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Eigenspaces of the Laplacian ∆ on the non­Euclidean plane are important representations of the isometry
group SL2(R). Is there an analogue for the Bruhat­Tits tree? What is to replace ∆?

If D is a differential operator on either the Eucidean or the non­Euclidean plane that commute with the

isometry group, then its symbol, evaluated at the origin, is a polynomial in C[x, y] invariant under rotations,
hence a polynomial in x2 + y2. Therefore the ring of commuting differential operators is the polynomial ring

generated by ∆, whoss symbol this is.

Suppose f to be a smooth function on either and let fx be the function obtained from f by averaging over

spheres around the point x. It is a smooth function of r2 = ‖y − x‖2 alone. In R2 we can see directly that
∆r2k = (2k)2 r2k−2, so that

fx(y) ∼
∑

k≥0

r2k

22k(k!)2
[∆kf ](x) .

Hence

lim
r→0

(

4

r2

)

(fx(r) − f(x)) = [∆f ](x) .

There is a similar asymptotic formula for the non­Euclidean plane.

This and classical results of Hecke suggest what to expect for functions on Bruhat­Tits trees. The principal

references for this material are [Cartier:1971/2] and [Cartier:1973].

Material in this essay will depend on the geometry of the Bruhat­Tits tree. I’ll refer to [Casselman:2018] as

[Geometry]. Notation here will be that established in the first section of [Geometry].
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1. Hecke operators

Let C(X) be the space of functions on the nodes of X. It is a Fréchet space with semi­norms

‖f‖Ω = supx∈Ω

for finite sets of nodes Ω. There is a natural embedding of the subspace Cc(X) of functions with compact
support into the continuous dual of C(X):

〈F, f〉 =
∑

ν
F (ν)f(ν) .

A basis of the space of functions with compact support is made up of the Dirac functions:

δν(x) =
{

1 if x = ν
0 otherwise.
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1.1. Lemma. The embedding of Cc(X) into the continuous linear dual of C(X) is an isomorphism.

Proof. By definition of continuity, if F is a continuous linear function on C(X) then

〈F, f〉 ≤ C‖f‖Ω

for some C > 0 and some finite Ω ⊂ X. But then 〈F, f〉 = 0 if f has support outside Ω, and F is a linear
combination of δν with ν in Ω.

The group GL2 acts continuously on C(X) by the left regular representation:

[LgF ](x) = F
(

g−1(x)
)

.

This induces representations of both PGL2(k) and SL2(k). What are the continuous operators on C(X)
commuting with these representations?

The answer should be clearer if I answer a more general question. Suppose for the moment that G is an

arbitrary p­adic group, H an open subgroup. Thus G/H is a discrete set, and one can similarly define

C(G/H) as a topological vector space. If G = PGL2(k) and H = PGL2(o), for example, then G/H may be
identified with the set of nodes of X. There exists a canonical H­equivariant map

ω: C(G/H) −→ C, f 7−→ f(1) .

If (π, V ) is any continuous representation of G, then composition with ω determines a map

(1.2) Homcont,G(V, C(G/H)) −→ Homcont,H(V, C) .

1.3. Lemma. (Elementary Frobenius reciprocity) The map (1.2) is an isomorphism.

Proof. The inverse is easily defined. Suppose given an H­invariant map F from V to C. Then to v in V
associate the function

Fv(g) = F (π(g−1(v))) .

Because ω is continuous and π is a continuous representation, Fv lies in C(G/H). For the same reasons, the

map v 7→ Fv is continuous.

I’ll now apply this to the cases we are interested in.

HECKE OPERATORS AS ALGEBRAIC CORRESPONDENCES. The integral Hecke algebras of SL2(k) and
PGL2(k) are rings of ‘algebraic correspondences’ on the treeX. The definitions in these termsmimic Hecke’s

original definitions of the classical operators Tn. The two cases need to be separated.

PGL(2). Suppose for the moment that G = PGL2(k), K = PGL2(o).

Since the nodes of X are in bijection with G/K , Lemma 1.3 tells us that in order to describe the ring of
continuous operators on C(X) we must describe all the K­invariant functions on C(X). These are the finite
sums

f 7−→
∑

cνf(ν)

in which ck(ν) = cν for all k in K . According to Proposition 5.3 of [Geometry] two nodes are in the same

K­orbit if and only if they are at the same distance from ν0. Therefore orbits of K are in bijection with the
circles in X around ν0, or equivalently with the nodes νm for m ≥ 0.

Define the Hecke operator

[Tmf ](x) =
∑

y
|x:y|=m

f(y) .

