compute these factors when λ lies in ∆. This will depend on something we haven’t seen yet. But for the

moment assume that the τ∨
α,µ,ν have been calculated for all α in ∆ and µ an arbitrary positive root. We

can then proceed to calculate the τ ­factors for all admissible triples by induction. Let

(λ•, µ•, ν•) = (sαλ, sαµ, sαν) ,

Then
σλσµσ−1

λ = τ∨
λ,µ,ν ·σν

σασλσ−1
α · σασµσ−1

α ·σασ−1
λ σ−1

α = σα·σλσµσ−1
λ ·σ−1

α

(τ∨
α,λ,λ•

·σλ•
)(τ∨

α,µ,µ•
·σµ•

)(τ∨
α,λ,λ•

·σλ•
)−1 = σα·τ

∨
λ,µ,νσν ·σ

−1
α

(τ∨
α,λ,λ•

+ sλ•
τ∨
α,µ,µ•

+ sλ•
sµ•

sλ•
τ∨
α,λ,λ•

)·σλ•
σµ•

σ−1
λ•

= sατ∨
λ,µ,ν ·σασνσ−1

α

(τ∨
α,λ,λ•

+ sλ•
τ∨
α,µ,µ•

+ sν•
τ∨
α,λ,λ•

)·σλ•
σµ•

σ−1
λ•

= (sατ∨
λ,µ,ν + τ∨

α,ν,ν•
)·σν•

leading to:

Lemma 7.1. If (λ, µ, ν) is an admissible triple and λ 6= α then so is

(λ•, µ•, ν•) = (sαλ, sαµ, sαν) ,

and
τ∨
λ•,µ•,ν•

= sατ∨
λ,µ,ν + τ∨

α,λ,λ•
+ sλ•

τ∨
α,µ,µ•

+ sν•
τ∨
α,λ,λ•

+ τ∨
α,ν,ν•

.

The principal conclusion of these preliminary formulas is that for both the specification of the σλ and the
calculation of the σλσµσ−1

λ we are reduced to the single calculation: for α in ∆ and λ > 0, given σλ how
do we calculate σασλσ−1

α ? I must explain not only how calculations are made, but also how elements

of NH(Z) are interpreted in a computer program—I have yet to explain the basis of calculation in the
extended Weyl group.

In understanding how efficient the computation of structure constants will be, we have to know roughly
how many admissible triples there are. Following [Carter:1972] and [Cohen­Murray­Taylor:2004], I

assume the positive roots to be ordered, and I define a trio of roots λ, µ, ν to be special if 0 < λ < µ and
λ + µ = −ν is again a root. If λ, µ, ν is any triple of roots with λ + µ + ν = 0, then (as Carter points out)

exactly one of the following twelve triples is special:

(λ, µ, ν), (−λ,−µ,−ν), (µ, λ, ν), (−µ,−λ,−ν)
(ν, λ, µ), (−ν,−λ,−µ), (λ, ν, µ), (−λ,−ν,−µ)
(µ, ν, λ), (−µ,−ν,−λ), (ν, µ, λ), (−ν,−µ,−λ).

Hence there are at most 12 times as many admissible triples as special triples. Howmany special triples
are there? This is independent of the ordering of Σ+, since it is one­half the number of pairs of positive

roots λ, µwith λ+µ also a root. In [Cohen­Murray­Taylor:2004] it is asserted that for all classical systems
the number is O(n3), where n is the rank of the system. Don Taylor has given me the following more

precise table:

Structure constants 16

System Number of special triples

An n(n2 − 1)/6
Bn n(n − 1)(2n − 1)/3
Cn n(n − 1)(2n − 1)/3
Dn 2n(n − 1)(n − 2)/3
E6 120
E7 336
E8 1120
F4 68
G2 5

8. Computation in the extended Weyl group

The principal point involved in computation within the extended Weyl group is that, as explained in
[Tits:1966b], there exist good sections of the extension

1 −→ H(Z) −→ NH(Z) −→ W −→ 1 .

