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Unitary representations

This essay is a brief introduction to unitary representations of a locally compact group. I assume throughout

that G is unimodular and locally compact. Although many of the results are valid for arbitrary locally

compact groups, all the applications I have in mind concern Lie groups, and occasionally I shall assume that
G is one.
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Part I. Introduction

1. Continuity

Suppose V to be a (separable, always separable) Hilbert space. The ring End(V ) of bounded operators on V
can be assigned three useful topologies:

(a) The weak topology: Tn converges to T if Tnu • v converges to Tu •v for all u, v, in V . Each pair (u, v)
defines neighbourhoods of 0

{

T
∣

∣ |Tu •v| < ε
}

.

(b) The strong topology: Tn converges to T if Tnv converges to Tv for all v in V . Each v defines

neighbourhoods of 0
{

T
∣

∣ ‖Tv‖ < ε
}

.

(c) The norm or uniform topology: Tn converges to T if ‖Tn − T ‖ converges to 0. We get uniform

neighbourhoods of 0:
{

T
∣

∣ ‖T ‖ < ε
}

.
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Since we’ll deal mostly with the strong operator topology, I’ll make its definition a bit more precise: it is
a locally convex topological vector space, with a basis of semi­norms determined by finite sets σ = {v} of

vectors in V
‖T ‖σ = sup

v∈σ
‖Tv‖ .

The group U(V ) of unitary operators on V inherits these three topologies. It is closed in End(V ) with
respect to the strong operator topology. If π is a homomorphism from G to U(V ), we can require that

it be continuous with respect to one of these topologies, thus defining three types of continuous unitary

representation: weakly , strongly , and uniformly continuous. Only two of these are interesting:

1.1. Proposition. A unitary representation of G is weakly continuous if and only if it is strongly continuous.
If it is uniformly continuous then its image is finite­dimensional.

I could have made a definition of continuity even weaker than weak continuity, but it would have been

redundant—[Segal­von Neumann:1950] proves that if a unitary representation is weakly measurable, it is
already weakly continuous. As for the last claim, it will serve only as negative motivation, so I’ll just refer to

[Singer:1952].

The theme ‘weak is the same as strong’ is common enough in this subject that this shouldn’t be too much of

a surprise.

Proof. That strongly continuous implies weakly continuous is straightforward.

On the other hand, suppose (π, V ) to be weakly continuous. Then for any v in V and g in G we have

‖π(g)v − v‖2 = 2‖v‖2 − 2
(

π(g)v • v
)

.

Thus if g → 1 weakly, ‖π(g)v − v‖ → 0.

The point of Singer’s result is that uniformly continuous unitary representations are not very interesting.
From now on, when I refer to a unitary representation I’ll mean one that’s strongly continuous. This means

that for every v in V the map from G to V taking g to π(g)v is continuous. But something better is true:

1.2. Proposition. If (π, V ) is a unitary representation of G then the map

G × V → V, (g, v) 7−→ π(g)v

is continuous.

This means that π is continuous in the more general sense.

Proof. Suppose g0 and v0 given. Then

∥

∥π(xg0)(v0 + u) − π(g0)v0

∥

∥ =
∥

∥π(xg0)v0 − π(g0)v0 + π(x)π(g0)u
∥

∥

≤
∥

∥π(xg0)v0 − π(g0)v0

∥

∥ +
∥

∥π(x)π(g0)u
∥

∥

=
∥

∥π(x)π(g0)v0 − π(g0)v0

∥

∥ + ‖u‖
< ε ,

if we choose a neighbourhood X of 1 in G such that

‖π(x)π(g0)v0 − π(g0)v0‖ < ε/2

for all x in X and we choose ‖u‖ < ε/2.

There is no shortage of unitary representations:

1.3. Proposition. If H is a unimodular closed subgroup of G, the right regular representation of G on
L2(H\G) is unitary.
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Proof. That each Rg is unitary is immediate, so we must only verify the condition of continuity—given f in
L2(G) and ε > 0 we must find a neighbourhood X of 1 in G such that x in X implies ‖Rxf − f‖ < ε.

Because L2(G) is the L2­completion of Cc(G), there exists a continuous function ϕ of compact support Ω
such that ‖f −ϕ‖ < ε/3. Then also for any x in G ‖Rxf −Rxϕ‖ < ε/3, so it remains only to find a compact
neighbourhood X such that x in X implies ‖Rxϕ − ϕ‖ ≤ ε/3.

For any η > 0 one can find a neighbourhood X of 1 such that (a) ΩX ⊆ Ω∗ and (b) |ϕ(gx) − ϕ(g)| < η
everywhere if x lies in X . But then

‖Rxϕ − ϕ‖2 =

∫

G

∣

∣ϕ(gx) − ϕ(g)
∣

∣

2
dg

=

∫

ΩX−1

∣

∣ϕ(gx) − ϕ(g)
∣

∣

2
dg

≤ η2 · meas(ΩX−1)

‖Rxϕ − ϕ‖ ≤ η
√

meas(ΩX−1)

= ε/3 if η
√

meas(ΩX−1) = ε/3 .

2. Representation of measures

Let Mc(G) be the space of bounded measures on G of compact support. It can be identified with the space

of continuous linear functionals on the space C(G, C) of all continuous functions on G. If µ1 and µ2 are two

measures in Mc(G) their convolution is defined by the formula

〈µ1 ∗ µ2, f〉 =

∫

G×G

f(xy) dµ1dµ2 .

The identity in Mc(G) is the Dirac δ1 taking f to f(1).

If G is assigned a Haar measure dx, the space Cc(G) of continuous functions with compact support may be
embedded in Mc(G): f 7→ f dx. The definition of convolution of measures then agrees with the formula for

the convolution of two functions in Cc(G):

[f1 ∗ f2](y) =

∫

G

f1(x)f2(x
−1y) dx

The space of a unitary representation π becomes a module over Mc(G) in accordance with the formula

π(µ)v =

∫

G

π(g)v dµ .