LetHC be the linear space of operators spanned by the Tm. By Lemma 1.3:
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1.4. Proposition. The embedding of HC into the space of continuous linear endomorphisms on C(X) that
commute with G is an isomorphism.

Since every node has q + 1 neighbours, the strict analogue of the Laplacian is T/(q + 1) − I , so that f is
‘harmonic’ if and only if at every node it agrees with the average value taken at its neighbours.

The algebra HC is stable under composition, which corresponds to the convolution of integral operators. It
is a ring, and in fact its algebraic structure is very simple. Let T = T1.

1.5. Proposition. The ringHC is equal to the polynomial ring C[T ].

To prove this, we must show thatHC is generated by T and that the powers of T form a C­basis of it. These

are both an immediate consequence of:

1.6. Lemma. We have
T ◦T = T2 + (q + 1)I

T ◦Tm = Tm+1 + qTm−1 (m ≥ 2) .

m+2m+1

m

m−1

m−2
ν0

Proof. As the figure above illustrates, every node has q + 1 neighbours. If y is at distance m ≥ 1 from ν0 it

has q neighbours at distance m + 1 from ν0 and 1 at distance m − 1. Thus, for example:

[T ◦T ](x) =
∑

y∼x,z∼y

z =
∑

|z:x|=2

z +
∑

y∼x

x = T2(x) + (q + 1)I(x) .

Here x ∼ y means |x:y| = 1.

SL(2). Now let G = SL2(k), K = SL2(o).

Since there are two orbits of SL2(k) among the nodes of X, the representation of SL2(k) on C[X] is the direct
sum of two components, determined by support.

Let HC = HC(G) be the algebra generated by S = T2 rather than that generated by T . For this operator we

have relations that can be derived from those above:

1.7. Proposition. If S = T2 then

S◦S = T4 + (q − 1)T2 + q(q + 1)I

S◦T2m = T2m+2 + (q − 1)T2m + q2T2m−2 .

They can also be derived more directly from this, which the figure also illustrates:
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1.8. Lemma. Suppose m ≥ 2. Among the nodes at distance 2 from νm are q2 at distance m + 2 from ν0, q− 1
at distance from m from ν0, and 1 at distance m − 2 from it.

1.9. Corollary. The Hecke algebra of SL2 is the polynomial ring C[S].

HECKE OPERATORS IN TERMS OF CONVOLUTION. There is another way to interpret Hecke operators. For

simplicity, I’ll look only at G = PGL2(k) (and K = PGL2(o)). We may identify X with G/K and hence
C(X) with C(G/K): f in X maps to

Ff (g) = f(g ·ν0) .

How do the Hecke operators act on functions in C(G/K)?

Let HC(G//K) be the ring of functions on G with values in C that are bi­invariant on left and right by

elements of K . This space has as basis the characteristic functions τm = char(Kα−mK).

Functions in HC(G//K) act by a kind of convolution on Cc(G/K):

[τ(f)](g) =

∫

G

τ(x)f(gx) dx =

∫

G

τ(g−1y)f(y) dy .

I leave the following as an exercise:

1.10. Proposition. Suppose that τ = char(KgK) and that

KgK =
⊔

giK .

Then for f in Cc(G/K)

[τf ](g) =
∑

f(ggi) .

1.11. Corollary. If f in C(G/K) is equal to Fϕ then

FTm(ϕ) = τm(f) .

Proof. According to Proposition 5.3 of [Geometry], the nodes at distance m from ν0 make up the K­orbit of

ν−m, and

k 7−→ k ·ν−m

induces a bijection of the orbit with K/K∩α−mKαm. If ki traverses this quotient, then the formula for Tmϕ
evaluated at ν0 is

∑

i ϕ(kiα
−m ·ν0). Since Tm commutes with G, the evaluation at ν = g ·ν0 is

[Tmf ](gν0) =
∑

i

ϕ(gkiα
−m ·ν0) =

∑

i

ϕ(ggi ·ν0) (gi = kiα
−m) .
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2. Eigenfunctions

An admissible representation (π, V ) of a p­adic group is one with these two properties: (1) every vector in
V is fixed by some open subgroup (i.e. it is smooth); (2) for any open subgroup, the subspace of vectors fixed

by all elements in that subgroup is finite­dimensional.

If G is either PGL2(k) or SL2(k), the action of G on C(X) commutes with the Hecke operators, and in

consequence it acts on the space of eigenfunctions of a Hecke operator. We can describe these representations

rather explicitly.