First of all, pick for each α in ∆ an element
⋄

sα in Mα(Z). Given an arbitrary w in W , we write it as a

reduced expression
w = s1 . . . sn ,

and then set
⋄

w =
⋄

s1 . . .
⋄

sn .

Lemma 8.1. (Jacques Tits) The element
⋄

w depends only on w, not on the particular reduced expression.

This is one of the principal results of [Tits:1966b], but it is also discussed briefly in §2.8 of [Tits:1966a]. He
shows that the products

⋄

s1 . . .
⋄

sn satisfy the braid relation, and the Lemma follows from the fact that two

reduced expressions give rise to the same element of W if and only if they can be linked by a sequence

of braid relations (a fundamental if undervalued result to be found in [Tits:1968]).

A calculation in SL(2) tells us how to multiply in NH(Z). First of all, I have mentioned that the group

H(Z) is isomorphic to L∆∨/2L∆∨ . More precisely, the image of λ∨ corresponds to λ∨(−1) in H(Z).
This identification is W ­covariant, which means that

(wλ)∨(−1) =
⋄

wλ∨(−1)
⋄

w−1 .

Every element of NH(Z) can be written uniquely as t∨
⋄

w with t∨ in H(Z). Finally, if sαw < w then

w = sα · sαw with ℓ(w) = ℓ(sα) + ℓ(sαw), therefore
⋄

w =
⋄

sα(sαw)
⋄

. Hence:

⋄

sα
⋄

w =

{

(sαw)
⋄

if sαw > w
α∨(−1)(sαw)

⋄

otherwise

and
⋄

w
⋄

sα =

{

(wsα)
⋄

if wsα > w
wα∨(−1)(wsα)

⋄

otherwise.

I am going to simplify notation. Every element of the extendedWeyl groupmay be represented uniquely

as t∨(−1)·
⋄

w, where t∨ is in X∗(H) = L∆∨ and w is in W . I’ll express it as just t∨·
⋄

w, and of course it is
only t∨ modulo 2X∗(H) that counts. Also, I’ll refer to the group operation in L∆∨ additively.

Proposition 8.2. Suppose α to be in ∆, λ > 0. Then

⋄

sα
⋄

sλ
⋄

sα =







(ssαλ)
⋄

if 〈α, λ∨〉 > 0
α∨ ·

⋄

sλ 〈α, λ∨〉 = 0
(α∨ + sαsλα∨)·(ssαλ)

⋄

〈α, λ∨〉 < 0 .

Structure constants 17

Proof. A preliminary calculation:

sλα = α − 〈α, λ∨〉λ

sαsλα = −α − 〈α, λ∨〉sαλ

= −α − 〈α, λ∨〉(λ − 〈λ, α∨〉α)

= −α − 〈α, λ∨〉λ + 〈α, λ∨〉〈λ, α∨〉α

= −〈α, λ∨〉λ +
(

〈α, λ∨〉〈λ, α∨〉 − 1
)

α

Recall that by Lemma 1.1 the product 〈α, λ∨〉〈λ, α∨〉 ≥ 0. Recall also thatwsα > w if and only ifwα > 0.

(a) 〈α, λ∨〉 < 0. Here sλα > 0 and sαsλα > 0 so sλ < sαsλ < sαsλsα, and ℓ(sαsλsα = ℓ(sλ) + 2, and

⋄

sα
⋄

sλ
⋄

sα = (sαsλsα)
⋄

= (ssαλ)
⋄

.

(b) 〈α, λ∨〉 = 0. Here sαλ = λ, and
⋄

sλ
⋄

sα = (sλsα)
⋄

, but sα(sλsα) = sλ so

⋄

sα
⋄

sλ
⋄

sα =
⋄

sα(sλsα)
⋄

= α∨ ·
⋄

sλ .

(c) 〈α, λ∨〉 > 0. Here one sees easily that sλα < 0. But since λ 6= α we also have sαsλα < 0 also. So

ℓ(ssαλ) = ℓ(sλ) − 2.
⋄

sα
⋄

sλ = α∨·(sαsλ)
⋄

⋄

sα
⋄

sλ
⋄

sα = α∨·(sαsλ)
⋄ ⋄

sα

= α∨·(ssαλ)
⋄

·α∨·1

= (α∨ + sαsλα∨)·(ssαλ)
⋄

.