Since Hilbert spaces are isomorphic to their conjugate duals, this integral is defined uniquely by the specifi­

cation that

u •

(

∫

G

π(g)v dµ
)

=

∫

G

(u •π(g)v) dµ

for every u in V .

If Ω is the support of µ, then
‖π(g)v‖ = ‖v‖

for all g in Ω and
∥

∥π(µ)v
∥

∥ ≤
∫

Ω

∥

∥π(g)v
∥

∥ |dµ|

≤
(

∫

Ω

|dµ|
)

‖v‖ .
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Hence:

2.1. Proposition. For every µ in Mc(G) the operator π(µ) is continuous.

For a given v in V the map µ 7→ π(µ)v from Mc(G) to V is covariant with respect to the left regular
representation, since

u •π(Lgµ)v = 〈Lgµ, u •π(•)v〉
= 〈µ, u •π(g−1π(•)v〉
= 〈µ, π(g)u •π(•)v〉
= π(g)u •π(µ)v

= u •π(g)π(µ)v .

The map µ 7−→ π(µ) is a ring homomorphims, since the composition of two operators π(µ1)π(µ2) can be
calculated easily to agree with π(µ1 ∗ µ2). For the left regular representation, Lµf = µ ∗ f .

I define a Dirac function on G to be a function f in C∞
c (G, R) satisfying the conditions

(a) f = h∨ ∗ h, where h ≥ 0;
(b) the integral

∫

G f(g) dg is equal to 1.

I recall that h∨(g) = h(1/g). The first condition implies that f ≥ 0 (and is in particular real) , f∨ = f .

A Dirac sequence is a sequence of Dirac functions fn with support tending to 1.

2.2. Theorem. If Ω is a finite set in V and {fn} a Dirac sequence on G then for some N

∥

∥π(fn)v − v
∥

∥ < ε

for all v in Ω, all n > N .

In other words, as measures they approach δ1.

Part II. Compact operators

3. Compact subsets of L 2(H\G)

The requirement for a unitary representation to be continuous has as consequence a stronger version of the

basic continuity condition. Suppose (π, V ) to be a unitary representation of G. Given v in V and ε > 0,
choose X a neighbourhood of 1 in G so that

∥

∥π(x)v − v
∥

∥ < ε/3 for x in X . Then for x in X , u in V

π(x)u − u =
(

π(x)u − π(x)v
)

+
(

π(x)v − v
)

+ (v − u)
∥

∥π(x)u − u
∥

∥ ≤
∥

∥π(x)u − π(x)v
∥

∥ +
∥

∥π(x)v − v
∥

∥ + ‖v − u‖
≤

∥

∥π(x)(u − v)
∥

∥ +
∥

∥π(x)v − v
∥

∥ + ‖v − u‖
≤ ‖u − v‖ +

∥

∥π(x)v − v
∥

∥ + ‖v − u‖
< ‖u − v‖ + ε/3 + ‖v − u‖ .

Therefore if we let U be the neighbourhood of v where ‖u − v‖ < ε/3 and ‖u − v‖ < ε/3, then

∥

∥π(x)u − u
∥

∥ < ε/3 + ε/3 + ε/3 = ε

I summarize: we can find for each v in V a neighbourhood U of v and a neighbourhood X of 1 in G such

that
∥

∥π(x)v − v
∥

∥ < ε for all x in X . If Ω is a compact subset of V , we may cover it by a finite collection of Ui

and take X = ∩Xi so that this holds for all u in Ω and x in X . We have thus proved:
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3.1. Proposition. Suppose (π, V ) to be a unitary representation of G. Given a compact subset Ω of V and
ε > 0, there exists a neighbourhood X of 1 in G such that

∥

∥π(x)v − v
∥

∥ < ε

for all v in Ω and x in X .

For spaces of functions on quotients of G, there is a kind of converse to this. A subset Ω of a Hilbert space V
is totally bounded if for every ε > 0 the set Ω is covered by a finite number of translates of disks ‖v‖ < ε. In
other words, a set is totally bounded when it is well approximated by finite sets. I also recall that in a Hilbert
space a subset is relatively compact if and only if it is totally bounded.

3.2. Theorem. Suppose H to be a unimodular closed subgroup of G with H\G compact, and let V =
L2(H\G). A subset Ω of V is relatively compact if and only if

(a) it is bounded;
(b) ‖RxF − F‖ → 0 as x → 0, uniformly for F ∈ Ω.

What (b) means is that for every ε > 0 there exists a neighbourhood X of 1 in G such that ‖RxF − F‖ < ε
for all x in X , F in Ω.

Proof. The necessity of (a) is immediate; that of (b) follows from Proposition 3.1.

For sufficiency, I start with a related result about continuous functions on H\G. Suppose Ω to be a set of

functions in C(H\G) that are (a) bounded and (b) equicontinuous. This second condition means that for for

any ε > 0 there exists some neighbourhood X of 1 in G with |RxF (g) − F (g)| < ε for all x in X , g in G.

Choose such an X for ε/3. Cover H\G by m sets giX . The image of Ω in Cm with respect to f 7→
(

f(gi)
)

is bounded, hence relatively compact. There therefore exist a finite number of Fj in Ω with the property that
for every F in Ω there exists some Fj with

∣

∣F (gi) − Fj(gi)
∣

∣ < ε/3 for all i. But then if g = gix

F (g) − Fj(g) = F (gix) − Fj(gix)

=
(

F (gix) − F (gi)
)

+
(

F (gi) − Fj(gi)
)

+
(

Fj(gi) − Fj(gix)
)

|F (g) − Fj(g)| < ε/3 + ε/3 + ε/3

= ε .

Since H\G is compact,

‖F‖ ≤
√

meas(H\G) sup |F (g)|

so that Ω is totally bounded, hence relatively compact, in L2(H\G).

