
Last revised 9:59 p.m. April 8, 2025

Computing in reductive groups

Bill Casselman

University of British Columbia
cass@math.ubc.ca

Suppose G to be a split group defined over a field F of characteristic 0. An element of G possesses a canonical

form incorporating the Bruhat decomposition. In these terms, how can one do multiplication in the group?
I. e. given the Bruhat normal forms of g and h, how can one find that of gh? Given the normal form of g,

what is that of g−1?

These questions are answered clearly in [Cohen­Murray­Taylor:2005]. This has been incorporated in widely
used computer programs. One starts with a good basis of the Lie algebra, and assumes that one knows how

to compute Lie brackets. One also assumes that one knows how to apply elements of the normalizer of a

maximal torus to elements of the Lie algebra. These are explained in [Casselman:2018], among other places.
The original problem then reduces to finding formulas for the commutator of two unipotent elements. This

was done a long time ago by Chevalley, and explained reasonably well in [Carter:1972]. But the arguments
depend on special tricks. There is no systematic technique. The situation is not completely satisfying.

The book [Steinberg:1967] suggests a systematic approach, and in this note I’ll show how it leads to a practical

algorithm. One might hope that this would lead also to something new, say for Kac­Moody groups, but

as [Morita:1987] points out there is nothing new to appear for these. The only value of this note therefore
appears to be aesthetic.

Contents

1. Normal form . 1
2. Factoring N . 4

3. Chevalley’s commutation formula . 6
4. Steinberg’s algorithm . 7

5. Some explicit formulas . 9

6. References . 11

1. Normal form

Suppose N to be an arbitrary unipotent algebraic group, possessing a filtration

N = N0 ⊃ N1 ⊃ . . . ⊃ Nn−1 ⊃ Nn = {1} ,

in which each Ni/Ni+1 is one dimensional, and in the centre of N/Ni+1. I assume also that for each i we are

given an embedding ei of F into Ni, inducing an isomorphism with Ni/Ni+1. Let N[i] be the image. As an
immediate consequence of assumptions:

1.1. Lemma. For every i, j the commutator (ei(x), ej(y)) lies in N1+max i,j .

With consequence:

1.2. Proposition. Every element in Nk has a normal form

(1.3) ν =

n−1
∏

0

ei(xi) (increasing indices left to right)

inducing an isomorphism of the algebraic variety N with Fn.

Proof. An easy induction.

The basic data defining the group structure are commutation formulas

(1.4) ej(y)ei(x) = ei(x)ej(y)
∏

k>max(i,j)

ek(C
k
i,j(x, y)) (i < j) .

Computing in reductive groups 2

(again in increasing order) with Ck
i,j a polynomial in x, y and all k > max(i, j). If N is the unipotent radical

of a minimal parabolic subgroup in a semi­simple group, one can find a filtration of it compatible with the

heights of roots, and each ei the exponential of a root space in the Lie algebra.

Such expressions can be used in an algorithm to find the normal form of any element of N . The input will

be a product of elements ei(xi). The basic idea is suggested by the inductive proof above. (1) First locate the
last occurrence of e0 in the product. Then keep moving it to the left, using commutations. At any moment,

we shall be in one of three situations: (1) The term e0 will be at the far left. We stop and go on to deal with e1,
as I’ll discuss in a moment. (2) Or there is an expression ei just to the left of e0. We are looking at ei(x)e0(y),
with one of two possibilities: i = 0 or i > 0. In the first case replace the two­term product by e0(x+y). In the

second we apply a commutation relation, and replace the two­term product by an expression e0(y)ei(x)n,
with n in N1. We continue moving e0 to the left in this way. After we have moved e0 all way to the left, we

are looking at some e0(x)n with n in N1. We know apply the induction hypothesis, and carry on with n in

the same way, replacing e0 with e1. Etc.

I’d like to point out that this computation requires only knowing the commutator of two elementary unipotent

matrices.