The explicit cocycle of the extension of W by H(Z) was first exhibited in [Langands­Shelstad:1987].

Corollary 8.3. Suppose σλ = t∨λ ·
⋄

sλ. Then for α 6= λ

σασλσ−1
α =







(sαt∨λ + sαsλα∨)·(ssαλ)
⋄

〈λ, α∨〉 < 0
(sαt∨λ)·(ssαλ)

⋄

〈λ, α∨〉 = 0
(sαt∨λ + α∨)(ssαλ)

⋄

〈λ, α∨〉 > 0.

Keep in mind that the reflection associated to sαλ is sαsλsα.

Proof. We start with

σασλσ−1
α =

⋄

sαt∨λ
⋄

sλα∨ ⋄

sα = (sαt∨λ + sαsλα∨)·
⋄

sα
⋄

sλ
⋄

sα .

Apply the Proposition.

There are three cases, according to whether 〈α, λ∨〉 is <, =, or > 0. These correspond to how the length

ℓ(sαsλsα) relates to ℓ(sλ). So now finally we can compute the factors τ∨
α,µ,sαµ, comparing σασµσ−1

α to

σsαµ.

Lemma 8.4. Suppose sαµ = ν. If σασµσ−1
α = t∨

⋄

sν and σν = t∨ν
⋄

sν then

τ∨
α,µ,µ = t∨ + t∨ν .

Structure constants 18

9. Summary

I summarize here how the computations proceed.

First construct the set of all roots (both positive and negative) along with for each root λ a reflection

table, a pair of vectors associated to each of λ and λ∨, and ‖λ‖2. Also construct a look­up table of

roots, indexing λ by the array 〈〈λ〉〉 = (λα) with λ =
∑

λαα. Looking up the array returns the full root
structure. The look­up table makes it easy to tell whether λ + µ is a root or not, and to compute pλ,µ,

qλ,µ.

Construct from the root graph its subgraph the ISL tree. Use this to select the σλ for λ > 0, according to

the inductive rules (1) σα =
⋄

sα; (2) σµ = σασλσ−1
α for edges λ ≺ µ = σαλ in the ISL tree. Write each of

these as tλ
⋄

sα. Make a look­up table indexed by 〈〈λ〉〉, returning the pair σλ = (tλ, λ). Define a function
calculating σασλσ−1

α .

Use this in turn to make a table of all admissible triples (λ, µ, ν) with λ > 0, returning values of
ε(σλ, σµ, σν) along with values of ε(σλ, σµ, σν). To find these, we just search for all µ > 0 with

〈µ, α∨〉 = −1, which can be detected among the root data for µ. This is to be indexed by the pair 〈〈λ〉〉,
〈〈µ〉〉. For this, I start with the case in which λ is a simple root, where it suffices to locate those with µ > 0,
since then (λ, ν, µ) will give its twin with ν < 0. From there, follow from λ up the ISL tree. There will

be some redundancy if all three roots have the same length, but I ignore this problem. The point is that

σλσµσ−1
λ will be of the form tλ,µ,νσν . We record the value 1 if t = 1 and −1 if it is ν∨(−1)—this tells us

the sign of ε(σλ, σµ, σν). We are in effect using the rules

ε(σ, τ, υ−1) = −ε(σ, τ, υ)

ε(σλ, σµ, σλσµσ−1
λ) = (−1)pλ,µ for an admissible triple λ, µ, ν = −λ − µ

ε(σ, τ, υ) = ε(τ, υ, σ)

The choices of theσλ gives us also nilpotent elements e±λ = e±λ,σλ
. The problem of calculating structure

constants is that we are given λ and µ and want to calculate [eλ, eµ].

(a) If λ = −µ then this is −hλ which we represent as
∑

λαhα.