Now assume Ω ⊂ L2(H\G) to satisfy (a) and (b). For a given ϕ in C(G) conditions (a) and (b) imply that
the functions RϕF , F ∈ Ω, form a relatively compact subset of C(H\G), hence of L2(H\G). But then by

Theorem 2.2, for some choice of ϕ this set is within distance ε of Ω.

3.3. Corollary. If H ⊆ G are unimodular groups with H\G compact and f is in Cc(G) then Rf is a compact
operator.

Proof. We have

RfF (x) =

∫

G

f(g)F (xg) dg

=

∫

G

f(x−1g)F (g) dg

=

∫

H\G

F (y) dy

∫

H

f(x−1hy) dh

=

∫

H\G

Kf (x, y)F (y) dy
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where

Kf (x, y) =

∫

H

f(x−1hy) dh .

This kernel is continuous. Since H\G is compact, it follows from this and Theorem 3.2 that Rf is compact.

Of course this is a simple case of a more general result which asserts that integral operators are Hilbert­

Schmidt.

If H\G is not necessarily compact, we have the following variation, which generalizes a classical result

concerning L2(R).

3.4. Proposition. Suppose H to be a unimodular closed subgroup of G. Let V = L2(H\G). A subset Ω of
V is relatively compact if and only if

(a) it is bounded;
(b) ‖RxF − F‖ → 0 as x → 0, uniformly for F ∈ Ω.
(c) there exists a sequence of compact subsets

Y0 ⊆ Y1 ⊆ Y2 ⊆ · · ·

exhausting H\G such that the L2 norm of the restriction of F in Ω to the exterior of Yk tends uniformly
to 0 as k → ∞.

Proof. The argument for the necessity of (a) and (b) is as in the previous result. For (c), if Ω is relatively

compact and ε > 0 we can find a finite number of functions Fi within ε/2 of all of Ω. If we choose a compact
X such that the restriction to the complement of X of each Fi has norm < ε/2, then the restriction of every

F in Ω to the complement has norm < ε.

For sufficiency, suppose given ε > 0. Choose a compact Y such that the norm of F restricted to the

complement of Y is < ε/2. Following the argument above, find a finite number of Fi approximating Ω
within ε/2 on Y . But then off Y we have ‖F − Fi‖ < ε as well.

4. Discrete sums of irreducible representations

Suppose (π, V ) to be a unitary representation of G on the Hilbert space V . If f lies in Cc(G) then π(f) is

certainly a bounded operator on V , and its adjoint is π(f∨), where f∨(g) = f(g−1):

π(f∨)u • v = u •π(f)v .

A function f is called self-adjoint if f = f∨. Thus aDirac function f is self­adjoint, and then so is the operator

π(f). If f = h∨ ∗ h for a Dirac function h, it is also positive:

π(f)u •u = π(h∨)π(h)u • u =
∥

∥π(h)u
∥

∥

2
.

A unitary representation (π, V ) is irreducible if it contains no proper closed G­stable subspace. I’ll call a

subset of Cc(G) sufficiently dense if it contains a Dirac sequence.

4.1. Theorem. Suppose (π, V ) to be a unitary representation of G on the (separable) Hilbert space V . If there
exists in Cc(G) a sufficiently dense subset U such that π(f) is a compact operator for every f in U , then (a)
π is a discrete sum of irreducible representations and (b) each occurs with finite multiplicity.

Proof. It must be shown that (a) V is the Hilbert direct sum of irreducible G­stable subspaces Vi with (b)

finite multiplicity. What (a) means more concretely that for every vector v in V and ε > 0 there exists some
vn in

⊕

i≤n Vi with ‖v− vn‖ < ε. What (b) means is that each isomorphism class occurs only a finite number

of times.
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If f is a Dirac function then π(f) is a positive self­adjoint operator on V , and by assumption compact. Thus
V is the Hilbert sum of the kernel Vf,0 of π(f) and a sequence of eigenspaces Vf,ωi

of finite dimension, with

ωi > 0. If there are an infinite number of eigenspaces then limωi = 0.

Step 1. Suppose v 6= 0 in V , ε > 0. According to Theorem 2.2 we can find a positive Dirac function f with
∥

∥π(f)v − v
∥

∥ < ε, but we can also write

v = v0 +
∑

vi where π(f)v0 = 0, π(f)vi = ωivi .

Then

ε2 >
∥

∥π(f)v − v
∥

∥

2
= ‖v0‖2 +

∑

(ωi − 1)2‖vi‖2 .

Either (a) the set of ωi is finite, or (b) limωi = 0. If it is finite

∥

∥

∥
v −

∑

i

vi

∥

∥

∥

2

= ‖v0‖2 < ε2 .

If it is infinite, we can choose n so large that ωi < 1/2 for i > n. Then |1 − ωi|2 > 1/4 for i > n, and
consequently

∥

∥

∥
v −

n
∑

1

vi

∥

∥

∥

2

= ‖v0‖2 +
∑

i>n

‖vi‖2 < 4ε2 .

What I have shown is this: If f is a Dirac function with ‖π(f)v − v‖ < ε/2, then there exists a vector u in a
finite sum of eigenspaces Vf,ω with ω 6= 0 such that ‖v − u‖ < ε.

Thus the finite sums of eigenspaces Vf,ωi
of the π(f) are dense in V .

Step 2. Suppose given a set {vi} of m vectors in V . The same reasoning applies to m ·V . According to
Theorem 2.2, there exists some Dirac function f such that ‖π(f)vi − vi‖ < ε/2 for all vi. But then by the

previous step I can find vectors ui in a finite sum of eigenspaces Vf,ω with ω 6= 0, ‖vi − ui‖ < ε for all i.

Step 3. The closed subspace U ⊆ V is said to be generated over G by a subset A if either of these equivalent

conditions hold: (a) U is the smallest G­stable space containing A or (b) if U is G­stable and the set of vectors
in U perpendicular to π(G)A is 0.

4.2. Lemma. Suppose U to be generated over G by its eigenspace Uf,ω . The map taking W to Wf,ω is an
injection from G­stable closed subspaces of U to subspaces of Uf,ω .