PGL(2). Let G = PGL2(k), K = G(o). For λ in C, let Vλ be the space of smooth functions f on the nodes of

X such that T (f) = λf . This is essentially the p­adic analogue of classical conditions on eigenfunctions of
the Laplacian in the Euclidean plane.

2.1. Proposition. The representation of G on Vλ is admissible, and V K
λ has dimension 1.

Proof. The condition on an eigenfunction ϕ is that

λϕ(x) =
∑

y∼x

ϕ(y) .

From here, in several steps:

Step 1. For each n ≥ 0 let Kn be the congruence subgroup G(pn) (those elements congruent to I modulo

pn). Suppose the eigenfunction ϕ to be fixed by Kn. Let Bn be the ‘ball’ of nodes at distance ≤ n from ν0,
which are all fixed by Kn. I claim that the values of ϕ at all nodes at distance > n from ν0 are determined by
its values on Bn.

Suppose x to be one of the nodes at distance exactly n from ν0. Recall that a node y is exterior to x if the

geodesic to ν0 passes through x. This includes x itself. Then Kn fixes x and, if m ≥ n, acts transitively on all

nodes at distance m from ν0 and exterior to x. Hence ϕ takes the same value, say ϕx,m, at all those nodes.
My earlier claim will follow from the new claim that all these ϕx,m are determined by the values of ϕ at the
neighbours of x, if any, inside Bn.

Step 2. First we look at the value of ϕ at the external neighbours of x at distance 1. There are two cases,

according to whether x = ν0 or not.

Suppose x = ν0. This happens only when n = 0 and ϕ is fixed by K itself. The function ϕ takes the same

value ϕm at all nodes at distance m from ν0. There are q + 1 neighbours of ν0 at distance 1, so

(2.2) λϕ0 = (q + 1)ϕ1, ϕ1 =
λ

q + 1
·ϕ0 .

If n ≥ 1, there is one neighbour y inside Bn, q outside, and we must have

(2.3) qϕx,n+1 = λϕx,n − ϕ(y) .

In either case, the values ϕx,n+1 are determined by the values of ϕ inside Bn.

Step 3. Suppose now m ≥ n + 1, y at distance m from ν0 and external to x. Then all neighbours of y are

external to x, and by Lemma 1.8
λϕx,m = ϕx,m−1 + qϕx,m+1 .

That is to say, the function ϕx,m for m ≥ n + 1 satisfies the difference equation

(2.4) qϕx,m − λϕx,m−1 + ϕx,m−2 = 0 .



Analysis on the tree 6

This is a difference equation of second order. The function ϕ also satisfies initial conditions determined by

its values ϕx,n and ϕx,n+1.

Step 4. There is a well known recipe for the solution of a difference equation. Set ϕx,m = rm. Plugging into
the equation, we see that r must be a root of the quadratic equation

x2 − (λ/q)x + 1/q = 0 .

If this equation has distinct roots r1, r2, then the general solution is of the form crm
1 + drm

2 . Set r1 = z/
√

q,
r2 = z−1/

√
q where now we require that

z + z−1 = λ/
√

q, λ =
√

q (z + z−1) .

This makes the solution

(2.5) ϕx,m = q−m/2(czm + dz−m)

for constants c, d satisfying the given initial conditions near the boundary of Bn.

Step 5. The exceptional case is when the roots are equal: z = z−1 and λ = ±2
√

q. In this case r = ±1/
√

q is
the unique root of the characteristic equation. The solutions of the difference equation are linear combinations

of f0(m) = q−m/2zm and f1(m) = mq−m/2zm, with z = ±1.

In this case, the first function is an eigenfunction of the translation operator [τf ](m) = f(m−1) since f0(m−
1) = q1/2z−1 · f0(m)­. It is unique up to scalar. The second does not possess an intrinsic characterization.

Instead it satisfies the equation

f1(m − 1) = q1/2z−1 ·f1(m) + q1/2z−1 ·f0(m) ,

but so does any sum f1 + c f0.

Step 6. To summarize: if n = 0 and x = ν0, there is a unique function ϕm satisfying the difference equation

with a given value of ϕ0, and proportional to ϕ0. Therefore V K
λ has dimension one. Otherwise (n > 0), the

function ϕ is uniquely determined by its values on the ball Bn. This proves the Proposition.

Note that the proof does not give a very explicit description of the subspace of functions in Vλ fixed by Kn,
unless n = 0. We shall see later a very different way to understand this.

In all cases, ϕ has a well defined asymptotic behaviour on every branch running out from Bn. (a) If the
polynomial

x2 − (λ/
√

q)x + 1 = 0

has distinct roots z±1 then there exist constants c, d such that

ϕ(y) = q−m/2(czm + dz−m)

if y lies at distance m from Bn. (b) If it has one root z then

ϕ(y) = q−m/2(czm + dmzm) .