(b) Now we may assume λ 6= −µ. We can tell from the look­up tables for pλ,µ whether λ + µ is a root

or not. If not, the bracket vanishes.
(c) Otherwise, let ν = −λ − µ. Then Nλ,µ = ε(σλ, σµ, σν)(pλ,µ + 1). We cycle to make this triple

admissible, then use the tables for admissible triples to compute the ε factor.

10. Examples

Let’s look at some examples of rank two. In all cases, order ∆ = {α, β}. As for the figures, on the left

are the root systems, on the right the dual systems of coroots (suitably scaled).

Example. The Lie algebra sl3.

α

β α + β

α∨

β∨ α∨ + β∨

I’ll look at the two admissible triples (α, β,−α − β) and (β, α,−α − β). Since α < β and sαβ = α + β,
by definition

σα+β = σασβσ−1
α = sαsβ ·α

∨·
⋄

sα+β = β∨·
⋄

sα+β .

Structure constants 19

and since pα,β + 1 = 1 we therefore have

[eα, eβ] = eα+β

The other admissible triple is (β, α,−α − β). Here

σβσασ−1
β = sβsαβ∨·

⋄

sα+β = (α + β)∨·σα+β

so
[eβ, eα] = −eα+β ,

which of course we knew anyway.

Example. The Lie algebra sp4

α

β α + β 2α + β

α∨

β∨

α∨ + 2β∨

α∨ + β∨

Here things are more interesting. Also, a bit more complicated. First of all I define the elements σα+β

and σ2α+β :

σ2α+β = σασβσ−1
α

=
⋄

sα
⋄

sβ(α∨·
⋄

sα)

= sαsβα∨·
⋄

sα
⋄

sβ
⋄

sα

= (α∨ + 2β∨)·
⋄

s2α+β

= α∨·
⋄

s2α+β .

σα+β = σβσασ−1
β

=
⋄

sβ
⋄

sα(β∨·
⋄

sβ)

= sβsαβ∨·
⋄

sβ
⋄

sα
⋄

sβ)

= (α∨ + β∨)·
⋄

sα+β

We have also implicitly defined nilpotent elements

eα+β = σβeασ−1
β

e2α+β = σαeβσα .

Here I’ll look at two admissible triples:

β + α + (−α − β) = 0

(2α + β) + (−α) + (−α − β) = 0 .

Proposition 10.1. We have
ε(σβ , σα, σα+β) = 1

ε(σ2α+β , σα, σα+β) = −1 .

Structure constants 20

Proof. We have defined σα+β = σβσασ−1
β , which implies the first equation.

Since σασβσ−1
α = σ2α+β , for the other triple we calculate

σ2α+βσασ−1
2α+β = σασβσ−1

α ·σασασ−1
α ·σασ−1

β σ−1
α

= σα·σβσασ−1
β ·σ−1

α

= σα·σα+β ·σ
−1
α

=
⋄

sα(α∨ + β∨)·
⋄

sα+β ·(α
∨ ·

⋄

sα)

= β∨·
⋄

sα
⋄

sα+β ·(α
∨·

⋄

sα)

= (β∨ + sαsα+βα∨)·
⋄

sα
⋄

sα+β
⋄

sα

= (α∨ + β∨)·
⋄

sα
⋄

sα+β
⋄

sα

= α∨·σα+β .

Hence

ε(σ2α+β , σα, σα+β) = −1 .

Let’s use this to calculate

[eα, eα+β] = ε(σα, σα+β , σ2α+β)pα,α+β + 1)e2α+β .

But
ε(σα, σα+β , σ2α+β) = ε(σ2α+β , σα, σα+β) = −1 ,

so

[eα, eα+β] = −(pα,α+β + 1)e2α+β = −2e2α+β .

Of course you can check all these formulas with matrix computations.

Example. The Lie algebra g2

α

β α + β 2α + β 3α + β

3α + 2β

α∨

β∨ α∨ + β∨

α∨ + 2β∨

α∨ + 3β∨ 2α∨ + 3β∨

Structure constants 21

Straightforward application of the rule defining the σλ gives:

σα =
⋄

sα

σβ =
⋄

sβ

σα+β = σβσασ−1
β

= α∨·
⋄

sα+β

σ2α+β = σασα+βσ−1
α

= β∨·
⋄

s2α+β

σ3α+β = σασβσ−1
α

= β∨·
⋄

s3α+β

σ3α+2β = σβσ3α+βσ−1
β

= α∨·
⋄

s3α+2β .