Proof of Lemma. Suppose that U is closed and G­stable, but Uf,ω = U ∩ Vf,ω = 0. Then U is the orthogonal

sum of the subspaces Uf,ωi
= U ∩ Vf,ωi

with ωi 6= ω, so u • v = 0 for all v in Vf,ω . But then since U is
G­stable, π(g)u • v = u •π(g−1)v = 0 for all v in Vf,ω and by hypothesis u = 0.

Step 4. Let U be the subspace of V generated over G by one of the finite­dimensional subspaces Vf,ω .
Then according to the previous step U is the direct sum of a finite number of irreducible subspaces. The

representations of G that occur there do not occur in U⊥, since isomorphic representations of G have

isomorphic eigenspaces for f .

Step 5. Now to conclude the proof of Theorem 4.1. Choose an orthogonal basis {vi} of V . Let V0 = 0. We

shall show inductively that we can find an increasing sequence of subspaces Vi of V such that (a) each Vi is
a finite sum of irreducible G­spaces; (b) none of the irreducible representations occurring in V ⊥ ∩ Vn occurs

in Vn−1; (c) for each n there exists a finite set of vectors u
(n)
i (i ≤ n) with

∥

∥vi − u
(n)
i

∥

∥ < 1/2n for all i ≤ n.

For n = 0 there is nothing to prove. What happens for n = 1 already shows the basic pattern of argument.

By the first step of this proof, I can find a Dirac function f and a vector u1 in a finite sum of eigenspaces Vf,ω

such that ‖v − u‖ < 1. Let V1 be the subspace of V generated by this sum of eigenspaces. Then by the third

step, the space V1 is the direct sum of a finite number of irreducible G­stable subspaces, none of which occur

in V1. That finishes this case. For n > 1, use the same basic argument, but applying the multi­vector version
of the second step.
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Part III. Smooth vectors

5. Smooth vectors

Suppose now G to be a Lie group, g its real Lie algebra.

Impose on Dirac functions the additional requirement that they be smooth.

Let (π, V ) be a unitary representation of G. A vector v in V is said to be differentable if

π(X)v = lim
t→0

(

π(exp tX)v − v

t

)

exists for all X in the Lie algebra g. The vector v is said to be in V (1) if the function g 7→ π(g)v lies in

C1(G, V ). We can continue on, and define the subspace V (m) to be the set of all v such that π(g)v lies in

Cm(G, V ). The image in Cm(G, V ) consists of all functions F such that F (gx) = π(g)F (x).

Given two vectors u, v in V , the corresponding matrix coefficient is the function

Φu,v(g) = π(g)u • v

5.1. Proposition. For u in V (m), v in V , the matrix coefficient Φu,v lies in Cm(G, C), and

RXΦu,v = Φπ(X)u,v .

5.2. Corollary. For X , Y in g and u in V ∞ we have

π(X)π(Y )u − π(Y )π(X)u = π
(

[X, Y ]
)

u .

Proof. The Hahn­Banach theorem reduces this to the case of the action of g on C∞(G, C).

5.3. Corollary. The operators π(X) for X in g, acting on V ∞, determine a representation of g.

We thus get an action of the enveloping algebra U(g) as well.

If u is in V ∞ then for every v in V the matrix coefficient π(g)u • v is a smooth function on G. The converse is
also true:

5.4. Lemma. A vector u is in V ∞ if and only if the matrix coefficient π(g)u • v is smooth for all v in V .

Proof. An easy consequence of the identification of a Hilbert space with its double dual.

Choose a basis (αi) of g. According to the Poincaré­Birkhof­Witt theorem, lexicographically ordered mono­
mials

αp = αp1

1 . . . αpn

n

in the αi give a basis (αp) of U(g), the enveloping algebra of g. If

|p| =
∑

pi .

then the αp with |p| ≤ n form a basis of Un(g). Define the norm

‖v‖(n) =
∑

|p|≤n

‖αpv‖
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on V (m). There is a related topology defined on Cm(G, V ) by the semi­norms

‖F‖Ω,(n) = sup
g∈Ω

∑

|m|≤n

‖αmF (g)‖,

for Ω a compact subset of G, making it a complete locally convex topological vector space. Since the image

of V (m) in Cm(G, V ) consists of all F with F (gx) = π(g)F (x), the image of V (m) is closed in this topology,
so V (m) itself is complete, hence a Banach space.

A different choice of basis of U(g) will give a different norm, but all of these are equivalent. The space V ∞

is the intersection of all the V (m). and is a Fréchet space.

If f lies in C∞
c (G) and v in V , then

π(f)v =

∫

G

f(g)π(g) dg

lies in V ∞. More precisely
π(X)π(f)v = π(LXf)v

for every X in U(g). The subspace V G spanned by all the π(f)v is called the Gårding subspace of V . A

famous and powerful result of [Dixmier­Malliavin:1978] asserts that V G = V ∞, but that will not be used
here.

5.5. Lemma. The subspace V G is dense in each V (n).

Proof. Follows from the remark at the end of the previous section, since the space V (n) is a continuous

representation of G.

So far, these definitions and resultsmake sense and are valid, with only slightmodification, for any continuous

representation (π, V ) of G on a quasi­complete topological vector space V . But unitary representations
possess extra structure.

Suppose U to be a dense subspace of V , and T a symmetric linear operator defined on U . That means that

Tu •v = u •Tv for all u, v in V . The closure T of T is the linear operator defined on the completion of U
with respect to the ‘graph norm’ ‖Tu‖2 + ‖v‖2 by the condition that it un → v and Tun → w then Tv = w.

The adjoint T ∗ of T is the linear operator defined on the space of all v in V such that for some w in V we have

v •Tu = w •u

for all u in U , in which case T ∗v = w. Formally, we can write

T ∗v •u = v •Tu

whenever this makes sense. The operator T is self-adjoint when T = T ∗, and (U, T ) is essentially self-
adjoint when T = T ∗. The importance of self­adjoint operators is that the spectral theorem applies to them.