Example. Suppose n to be the vector space of upper triangular nilpotent matrices in Mn. For 1 ≤ i < j ≤ n,
let ei,j be the matrix in n with all entries equal to 0 except that at (i, j), which is 1. These form a linear basis

of n.

Let a be the vector space of diagonal matrices (ai) in Mn, εi the linear function on a taking a to ai. It is a Lie

algebra. Every a in a corresponds to the adjoint operator

ada: e 7−→ [a, e] = ae− ea .

The space n is stable under ada, and each ei,j is an eigenvector for all of a:

ada(ei,j) = (ai − aj)ei,j = 〈εi − εj, a〉ei.j .

The functions

αi = εi − εi+1

for 1 ≤ i < n are a basis of the space spanned by these eigencharacters. In particular, if i < j then

εi − εj = αi + · · ·+ αj−1 .

The basic formula here is the matrix multiplication

ei,j ·ek,ℓ =

{

ei,ℓ if j = k
ek,j if i = ℓ
0 otherwise

.

This leads to the Lie bracket commutation relation

[ei,j , ek,ℓ] =

{

ei,ℓ if j = k (and i < k)
−ek,j if i = ℓ (and k < i)
0 otherwise.

The two cases can be phrased in terms of roots. In the first, for example, with i < k, then

εi − εj = αi + · · ·+ αj−1, εk − εℓ = αi + · · ·+ αℓ−1 .

So we can formulate these equations as

[eλ, eµ] == ±eλ+µ

where the sign is determined by whether λ < µ (+) or λ > µ (−), in some obvious sense.

Computing in reductive groups 3

The matrix product of two matrices in n is again in n (but might vanish). If e and f are eigenvectors for the
adjoint action, say with eigencharacters λ, µ, so is e ·f , with eigencharacter λ+ µ.

1.5. Lemma. Suppose each ni to be in n. The matrix product
∏

ni vanishes if two or more of the ni coincide.

Proof. We may as well assume each ni to be an eigenvector for the adjoint action. For i < j

εi − εj = αi + · · ·+ αj−1 .

There are no scalars other then 0 or 1.

Every nilpotent matrix x in corresponds to a unipotent matrix I + x.

1.6. Proposition. If x, y are matrices in n, then we have the commutator formula

(I + x)−1(I + y)−1(I + x)(I + y) = I + [x, y] .

The left­hand side is

(I − x− y + xy)(I + x+ y + xy) = I − x− y + xy

x− x2 − yx+ xyx

y − xy − y2 + xy2

xy − xyx− yxy + xyxy .

According to the Lemma, many terms vanish, and there are also some cancellations.

Example. Suppose G = GL3 with positive roots α < β < α+ β. If

eα(x) =





1 x ◦
◦ 1 ◦
◦ ◦ 1



 , eβ(x) =





1 ◦ ◦
◦ 1 x
◦ ◦ 1



 , eα+β(x) =





1 ◦ x
◦ 1 ◦
◦ ◦ 1





then

e−1
β (y)e−1

α (x)eβ(y)eα(x) =





1 ◦ −xy
◦ 1 ◦
◦ ◦ 1





or

(1.7) eβ(y)eα(x) = eα(x)eβ(y)eα+β(−xy) .

Example. Suppose G = Sp(4) with positive roots

α < β < α+ β < 2α+ β .

If

eα(x) =







1 x ◦ ◦
◦ 1 ◦ ◦
◦ ◦ 1 −x
◦ ◦ ◦ 1






, eβ(x) =







1 ◦ ◦ ◦
◦ 1 x ◦
◦ ◦ 1 ◦
◦ ◦ ◦ 1







eα+β(x) =







1 ◦ x ◦
◦ 1 ◦ x
◦ ◦ 1 ◦
◦ ◦ ◦ 1






, e2α+β(x) =







1 ◦ ◦ x
◦ 1 ◦ ◦
◦ ◦ 1 ◦
◦ ◦ ◦ 1







Computing in reductive groups 4

then

e−1
β (y)e−1

α (x)eβ(y)eα(x) =







1 ◦ −xy x2y
◦ 1 ◦ −xy
◦ ◦ 1 ◦
◦ ◦ ◦ 1







or

(1.8) eβ(y)eα(x) = eα(x)eβ(y)eα+β(−xy)e2α+β(x
2y) .