These choices of σλ give rise to choices of nilpotent eλ as well. I’ll do a few of the interesting examples

of calculating Lie brackets. The basic formulas are

(a) [eα, eβ] = ε(σα, σβ , σα+β) eα+β

(b) [eα, eα+β] = ε(σα, σα+β , σ2α+β) 2e2α+β

(c) [eα, e2α+β] = ε(σα, σ2α+β , σ3α+β) 3e3α+β

(d) [eβ, e3α+β] = ε(σβ , σ3α+β , σ3α+2β) e3α+2β

(e) [eα+β, e2α+β] = ε(σα+β , σ2α+β , σ3α+2β) 3e3α+2β

I go through them one by one, but not quite in order.

(a) The triplet (β, α,−α − β) is admissible. By definition, σβσασ−1
β = σα+β , so

ε(σβ , σα, σα+β) = 1, [eα, eβ] = −[eβ, eα] = −eα+β .

(b) The triplet (α, α+β,−2α−β) is admissible. By definition, σασα+βσ−1
α = σ2α+β . This is the special

case: and
ε(σα, σα+β , σ2α+β) = (−1)pα,α+β = −1, [eα, eα+β] = −2 e2α+β .

(d) The triplet (β, 3α + β,−3α − 2β) is admissible. By definition, σβσ3α+βσ−1
β = σ3α+2β , so

ε(σβ , σ3α+β , σ3α+2β) = 1, [eβ , e3α+β] = e3α+2β .

(c) The reflection sα takes the admissible triple (β, α,−α−β) to (3α+β,−α,−2α−β) and by definition

σασβσ−1
α = σ3α+β . So we calculate

σβσασ−1
β = σα+β

σασβσ−1
α ·σασασ−1

α ·σασ−1
β σ−1

α = σασα+βσ−1
α

σ3α+βσασ−1
3α+β = σ2α+β

so

ε(σα, σ2α+β , σ3α+β) = ε(σ3α+β , σα, σ2α+β) = 1

and
[eα, e2α+β] = e3α+β .

Structure constants 22

(e) Since σβσ3α+βσ−1
β = σ3α+2β we continue on from before

σ3α+βσασ−1
3α+β = σ2α+β

σβσ3α+βσ−1
β ·σβσασ−1

β ·σβσ−1
3α+βσ−1

β = σβσ2α+βσ−1
β

σ3α+2β ·σα+β ·σ
−1
3α+2β =

⋄

sββ∨·
⋄

s2α+ββ∨·
⋄

sβ

= β∨·
⋄

sβ
⋄

s2α+ββ∨·
⋄

sβ

= (β∨ + sβs2α+ββ∨)·
⋄

sβ
⋄

s2α+β
⋄

sβ

= (β∨ + sβs2α+ββ∨ + β∨)·
⋄

s2α+β

= β∨·
⋄

s2α+β .

= σ2α+β ,

so

ε(σα+β , σ2α+β , σ3α+2β) = ε(σ3α+2β , σα+β , σ2α+β) = 1, [eα+β, e2α+β] = 3 e3α+2β .

Here is what a program produces for all admissible triples:

λ µ ν ε
α −2α − β α + β 1
α α + β −2α − β −1

α + β −2α − β α −1
α + β α −2α − β 1
2α + β −α − β −α −1
2α + β −α −α − β 1
3α + β −2α − β −α 1
3α + β −α −2α − β −1
3α + β β −3α − 2β −1
3α + β −3α − 2β β 1
3α + 2β −2α − β −α − β 1
3α + 2β −α − β −2α − β −1
3α + 2β −β −3α − β −1
3α + 2β −3α − β −β 1

β −3α − 2β 3α + β −1
β 3α + β −3α − 2β 1
β −α − β α −1
β α −α − β 1

The same program takes about two seconds to produce the list of admissible triples for E8 and the
corresponding signs of structure constants.