If an operator T is symmetric, then it has only real eigenvalues. If ker(T ∗ − cI) = {0} for a pair of distinct
conjugate c then T is essentially self­adjoint. (For all this material, see Chapter VIII of [Reed­Simon:1970].)

5.6. Proposition. (Stone’s Theorem) Suppose (π, V ) to be a unitary representation of G, X in g. The operator
(π(iX), V G) is essentially self­adjoint, and the domain of its closure consists of all v such that

lim
t→0

π(exp(tX)v − v

t

exists in V .

Proof. I prove first the claim about self­adjointness. Let T = π(X) on the domain V G . To prove essential
self­adjointness of iT , according to a well known criterion it suffices to show that ker(T ∗ ± I) = 0. So

suppose that ϕ lies in the domain of T ∗ with (T ∗ − cI)ϕ = 0 with c = ±1. This means that

ϕ • (T − cI)v = 0
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for every v in V G . For v in V ∞

Φ(t) = ϕ •π
(

exp(tX)
)

v .

It is a smooth function of t and satisfies the ordinary differential equation

Φ′(t) = c Φ(t) .

which means that it is Cect. But since π is unitary, Φ(t) must be bounded. Hence ϕ = 0.

For the remainder of the proof, see [Reed­Simon:1970], Theorems VIII.7­8.

A slightly different argument will prove:

5.7. Theorem. Suppose (π, V ) to be a unitary representation ofG and∆ a symmetric elliptic element ofU(g).
The operator

(

π(∆), V G
)

is essentially self­adjoint.

The hypothesis means (a) the element of U(g) is invariant under the anti­automorphism that extends X 7→
−X on g and (b) the image in the symmetric algebra has no non­trivial zeroes. This implies that it is elliptic
as a differential operator on G. This result is from [Nelson­Stinespring:1959], and there is a short sketch of a

simple proof at the end of §7 of [Nelson:1959]. However, the most elementary argument seems to be that in

§3 of [Cartier:1966] (a report on Nelson’s work), which I follow.

Proof. The operator D = π(∆) is symmetric on V G . Also, Dπ(f) = π(∆f) for any f in C∞
c . To prove D

essentially self­adjoint, it suffices to prove that the kernel of D∗ − cI has no kernel for non­real values of c.
Thus, suppose

(D∗ − cI)ϕ = 0

for some ϕ in the domain of D∗. This means that for every v in V , f in C∞
c (G)

0 = ϕ •
(

(D − cI)π(f)v
)

= ϕ •π(LD−cIf)v

= ϕ •

∫

G

(LD−cIf)(g)π(g)v dg

=

∫

G

(LD−cIf)(g)
(

ϕ •π(g)v
)

dg

which means that when considered as a distribution the continuous function Φ(g) = ϕ •π(g)v satisfies

(∆− cI)Φ = 0. But this is an elliptic differential equation, so by the regularity theorem for elliptic equations

it must be smooth. Since it holds for all v, Lemma 5.4 implies that ϕ lies in V ∞. But since ∆ is symmetric in
U(g) the operator π(∆) is symmetric on V ∞, either c is real or ϕ = 0.

6. Laplacians

Continue to assume (αi) to be a basis of g. One important example of an elliptic ∆ in U(g) is the sum

∆ = −
∑

α2
k ,

which is the Laplacian corresponding to the basis (αi). IfG is semi­simple with k the Lie algebra of amaximal
compact subgroup K of G, let Ω be the Casimir element of g, Ωk the Casimir of k. The sum Ω + 2Ωk is the

Laplacian of a suitable basis.

Assume (π, V ) to be a unitary representation of G. Let D = π(∆). According to Theorem 5.7, it is essentially

self­adjoint with respect to the domain V G . The domain of its closure, which I’ll also call D, is the completion

of V G with respect to the ‘graph norm’ ‖v‖2 + ‖Dv‖2. All operators π(∆n) with domain V G are symmetric
and elliptic, hence essentially self­adjoint, and the closure of π(∆n) is the same as Dn, which is described

usefully here:
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6.1. Theorem. Suppose (π, V ) to be a unitary representation of G, ∆ a Laplacian of g. The domain of D⌈n/2⌉

is contained in the space V (n).

Here ⌈r⌉ is the smallest integer≥ r. Thus ⌈n/2⌉ = k if n = 2k and k + 1 if n = 2k + 1.

I’ll take up the proof in a moment. As an immediate consequence:

6.2. Corollary. The space V ∞ of smooth vectors is the same as the intersection of all the domains Dom(Dn).

The corollary is from [Nelson:1959], but the Theorem itself is a slightly weaker version of a refinement

apparently due to [Goodman:1970]. It is difficult for me to separate clearly the contributions of each, because
Goodman’s papers rely strongly on Nelson’s, but proves things not explicitly stated by Nelson. Nelson’s

paper is difficult to follow, partly because the result we want is intricately interleaved with other difficult

results, and partly because Nelson’s notation is bizarre. (For the cognoscenti, I point out that his notation is
not a context­free language. I suspect that this is the root of my trouble with it.) The only place that I know

of where Nelson’s argument has been disentangled is Chapter 1 of [Robinson:1991], but in places it, too, is a

bit awkward. In spite of this complaint, I follow Robinson closely.

Let Ak = π(αk). The proof reduces to:

6.3. Lemma. For every n there exist constants a, b > 0 such that

∥

∥Ai1 . . . Ain
v
∥

∥ ≤ a
∥

∥D⌈n/2⌉v
∥

∥ + b
∥

∥v
∥

∥

for all v in V G .

I’ll start proving this in a moment. Why does this imply the theorem? Let m = ⌈n/2⌉, and suppose v in

Dom(Dm). Since Dm is self­adjoint, we can find a sequence of vn in V G with vn → v and Dmvn → Dmv.
The Lemma implies that ‖Ai1 . . . Ain

vn‖ remains bounded for all i, so that the vn form a Cauchy sequence
in V (n), which is a Banach space, and hence they converge in V (n).