The constants depend on the branch.

When n = 0 the argument above does give us a completely explicit formula for ϕ, at least with a bit more

work. Suppose ϕ0 = ϕ(ν0) = 1. According to (2.5) and (2.2) we are looking for constants c, d such that

c + d = 1

q−1/2(cz + d/z) =
q1/2(z + 1/z)

q + 1

cz + d/z =
z + 1/z

1 + 1/q
.
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The formulas for c and d are surprisingly complicated. I phrase them in terms I shall justify later.

2.6. Proposition. The unique solution of the difference equation for ϕ is

ϕm =
q−m/2

1 + 1/q

((

1 − q−1z−2

1 − z−2

)

zm+

(

1 − q−1z2

1 − z2

)

z−m

)

as long as z 6= ±1.

Once this equation is at hand, one can verify that it is correct by evaluating it for m = 0, 1. Finding it in the
first place is just a matter of solving a 2 × 2 system of linear equations.

This formula for ϕm can be put into a curious form.

2.7. Corollary. For m ≥ 1

ϕm =
1

1 + 1/q
·
(

q−m/2(zm + zm−2 + · · · + z−m) − q−(m−2)/2(zm−2 + · · · + z−(m−2))
)

.

Proof. Expanding expressions, the formula in the Proposition becomes for m ≥ 1

ϕm =
q−m/2

1 + 1/q
·
((

1 − q−1z−2

1 − z−2

)

zm+

(

1 − q−1z2

1 − z2

)

z−m

)

=
q−m/2

1 + 1/q
·
((

zm+1 − z−(m+1)

z − z−1

)

− q−1

(

zm−1 − z−(m−1)

z − z−1

))

=
1

1 + 1/q
·
(

q−m/2(zm + zm−2 + · · · + z−m) − q−(m−2)/2(zm−2 + · · · + z−(m−2))
)

.

This gives immediately a formula for the ‘singular’ cases z2 = 1.

SL(2). Now I take G = SL2(k). Here we use S instead of T , and consider the set of nodes with even parity, a

single SL2(k)­orbit. So Vλ is the space of functions on this orbit such that Sϕ = λϕ. The proof of admissibility
is essentially the same, but I am interested in an explicit formula whenϕ is fixed byK . Because of the Cartan

decomposition, ϕ is determined by its values on ν2m. Let ϕ2m = ϕ(ν2m).

According to Lemma 1.8, the difference equation and initial conditions are now

ϕ2 =
λ

q(q + 1)
·ϕ0

0 = q2ϕ2m − (λ − q + 1)ϕ2m−2 + ϕ2m−4 .

We get solutions

crm
1 + drm

2

where the ri are roots of the indicial equation

x2 − (µ/q2)x + 1/q2 = 0 (µ = λ − q + 1) .

I set r1 = z/q, r2 = z−1/q, where now

z + z−1 = µ/q .

The final conclusion is:
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2.8. Proposition. When G = SL2(k), the spherical function is

ϕ2m =
q−m

1 + 1/q

((

1 − q−1z−1

1 − z−1

)

zm+

(

1 − q−1z

1 − z

)

z−m

)

as long as z 6= 1, and some non­trivial linear combination of 1/qm and m/qm when z = 1.

The case z = −1 will turn out to be both simple and especially interesting. Explicitly:

2.9. Corollary. If z = −1 then
ϕ2m = (−q)m .

I’ll explain elsewhere why there is just a single term. We can also repeat what I did for PGL2:

2.10. Corollary. For m ≥ 1

ϕ2m =
1

1 + 1/q
·
(

q−m(zm + zm−1 + · · · + z−m) − q−(m−1)(zm−1 + zm−2 + · · · + z−(m−1))
)

Proof.

ϕ2m =
q−m

1 + 1/q

((

1 − q−1z−1

1 − z−1

)

zm+

(

1 − q−1z

1 − z

)

z−m

)

=
q−m

1 + 1/q
·
((

zm+1 − z−m

z − 1

)

− q−1

(

zm − z−(m−1)

z − 1

))

=
1

1 + 1/q
·
(

q−m(zm + zm−1 + · · · + z−m) − q−(m−1)(zm−1 + zm−2 + · · · + z−(m−1))
)

.

There is a second interpretation of the values of ϕm = ϕ(ν−m) in the case when ϕ is fixed by K , and

ϕ(ν0) = 1. Because the space of all functions fixed by K has dimension one, ϕ must be an eigenfunction of

each Tm.