◦ ————­ ◦

Example. I’ll show how the normal form algorithm goes in a simple example. Suppose n = 4.

The ordered list of root indices could be

(0, 1), (1, 2), (2, 3), (0, 2), (1, 3), (0, 3) .

This is how things go in finding the normal form of e1,3(1) · e1,2(1) · e2,3(1) · e1,2(1)

shifting (0, 1) :

shifting (1, 2) :

e1,3(1) · e1,2(1) · e2,3(1) · e1,2(1)

e1,3(1) · e1,2(1) · e1,2(1) · e2,3(1) · e1,3(−1)

e1,3(1) · e1,2(2) · e2,3(1) · e1,3(−1)

e1,2(2) · e1,3(1) · e2,3(1) · e1,3(−1)

shifting (2, 3) :

e1,2(2) · e1,3(1) · e2,3(1) · e1,3(−1)

e1,2(2) · e2,3(1) · e1,3(1) · e1,3(−1)

shifting (0, 2) :

shifting (1, 3) :

e1,2(2) · e2,3(1) · e1,3(1) · e1,3(−1)

e1,2(2) · e2,3(1)·

Of course the last item doesn’t have to be shifted.

2. Factoring N

We now know how to find the normal form of any element in N . This might, however, leave you slightly
uneasy, since there is some arbitrariness involved. All depends on a choice of order on the roots. In fact, we
can write elements of N in any prescribed order. In the literature, the following is usually left as an exercise,

perhaps because the proof, although basically straightforward, requires some comment.

2.1. Proposition. Any element of N can be written as a unique product of elements in the N[i] in any order.

Proof. I’ll explain an algorithm that proves this constructively. We start with an element of N expressed in

normal form:

ν = x0 . . . xn−1

with each xi in N[i]. We are also given a permutation σ of [0, n), and at the end we want to express ν as a

product

ν =
∏

yσ(i) (ascending order of i) .

in which, as before, yi is in N[i].

Computing in reductive groups 5

The algorithm proceeds in n steps. At the m­th step the original element is expressed as a product

ν = ν<m ·ν≥m

in which ν<m is a product of elements in the N[i] for i < m, in an order I’ll specify in a moment, and ν≥m is
an element of Nm expressed in normal form.

What order is ν<m to be expressed in? Well, σ determines by restriction an order of the interval [0,m− 1].
We get this by writing out the array of all σ(i) and then deleting those not in [0,m − 1]. For example, if
N = 5 and the final order is 31042, the sequence of restricted orders is

..0..

.10..

.10.2

310.2

31042 .

• To start, we just remove x0 from ν≥0, making ν≥1 = x1 . . . xn−1, and set ν<1 = x0. Of course we still have

ν = x0 ·x1 . . . xn−1 = ν<1 ·ν≥1 .

• Next, we remove x1 from ν≥1 and add it to ν<1. How we do this depends on σ. If 1 comes after 0 in the

given order, we just tack x1 onto the end of ν<1, making

ν<2 = x0x1 ,

and set ν≥2 = x2 . . . xn−1. Otherwise, we write

x0x1 = x1x0 ·γ(x0, x1) ,

in which γ(a, b) is the commutator a−1b−1ab. The commutator in this expression is in N2, so now we set

ν≥2 = γ(x0, x1)x2 . . . xn−1 .

We express this in normal order, which I’ll write again as a product of xi, and move onto step 3.