The prototype of the Theorem is the example of L2(R), in which case the domains of the powers of the
Euclidean Laplacian ∆ are the Sobolev spaces, and the Theorem is a classic result not difficult to prove by use

of the Fourier transform. I’ll repeat the reasoning involved to prove the following result, which we’ll need in
the course of the proof later on:

6.4. Lemma. Suppose ∆ to be a Laplacian of g, (π, V ) a unitary representation of G, D the self­adjoint
extension of (π(∆), V G). If 0 ≤ m ≤ n, the domain of Dn is contained in the domain of Dm.

Proof. The cases m = 0, n are trivial. The projection form of the spectral theorem allows us to reduce the

proof to this elementary fact:

CLAIM. Assume 0 < m < n. For every a > 0 there exists b > 0 such that λm ≤ aλn + b for all λ ≥ 0.

Proof of the claim. For a, b > 0 consider the function

f(λ) = aλn − λm .

We have f(0) = b, f(λ) ∼ aλn as λ → 0, and

f ′(λ) = anλn−1 − mλm−1 .

Therefore f has a single positive minimum at

λ0 =
( m

na

)
1

n−m
.

Then f(λ) + b will be > 0 everywhere as long as b > −f(λ0).
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Proof. The proof is in several steps. From now on, if A and B are operators taking V G to itself, I’ll write
C � A if there exist a, b ≥ 0 such that

‖Cv‖ ≤ a‖Av‖ + b‖v‖

for all v in V G . In this terminology, the previous Lemma asserts that Dm � Dn for 0 ≤ m ≤ n. What
we want to prove is that Ai1 . . . Ain

� D⌈n/2⌉. A trivial observation, but one that motivates much of the

calculation to come, is that from C � Dk we can deduce, by applying Lemma 6.4, that CDℓ � Dk+ℓ.

The cases n = 1 and n = 2 are special, and for them I follow Robinson. After that, it goes by induction on n
and careful calculation of commutators.

Step 1. CLAIM. For v in V G

‖Akv‖ ≤ ε‖Dv‖ + (1/2ε)‖v‖ .

Proof. We have
‖Akv‖2 = −v •A2

kv

≤ v •Dv

≤ ‖ε
√

2Dv + (1/ε
√

2)v‖2/2

‖Akv‖ = ‖ε
√

2Dv + (1/ε
√

2)v‖/
√

2

≤ ε‖Dv‖ + (1/2ε)‖v‖ .

Step 2. The next step is to show that all of V (2) is contained in the domain of D, and more precisely that the
norm ‖v‖(2) is bounded by ‖Dv‖ + ‖v‖.
Define the structure constants of g:

[αi, αj ] =
∑

k

ck
i,jαk .

Set
c = sup

1≤i,j,k≤n

∣

∣ck
i,j

∣

∣ .

CLAIM. For v in V G and all ε > 0

‖AiAjv‖ ≤ (1 + ε)‖Dv‖ + (2n2c/ε)‖v‖ .

Proof. This is Lemma 6.1 in [Nelson:1959]. I follow Robinson’s calculation, which is somewhat more

straightforward than Nelson’s.

For v in V G

‖AiAjv‖2 ≤
∑

k

‖AkAjv‖2

=
∑

k

AkAjv •AkAjv

=
∑

k

(

AkAjv •AjAkv − AkAjv • [Aj , Ak]v
)

=
∑

k

(

AkAjv •AjAkv − AkAjv • [Aj , Ak]v − A2
jv •A2

kv
)

− A2
jv •Dv

= −A2
jv •Dv +

∑

k

(

AkAjv •AjAkv − A2
jv •A2

kv
)

−
∑

k

(

AkAjv • [Aj , Ak]v
)

.
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Now
∑

k

(

AkAjv •AjAkv − A2
jv •A2

kv = −
∑

k

(

AjAkAjv •Akv − AkAjAjv •Akv

= −
∑

ℓ

cℓ
k,jAℓAjv, •Akv

and then deduce

‖AiAjv‖2 ≤ −A2
jv •Dv −

∑

k,ℓ

cℓ
k,j

(

AkAjv •Aℓv + AℓAjv •Akv
)

.

Let
C = sup

i,j
‖Ai,jv‖ .

Then we get by the Cauchy­Schwarz inequality and the result of the first step:

C2 ≤ C‖Dv‖ + 2n2cC
(

δ‖Dv‖ + (1/2δ)‖v‖
)

for all δ > 0. Set δ = ε/2n2c, divide by C.

Step 3.

CLAIM. In any ring

T nS =

n
∑

k=0

(

n

k

)

adn−k
T (S)T k .

Here adT (S) = [T, S] = TS − ST . This is Lemma 1 of [Goodman:1969].

Proof. By induction on n. To start:

TS = (TS − ST ) + ST = adT (S) + ST ,

and then from the induction assumption

T nS =

n
∑

k=0

(

n

k

)

adn−k
T (S)T k

T n+1S = T n ·TS

=
n

∑

k=0

·adn−k
T (TS)T k

=

n
∑

k=0

·adn−k
T (adT S + ST )T k

=

n
∑

k=0

·
(

n + 1

k

)

adn+1−k
T (S)T k .

Step 4.

CLAIM. For all k ≥ 0 there exist constants cp
k,i for all p = (i1, i2, . . . , i2k) such that

adk
D(Ai) =

∑

cp
k,iA

p ,
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and constants cp
k,i,j for all p = i1i2 . . . i2k+1 such that

ad(D)kAiAj =
∑

cp
k,i,jA

p .

This is just about obvious. The point is that the degree of adk
D(Ai) is at most 2k, and that of adk

D(AiAj) is at
most 2k + 1.

Step 5. Now I start on the main result, that

Ai1 . . . Ain
�

{

Dk n = 2k
Dk+1 n = 2k + 1.