2.11. Proposition. In this situation, for m ≥ 0

Tm(ϕ) = λmϕ

with
λm = qm−1(q + 1)ϕm .

This is true for both PGL2 amd SL2.

Proof. Because
[Tm(ϕ)](ν0) = λm =

∑

ν0:x]=m
ϕ(x) = qm−1(q + 1)ϕm .

To summarize: in both cases, PGL2 and SL2, not only is the space of eigenfunctions fixed by K of dimension

1, but we know exactly what the functions in the space are. For example, if z = q in the last formula, the
representation is on the space of functions ϕ such that q(q + 1)ϕ(ν) is the sum of the values of ϕ at the nodes

at distance 2 from ν. This contains the constants, and we get ϕm ≡ 1.
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3. Boundary behaviour

Near the identity, the functions ϕ behave in a rather complicated way, but outside of a finite region they all

behave in a much simpler fashion. This suggests considering their asymptotic behaviour in relation to the

boundary of the tree.

To see what’s going on in the simplest case, let’s look at the eigenspace of harmonic functions ϕ, in which

λ = q + 1 and z = q±1/2. Suppose B to be a branch coming out from ν0. Then for m ≫ 0 the value of ϕ at ν
on B at distance m from ν0 depends only on m, and

ϕν = q−m/2(cqm/2 + dq−m/2) = c + dq−m

for some constants c, d depending only on the branch. This formula is consistent with the fact that constant
functions form a G­stable subspace. There is a very simple way to interpret this formula. Recall from §4 that
the tree may be compactified by adding a copy of P1(k) at infinite distance. Every harmonic function ϕ on
the tree has a limit along each branch, defining a smooth function on P1(k).

We have thus defined a G­equivariant map from the space of harmonic functions on X to C∞(G/P ). It turns
out this is an isomorphism of representations, but I’ll not show that.

This construction can be generalized—the boundary values of functions in all eigenspaces of T will be smooth

sections of some representation of G induced from one on P .

I want to demonstrate the basic idea, so I’ll assume until the end of this section that G = PGL2(k).

As we have seen, if ϕ is an eigenfunction of T with eigenvalue λ, then for m ≫ 0 the restriction of ϕ to the

branch

ν−m — ν−m−1 — . . .

satisfies the difference equation

(3.1) qϕm + λϕm−1 + ϕm−2 = 0 (ϕm = ϕ(ν−m)) .

The follwoing is elementary:

3.2. Lemma. Ifϕ is a solution of (3.1) , there is a unique extension of ϕ to a solution of the difference equation
over all ofA.

Let Uλ be the space of all solutions of the difference equation on A. It is a two­dimensional space on which
A/A(o) acts by translation:

[Laf ](ν−m) = f(a−1 ·ν−m), [Lαf ](ν−m) = f(ν−m−1) .

The consequence of the Lemma is that Φ defines a map from Vλ to Uλ.

The group P does not take A to itself, but nonetheless the map Φ is P ­equivariant in some sense.

3.3. Proposition. Suppose ϕ to lie in Vλ. Then

(a) for a in A
Φ(Laϕ) = LaΦ(ϕ) ;

(b) for n in N
Φ(Lnϕ) = Φ(ϕ) .

Proof. This is because any n in N fixes all nodes ν−m for m ≫ 0.

This makes Uλ in a natural way a representation of P . Define the ‘twisted’ representation

[σλ(p)]ϕ = δ−1/2(p)Φ(Lpϕ) .



Analysis on the tree 10

If (σ, U) is any finite­dimensional representation of P , the representation Ind(σ |P, G) induced by σ from P
to G is the right regular representation of G on the space of locally constant functions f : G → U such that

f(pg) = δ1/2(p)σ(p)f(g)

for all p in P , g in G. Thus Ind(δ−1/2 |P, G) may be identified with C∞(P\G), and Ind(δ1/2 |P, G) with

space Ω∞(P\G) of smooth one­densities (the smooth dual of C∞(P\G)).

There is also here a kind of Frobenius reciprocity—if (π, V ) is any smooth representation of G then there is a
canonical isomorphism

Hom(V, Ind(σ |P, G)) −→ HomP (V, δ1/2σ) .

So if I(σλ) is the representation of G induced by (σλ, Uλ) from P to G, the asymptotic behaviour of

eigenfunctions gives a G­equivariant map

Vλ −→ Ind(Uλ |P, G) .

For example, if Vλ is the space of harmonic functions, σλ is isomorphic to the direct sum of characters δ±1/2,

and we get maps into C∞(G/P ) and Ω∞(G/P ).
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