• In step m, we remove xm from ν≥m and place it temporarily at the end of ν<m, getting

ν<mxm .

We then move xm into a place determined by the restricted order of degree m, applying a commutator

relation. Thus
ν<m = y0 . . . yk ·yk+1 . . . ym−1

becomes
ν<m+1 = y0 . . . yk ·xm ·yk+1 . . . ym−1

We then tack the commutator γ(yk+1 . . . yn−1, xm) onto the front of the temporary ν≥m+1, getting the new

ν≥m+1.

The application of the commutator relation here is not as simple as it was in the normal form algorithm. In
this process, the following lemma will be useful in induction.

2.2. Lemma. Suppose a, b in Ni, Nj , x in Nk with i, j < k. Then

γ(ab, x) = γ(a, x) ·γ(γ(a, x), b) ·γ(b, x) .

lies in Nk+1.

Proof. Because

ab ·x = axbγ(b, x)

= xaγ(a, x)bγ(b, x)

= x ·ab ·γ(a, x)γ(γ(a, x), b)γ(b, x) .

In summary, the construction goes by induction on the length of N , but it’s not simple to describe clearly.

Computing in reductive groups 6

3. Chevalley’s commutation formula

Again suppose G to be a semi­simple split group defined over the field F . Fix (B, T, {xα}), a frame of G with

B = TU . Let Σ be the associated root system, ∆ the simple roots. To the frame is associated an ‘opposition

involution’ θ of g that takes T to itself and gλ to g−λ. Choose elements xλ of gλ such that xθλ = ±x−λ. These
are determined uniquely by the frame up to sign. Together with the basis ([x−α, xα])α∈∆ of t they form a

Chevalley basis of g. The map t 7→ txλ is an isomorphism of F with gλ.

Recall that if λ and µ are roots then the λ­string through µ is the collection of roots of the form µ+mλ:

µ− pλ,µλ, · · · , µ+ qλ,µλ .

If λ, µ, and λ+ µ are all roots, then according to a formula of Chevalley

[xλ, xµ] = Nλ,µ xλ+µ .

with |Nλ,µ| = pλ,µ +1. Determining the sign of this structure constant is not at all trivial, but algorithms are
known. (See [Cohen­Murray­Taylor:2005] and [Casselman:2018].)

For every unipotent group U there exists an algebraic exponential map exp from its Lie algebra to the group.

It is functorial, in the sense that if ρ is a homomorphism of U (whose image is necessarily also unipotent)

then
exp(dρ(x)) = ρ(exp(x)) .

In particular, Adexp(x) = exp(adx). Now

[xλ, xµ] = Nλ,µ xλ+µ

[xλ, [xλ, xµ]] = Nλ,µNλ,λ+µ x2λ+µ

. . .

so that if

Mλ,µ,m =
Nλ,µNλ,λ+µ . . . Nλ,(m−1)λ+µ

m!

then
adm

xλ
(xµ)

m!
= Mλ,µ,mxmλ+µ .

if mλ+ µ is a root. Note that Mλ,µ,m is always an integer, because of Chevalley’s theorem about |Nλ,µ|.

These are most efficiently computed by induction onm, so it is best to compute the whole sequence ofMλ,µ,m

such that mλ+ µ is a root. (They are all in the λ­string through µ.)

As a consequence:

exp(uxλ) ·vxµ ·exp(−uxλ) =
∑

m≥0
Mλ,µ,m ·umv xmλ+µ ,

which we can rewrite as a commutation formula

(3.1)

exp(uxλ) ·vxµ =
(

∑

m≥0
Mλ,µ,m ·umv xmλ+µ

)

exp(uxλ)

=
∑

m≥0
Mλ,µ,m ·umv xmλ+µ exp(uxλ) .

The exponential map is canonical in a technical sense. If θ is an automorphism of U , it induces an automor­

phism of u, which I’ll also call θ. Then

θ(exp(x)) = exp(θ(x)) .