I have proved this when n = 1 and 2, and I now proceed by induction. In this step I’ll handle the case
n = 2k + 1, and in the next n = 2k + 2, assuming it to be true for n ≤ 2k.

By induction we have for suitable but varying a, b, etc. according to Lemma 6.4

‖Ai1 . . . Ai2k+1
v‖ ≤ a‖DkAi2k+1

v‖ + b‖Ai2k+1
v‖

≤ a‖DkAi2k+1
v‖ + c‖Dv‖ + d‖v‖

≤ a‖DkAi2k+1
v‖ + e‖Dk+1v‖ + f‖v‖ .

Setting A = Ai2k+1
, by Goodman’s commutator formula the first term on the right can be written

DkAv = ADk + [Dk, A] = ADk +

k−1
∑

ℓ=0

(

n

ℓ

)

ad(D)ℓADk−ℓ

But now for the first term, applying the case n = 1:

ADk � Dk+1

and for the rest we apply induction and the formula for adk
D(Ai) to conclude.

Step 6. Now set n = 2k + 2. Again we write according to Lemma 6.4

‖Ai1 . . . Ai2k+1
Ai2k+2

v‖ ≤ a‖DkAi2k+1
Ai2k+2

v‖ + b‖Ai2k+1
Ai2k+2

v‖
≤ a‖DkAi2k+1

Ai2k+2
v‖ + b‖Dv‖ + c‖v‖

≤ a‖DkAi2k+1
Ai2k+2

v‖ + b‖Dk+1v‖ + c‖v‖ .

It remains to show that

DkAi2k+1
Ai2k+2

� Dk+1 .

But here as before I write

DkAi2k+1
Ai2k+2

= Ai2k+1
Ai2k+2

Dk +

k−1
∑

ℓ=0

adk−ℓ
C (Ai2k+1

Ai2k+2
)Dℓ

Again apply induction and the earler formula for adk
D(AiAj). The proof of the Theorem is concluded.

[Goodman:1970] proves the more precise result that for all n the domain of the fractional power of Dn/2

coincides with V (n).
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Part IV. Admissibility

7. Admissibility

Suppose now G to be the group of R­rational points on a reductive group defined over R, K a maximal
compact subgroup of G.

7.1. Theorem. If (π, V ) is an irreducible unitary representation of G and (σ, U) an irreducible representation
of K , then

dimHomK(U, V ) ≤ dimU .

Equivalently, the representation σ occurs in π no more than it does in L2(K). The reason one might expect

this is in fact closely related to L2(K). It turns out that every irreducible unitary representation of G may be
embedded into some Ind(ρ |P, G), with ρ an irreducible representation of the minimal parabolic subgroup

P . Frobenius reciprocity for P ∩ K and K then implies the Theorem. This is only heuristic reasoning, since

the proof of the embedding theorem depends on at least a weak form of Theorem 7.1, but the proof below
does depend on Frobenius reciprocity for such induced representations.

In common terminology, the subgroupK is a large subgroup ofG. We’ll see applications of this fundamental
result in the last section of this essay.

In this section I’ll lay out the proof of Theorem 7.1 up to the point where I need to apply a famous theorem
about matrix algebras due to Amitsur and Levitski. This result is trivial for SL2(R), so that the proof for that

group will be complete at that point. In the next section I’ll conclude the proof by discussing the theorem of

Amitsur­Levitski, or at least a variant, which has independent interest.

The original proof of this seems to be due to Harish­Chandra. I follow the succinct account in [Atiyah:1988].

Another proof of a very slightly weaker result can be found in a long thread of results in [Borel:1972], with
the final statement in §5.
Proof. There are several steps. Suppose (σ, U) to be an irreducible (finite­dimensional) representation of K ,
(π, V ) a unitary representation of G, and let Vσ be the σ­component of V , which may be identified with

U ⊗C HomK(U, V ) .

It is also the image of the projection operator p(ξσ), where

ξσ(k) = (dimσ) trace σ(k−1) .

It is a therefore a closed K­stable subspace of V .

Step 1. The first step is to define the Hecke algebra Hσ , a subring of Cc(G) that acts on Vσ .

The function ξσ(k) acts on any continuous representation (π, V ) ofK as the projection onto the σ­component

Vσ of V .

Let Hσ = Hσ(G//K) be the Hecke algebra of functions f in Cc(G, C) such that ξσ ∗ f = f ∗ ξσ = f . For
example, if σ is the trivial representation,Hσ is the space of all functions on G invariant on left and right by
K . It is a ring with convolution as multiplication. It has no unit, but if fi is a Dirac sequence in Cc(G), f ∗ ξσ

will approach ξσ , which would be a unit if it were in Hσ . Since π(ξσ) is the K­projection onto Vσ , we have

π(f)V ⊆ Vσ for any f inHσ , and this determines a homomorphism fromHσ into the ring

End(Vσ) = bounded operators on Vσ .

Let Hσ be its image, and let C(Hσ) be the subring of all T in End(Vσ) that commute with all of Hσ.

7.2. Lemma. (Schur’s Lemma) Any bounded operator on Vσ that commutes with all operators in Hσ is a
scalar multiplication.
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Proof. If f lies in Hσ , then so does f
∨
, since trace σ(k−1) = trace σ(k). Furthermore, π

(

f
∨)

is the adjoint
of π(f). Thus Hσ is stable under adjoints, and so is C(H). If T lies in C(H) then so do (T + T ∗)/2 and

(T − T ∗)/2i), and

T =
T + T ∗

2
+ i

T − T ∗

2i
,

so we may assume T to be self­adjoint. But then the projection operators associated to T by the spectral

theorem also commute with Hσ . In order to prove that T is scalar, it suffices to prove that any one of these
projection operators is the identity. So I may now assume T to be a projection operator. Let HT be the

image of T , and let U be the smallest G­stable subspace containing HT . Since HT is stable under Hσ, the
intersection of U with Vσ is HT , and since π is irreducible this must be all of Vσ . Thus T is the identity

operator.