Structure constants 23

11. Stop the presses!

I want to prove here a number of formulas about arbitrary root systems. Suppose λ and µ are two vectors

in a lattice, λ∨, µ∨ in a dual lattice, defining reflections leaving the lattice stable, with 〈λ, µ∨〉〈µ, λ∨〉 6= 0.
Then we can define a unique inner product ‖v‖2 with respect to which the reflections are orthogonal:

2 λ •µ = −〈λ, µ∨〉〈µ, λ∨〉

λ •λ = −〈λ, µ∨〉

µ •µ = −〈µ, λ∨〉 .

There are at most two lengths of roots, since all are transforms of λ or µ.

Suppose 〈µ, λ∨〉 ≥ 0. Then ‖λ + µ‖ > ‖λ‖, ‖µ‖. Since there are only two lengths of roots, all strings

intersected with real roots are of the form

µ, λ + µ, (n − 1)λ + µ, nλ + µ

where−n = 〈µ, λ∨〉.

Thsi imples

pλ,µ + 1◦over‖λ + µ‖2 =
qλ,µ

‖µ‖2
.

We cannot have sλµ = λ + µ with ‖λ‖ ≥ µ, n > 1. Because otherwise we would have a string λ, λ + µ,
λ + (n − 1)µ, λ + nµ, and ‖λ‖ > ‖λ + µ‖.

Finally, what about the Geometric Lemma? Easy. Say 〈µ, λ∨〉 = −1. (1) If ‖λ‖ = ‖µ‖ then reflections in

µ and ν move strinsg around, all p∗,∗ are equal. (2) If ‖λ‖ > ‖µ‖ then pλ,µ = 0, otherwise three lengths.

And by the initial reasoning, the other p∗,∗ can be easily calculated, too—if ‖λ‖2 = n, ‖ ∗ ‖2 = 1, then
〈λ, ∗∨〉 = −n and the other strings have length n.

Chevalley’s formula follows from the Geometric Lemma also, plus 2.4 & 4.1(a)–(c).

This also proves Morita’s results.

Structure constants 24

12. References

1. Roger Carter, Simple groups of Lie type , Wiley, 1972.

2. Claude Chevalley, ‘Sur certains groupes simples’, Tohoku Journal of Mathematics 48 (1955), 14–66.

3. Arjeh Cohen, Scott Murray, and Don Taylor, ‘Computing in groups of Lie type’, Mathematics of
Computation 73 (2004), 1477–1498.

4. Igor Frenkel and Victor Kac, ‘Affine Lie algebras and dual resonance models’, InventionesMathemat­
icae 62 (1980), 23–66.

5. James E. Humphreys, Introduction to Lie algebras and representation theory , Springer, 1972.

6. Nathan Jacobson, Lie algebras , Wiley, 1962.

7. R. P. Langlands and D. Shelstad, ‘On the definition of transfer factors’, Math. Annalen 278 (1987),

219–271.

8. Jun Morita, ‘Commutator relations in Kac­Moody groups’, Proceedings of the Japanese Academy 63
(1987), 21–22.

9. L. J. Rylands, ‘Fast calculation of structure constants’, preprint, 2000.

10. Jacques Tits (1966a), ‘Sur les constants de structure et le théorème d’existence des algèbres de Lie
semi­simple’, Publications de l’I. H. E. S. 31 (1966), 21–58.

11. ———­ (1966b), ‘Normalisateurs de tores I. Groupes de Coxeter étendus’, Journal of Algebra 4 (1966),
96–116. This is [Tits:1966b].

12. ———­ , ‘Le problème de mots dans les groupes de Coxeter’, Symposia Math. 1 (1968), 175–185.

13. ———, ‘Uniqueness and presentation of Kac­Moody groups over fields’, Journal of Algebra 105
(1987), 542–573.

14. ———, ‘Groupes associ és aux alg èbres de Kac-Moody’, Seminar Bourbaki, expos é 700 (1988).