Computing in reductive groups 7

If θ is conjugation by exp(txλ) then by (3.1) this gives us

(3.2)

exp(uxλ) exp(vxµ) exp(−uxλ) = exp
(

exp(uxλ)vxµ exp(−uxλ)
)

= exp
(

∑

m≥0

Mλ,µ,m ·umv xmλ+µ

)

.

From now on, I’ll write e for the exponential map, and

eλ: u 7−→ e(uxλ) = exp(uxλ)

for the embedding of F into G associated to the root λ.

Define the closure of the pair {λ, µ} to be the set of all roots of the form kλ + ℓµ with k ≥ 0, ℓ ≥ 0
and k + ℓ > 0, and let its strict closure be the complement in this of {λ, µ}. The discussion in §1 has as
consequence a commutation formula

eµ(v)eλ(u) = eλ(u)eµ(v)
∏

k,ℓ>0

ekλ+ℓµ(c
λ,µ
k,ℓ u

kvℓ)

for some constants cλ,µk,ℓ , in which the product is over the strict closure of {λ, µ}. One may assume the product
to be ordered compatibly with the sums k + ℓ. (We have already seen an example in (1.8) .) There is a priori
some possible ambiguity in the order, but it can be empirically observed, in finite­dimensional Lie algebras,

that this does not matter. Any two roots can be transformed to a pair embedded in a system of rank two
associated to some couple of elements in ∆. It therefore suffices to consider systems of rank two.

We now ask:

What are the coefficients cλ,µk,ℓ ?

4. Steinberg’s algorithm

A number of ad hoc methods allow you to go through all the finite­dimensional root systems of rank two

case by case in order to compute the constants in Chevalley’s formula. This is what one finds in the literature
(for example, Chapter 5 of [Carter:1972]) , and I’ll give some simple examples later. But for G2 this is a

painful business, and for that reason it is more interesting to apply an algorithm suggested by an argument

presented in §3 of [Steinberg:1967]. With this, the ck,ℓ = cλ,µk,ℓ are found inductively. Steinberg’s technique
has the advantage that it applies uniformly in all cases, even Kac­Moody groups, for which Chevalley’s

formula regarding |Nλ,µ| remains valid. It is a bit too complicated to carry out by hand, but well suited

to machine computation. One other drawback is that the formulas it produces are longer than those found
in the literature, but that is probably easy to correct by examining them. The shortest formulas for G2 to

be found in [Carter:1972] are already the result of some special algebraic identifications. It is an interesting

question whether or not these also can be discovered by machine.

It is an interesting case of a phenomenon that has occurred frequently in mathematics since computers were

invented: we have here an algorithm that is locally simple, although capable of producing complicated

output.

In this section, as earlier, I write e for exp.

We want to find coefficients ck,ℓ such that

e(txµ)e(sxλ) = e(sxλ)e(txµ)
∏

(1,1)≤(k,ℓ)
e(ck,ℓ s

ktℓxkλ+ℓµ) .

If λ+ µ is not a root then all xkλ+ℓµ appearing in the product vanish, and there is nothing to prove. So from
now on I assume λ+ µ to be a root.

Computing in reductive groups 8

I recall that we have assigned an order to the relevant pairs (k, ℓ) compatible with the partial ordering by the
sum k + ℓ. In particular λ+ µ occurs in the first term of the product.

The basis of Steinberg’s argument is to work with the algebraic expression

f(s, t) = e(−sxλ)e(−txµ)e(sxλ)e(txµ)
∏

e(ck,ℓ s
ktℓxkλ+ℓµ) .

It is a matrix whose enties are polynomials in s, t. We want to choose the ck,ℓ so that f(s, t) ≡ 1. This will be

by induction on the given linear order of the roots in the span of λ, µ. It suffices to arrange things so that the

derivative of f(s, t) with respect to s vanishes, since f(0, t) is identically equal to I .

Let D = s∂/∂s. The dependence on s and t is somewhat illusory, and it will shorten notation to define
Xkλ+ℓµ = sktℓxkλ+ℓµ. Since

De(sx) = sxe(sx) ,

we also have

De(sktℓxkλ+ℓµ) = ksktℓxkλ+ℓµ e(s
ktℓxkλ+ℓµ)

De(cXkλ+ℓµ) = ckXkλ+ℓµ e(Xkλ+ℓµ) .

The product rule for derivatives therefore expresses Df(s, t) as the sum of several products:

(a) [−Xλ] · e(−Xλ)e(−Xµ)e(Xλ)e(Xµ)
∏

e(ck,ℓXkλ+ℓµ)

(b) e(−Xλ)e(−Xµ) · [Xλ] · e(Xλ)e(Xµ)
∏

e(ck,ℓXkλ+ℓµ)

(c) c1,1 · e(−Xλ)e(−Xµ)e(Xλ)e(Xµ) · [Xλ+µ] ·
∏

e(ck,ℓXkλ+ℓµ)

and the sum over (k, ℓ) > (1, 1) of these products:

(d)
[kck,ℓ] · e(−Xλ)e(−Xµ)e(Xλ)e(Xµ)

(

∏

(i,j)<(k,ℓ)
e(ci,jXiλ+jµ)

)

· [Xkλ+ℓµ] ·
(

∏

(k,ℓ)≤(i,j)
e(ci,jXiλ+jµ)

)

Now shift Xλ and all Xkλ+ℓµ to the left. This can be done by applying, as often as one needs to, the basic

relation (3.1) :

(4.1) e(cXα)Xβ =
(

∑

m≥0
cmMα,β,mXmα+β

)

e(Xα) .

This calculation is not to be undertaken lightly by hand. Even reducing (b), for which the final result is

simple, is not particularly enjoyable. Doing it by machine is a bit elaborate, but with care not an extremely

difficult task. At any given moment, the state of the calculation amounts to a stack and a list. The expression
we are looking for is the sum of all items in both. The difference between list and stack is that the items on

the stack are not in final form. They are of (a) a polynomial in s, t and the form of a product of terms xα,β
that come in two halves, with a single xk,ℓ in the middle. While the stack is not empty, pop an items off it and

apply (4.1) . Then put the new terms on the list if these are final, or on the stack if not.

For computation, it is convenient to index the terms by integers so that

f(s, t) =

p
∏

i=0

e(Xγi
) ,

Computing in reductive groups 9

in which each γi is a linear combination kiλ+ ℓiµ. The derivative Df at any given stage is a sum of terms

(4.2) P (c≤k) · e(c0Xγ0
) . . . e(ck−1Xγk−1

) · Xγ · e(ckXγk
) . . . e(cp−1Xγp−1

) ,

for some γ = iλ+ jµ which varies among the terms. At the beginning, (a) goes on a list, and (b), (c), (d) on

a stack.

The top element is removed from the stack and replaced by a sum of terms, according to (4.1) . Each of these
terms is put on the list if k = 1, or otherwise on the stack. Loop, as long as the stack is not empty.

More explicitly, the term in (4.2) is replaced by

∑

m≥0
P (c≤k)c

m
k−1Mγk−1,γ,m·

e(c0Xγ0
) . . . e(ck−2Xγk−2

) · Xmγk−1+γ · e(ck−1Xγk−1
) . . . e(cm−1Xγm−1

) .

How to characterize each term? By (a) a polynomial in the ci,j , (b) the sequence of coefficients ci, whch can

be either constants or variables ci,j , and roots γi, (c) the root γ and (d) its location, indexed by k, between

γk−1 and γk.

At the end we have an expression
∑

k,ℓ

sktℓP (c•)xkλ+ℓµf(s, t)

We want this to vanish. This can be arranged by an induction procedure that finds each ck,ℓ in terms of

various Mα,β,m and previous ci,j .

The only terms of degree st are those with c1,1 and Nµ,λ. The conclusion is that c1,1 = Nµ,λ.

5. Some explicit formulas

My program agrees with Carter’s calculations. There are some interesting features for G2, as there were also
for Carter.

Suppose λ to be the short root, µ the long one. The machine produces the formula

(5.1) c3λ+2µ = (1/3)Nλ,λ+µN
2
µ,λNλ+µ,2λ+µ − (1/6)Nλ,λ+µNµ,λNµ,3λ+µNλ,2λ+µ .

This is extremely close to the formula that Carter comes up with by hand calculation, but with some apparent
differences.

Since N2
λ,µ = p2λ,µ = 1 and Nλ,µ = −Nµ,λ, applying earlier definitions we can condense the N ­products:

Nλ,λ+µNλ+µ,2λ+µ = 2Mλ+µ,λ,2

Nλ,λ+µNµ,λNµ,3λ+µNλ,2λ+µ = 6Mλ,µ,3Nµ,3λ+µ .

Since Nµ,λ = −Nλ,µ, the second can be written as The right hand side of (5.1) is therefore

−(2/3) ·Mλ+µ,λ,2 + (1/6) ·6 ·Mλ,µ,3Nµ,3λ+µ .

But a miraculous observation of Carter (Lemma 5.1 in [Carter:1972] is that these two expressions are in fact
multiples of each other:

5.2. Lemma. We have
Mλ,µ,3Nµ,3λ+µ = (1/3)Mλ+µ,λ,2 .

This makes the right hand side of (5.1) equal to (−1/3)Mλ,µ,2.

Computing in reductive groups 10

In case λ is the long root and µ the short one, the machine produced

c2λ+3µ = (1/4)Nµ,λ+µN
2
µ,λNλ+µ,λ+2µ − (1/12)Nµ,λ+µNµ,λNλ,λ+3µNµ,λ+2µ .

This time the final formula is

(

(1/4)(2) + (1/12)(6)
)

Mλ,µ,2 = (2/3)Mλ,µ,2 .

What happens depends on the configuration of the closure of (λ, µ). Again because every pair of roots can

be transformed by an element of W into a system spanned by two simple roots, we can list all possibilities
by examining the systems of rank two. There are seven:

(i) {λ, µ}

(ii) {λ, µ, λ+ µ}

(iiia) {λ, µ, λ+ µ, 2λ+ µ}

(iiib) {λ, µ, λ+ µ, λ+ 2µ}

(iv) {λ, µ, λ+ µ, 2λ+ µ, λ+ 2µ}

(va) {λ, µ, λ+ µ, 2λ+ µ, 3λ+ µ, 3λ+ 2µ}

(vb) {λ, µ, λ+ µ, λ+ 2µ, λ+ 3µ, 2λ+ 3µ}

Of these, case (i) is trivial, and (ii)­(iii) are relatively direct consequences of (3.2) . Case (iv) is only slightly
more difficult, but I’ll apply a somewhat sophisticated approach, applying a version of the Baker­Campbell­

Hausdorff formula attributed to Zassenhaus. The same formula will in principle deal with (v) as well, but
the result is less elegant than necessary, and for these I’ll just follow [Carter:1972]. What is unsatisfying about

both these approaches is that they lack uniformity. This is not true of the algorithm found in [Steinberg:1967],

but this approach produces formulas more complicated than necessary. The basic problem is that there is
apparently no unique form for the answer—many very different­looking formulas are equivalent. Carter’s

formulas in (v) are the most efficient.

I begin by displaying the final results for each closure configuration.

(i) {λ, µ}:

eµ(u)eλ(t) = eλ(t)eµ(u)

(ii) {λ, µ, λ+ µ}:

eµ(u)eλ(t) = eλ(t)eµ(u) · eλ+µ(−Nλ,µtu)

(iiia) {λ, µ, λ+ µ, 2λ+ µ}:

eµ(u)eλ(t) = eλ(t)eµ(u) · eλ+µ(−Nλ,µtu)e2λ+µ(Mλ,µ,2t
2u)

(iiib) {λ, µ, λ+ µ, λ+ 2µ}:

eµ(u)eλ(t) = eλ(t)eµ(u) · eλ+µ(−Nλ,µtu)eλ+2µ(−Mµ,λ,2tu
2)

(iv) {λ, µ, λ+ µ, 2λ+ µ, λ+ 2µ}:

eµ(u)eλ(t) = eλ(t)eµ(u) · eλ+µ(−Nλ,µtu)e2λ+µ(Mλ,µ,2t
2u)eλ+2µ(−Mµ,λ,2tu

2)

Computing in reductive groups 11

(va) {λ, µ, λ+ µ, 2λ+ µ, 3λ+ µ, 3λ+ 2µ}:

eµ(u)eλ(t) = eλ(t)eµ(u)
· eλ+µ(−Nλ,µtu)e2λ+µ(Mλ,µ,2t

2u)e3λ+µ(−Mλ,µ,3t
3u)

· e3λ+2µ(−(1/3)Mλ+µ,λ,2t
3u2)

(vb) {λ, µ, λ+ µ, λ+ 2µ, λ+ 3µ, 2λ+ 3µ}:

eµ(u)eλ(t) = eλ(t)eµ(u)
· eλ+µ(−Nλ,µtu)eλ+2µ(−Mµ,λ,2tu

2)eλ+3µ(−Mµ,λ,3tu
3)

·e2λ+3µ(−(2/3)Mλ+µ,µ,2t
2u3)

The final result might be at first a bit surprising. It turns out that the coefficient cλ,µk,ℓ in some sense depends

only on k and ℓ. This phenomenon is a consequence of Steinberg’s algorithm and an induction argument.

5.3. Theorem. (Chevalley) We have

cλ,µk,ℓ =















(−1)kMλ,µ,k for ℓ = 1
(−1)1+ℓMµ,λ,ℓ for k = 1
−(1/3)Mλ+µ,λ,2 for k = 3, ℓ = 2
−(2/3)Mλ+µ,µ,2 for k = 2, ℓ = 3.

6. References

1. Armand Borel and Dan Mostow (editors), Algebraic groups and discontinuous subgroups, Proceedings
of Symposia in Pure Mathematics IX, American Mathematical Society, 1966.

2. Roger Carter, Simple groups of Lie type, Wiley, 1972.

3. Bill Casselman, ‘A simple way to compute structure constants of semi­simple Lie algebras’, preprint,

2018. Available at

https://www.math.ubc.ca/~cass/research/pdf/KottwitzConstants.pdf

4. Arjeh Cohen, Scott Murray, and Don Taylor, ‘Computing in groups of Lie type’, Mathematics of Compu­
tation 73 (2004), 1477–1498.

5. Gerhard Hochschild, ‘Algebraic groups and Hopf algebras’ Illinois Journal of Mathematics 14 (1970),

52–65.

6. Bertram Kostant, ‘Groups over Z’, pp. 90–98 in [Borel­Mostow:1966].

7. Jun Morita, ‘Commutator relations in Kac­Moody groups’, Proceedings of the Japanese Academy of
Sciences 63 (1987), 21–22.

8. C. Quesne, ‘Disentangling q­exponentials: a general approach’, International Journal of Theopretical
Physics 43 (2004), 545–559.

9. Robert Steinberg, Lectures on Chevalley groups, Yale University preprint, 1967.

This was republished by the American Mathematical Society in 2017, but a scan of the original (made with

Steinberg’s permission) can be found at

https://www.math.ubc.ca/~cass/research/books.html

It is unfortunately quite large (a .zip file of about 128 MB).