Step 2. In finite dimensions, it is easy to see from the Lemma in the previous step that the image ofHσ is the

entire ring of bounded operators on Vσ . In infinite dimensions, we can deduce only a slightly weaker fact:

7.3. Lemma. If (π, V ) is an irreducible unitary representation of G, the image of Hσ is dense in the ring of
bounded operators on Vσ .

The topology referred to here is the strong operator topology.

Proof. The image Hσ of H in End(Vσ) is a ring of bounded operators stable under the adjoint map. Since

π is irreducible, the Lemma in the previous step implies its commutant is just the scalar multiplications.
The operators in Hσ embed in turn into CC(Hσ), the operators which commute with C(Hσ). I have already
pointed out that the idempotent ξσ is the limit of functions in Hσ . Therefore this Lemma follows from the

following rather more general result. If R is a set of bounded operators on a Hilbert space, let C(R) be the
ring of operators that commute with all operators in R.

7.4. Lemma. (VonNeumann’s double commutant theorem) Suppose R to be a subring of the ring of bounded
operators on aHilbert space V which (a) is stable under the adjoint map T 7→ T ∗ and (b) contains the identity
I in its strong closure. Then R is dense in the ring CC(R) of all operators that commute with C(R).

Proof. I follow the short account at the very beginning of Chapter 2 in [Topping:1968]. It must be shown that

if T commutes with all operators α in C(R), then T is in the strong operator closure of R within End(V ).

I recall exactly what the Lemma means. The strong topology is defined by semi­norms

‖T ‖σ = sup
v∈σ

‖Tv‖

for finite subsets σ of V . An operator τ of End(V ) is in the strong closure of a subset X if and only if every

one of its neighbourhoods in the strong topology intersects X . Hence τ is in the strong closure of X if and

only if for every finite subset σ of V and ε > 0 there exists a point x in X with ‖x(v) − τ(v)‖ < ε for all v in
σ.

I do first the simplest case in which there is a single x in σ. Suppose T lies in CC(R). Let Rx be the closure
of Rx in V . Since I is in the strong closure of R, it contains x. Since Rx is invariant with respect to R and R
is stable under adjoints, its orthogonal complement is also stable under R. Therefore the projection px onto

Rx satisfies the relations
px r px = r px

for every r in R, and also

px r∗ px = r∗px .

If we take the adjoint of this we get

px r px = pxr ,

concluding that px r = r px, so px lies in C(R). By assumption, T commutes with px and hence also takes
Rx into itself. But since x lies in Rx, Tx is in Rx.
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If σ = {x1, . . . , xn}, consider V n, the orthogonal direct sum of n copies of V . The algebra End(V ) acts on it
component­wise. Let Rn be the diagonal image of R. Its commutant in this is the matrix algebra Mn

(

C(R)
)

,

and the double commutant is the diagonal image of CC(R). Apply the case n = 1 to this, and get r in R such

that ‖r(xi) − T (xi)‖ < ε for all i. This concludes the proof of Lemma 7.4.

Step 3. In this step, I show that the claim of the theorem is true for finite­dimensional representations of G.

It is here where the assumption that G be a reductive algebraic group plays a role.

7.5. Lemma. If G is the group of R­rational points on any affine algebraic group defined over R, the map
fromCc(G) to

∏

EndC(E), with the product over all irreducible finite­dimensional algebraic representations
E of G, is injective.

Proof. Fix an embedding ofG into someGL(V ). The polynomials in the coordinatees of itsmatrices separates

points of G, so will be dense in C(X) for any compact subset X of G, by the Stone­Weierstrass Theorem. But
these polynomials are matrix entries for other representations of G.

7.6. Lemma. For every irreducible finite­dimensional algebraic representation E of G we have

dimHomK(U, E) ≤ dimU .

The Iwasawa factorization asserts that G = PK , with P = MN equal to the a minimal R­rational parabolic

subgroupofG. If |A| is the connected component of the center ofM , thenM = (M∩K)×|A|, andG = NAK .
Every irreducible finite­dimensional representation of G may be embedded into some Ind(ρ |P, G) with ρ
irreducible. This, together with Frobenius reciprocity for K and G then conclude the proof.

Step 4. The last step is by far the most interesting. To summarize where we are: (a) the Hecke ring Hσ is

dense inEnd(Vσ); (b) it injects into the product of endomorphism rings of finite­dimensional representations
of G; (c) if V is irreducible and of finite dimension then

dim Vσ ≤ (dim σ)2 .

We want to conclude that the same inequality holds if V is unitary. This leads us to theory of polynomial
identities for matrix algebras. In this section, I’ll deal only with the case G = SL2(R), which is elementary.

In the next section I’ll show how things go in general.

So assume in the rest of this section that G = SL2(R). Apply Lemma 7.5. In this case K = SO(2). Its

irreducible representations are all one­dimensional, and each occurs with multiplicity at most one in every
irreducible finite­dimensional representation of G. Therefore Hσ is a commutative ring, and is isomorphic

to C. Since it is dense in End(Vσ), the subspace Vσ has dimension at most one. This concludes the proof of

Theorem 7.1 for SL2(R).

8. Polynomial identities

The proof that
dimVσ ≤ (dimσ)2

for SL2(R) reduced to the observation that in this case dimσ was at most one, which implied that Hσ , the

image of Hσ in End(Vσ), is commutative. In the general situation, we want to conclude that Hσ is a matrix
algebra of dimension at most (dimσ)2.

Commutativity of a ring R means that r1r2 − r2r1 = 0 for all r1, r2 in R. It turns out that the matrix
ring Mn = Mn(C) satisfies a polynomial identity that in the case n = 1 reduces to commutativity, and

which Mn+1 does not satisfy. For each n define the standard polynomial [x1, . . . , xn] in associative but
non­commuting variables:

[x1, x2, . . . , xn] =
∑

σ∈Sn

sgn(σ)xσ(1) xσ(2) . . . xσ(n) .
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For example

[x1, x2] = x1x2 − x2x1

[x1, x2, x3] = x1x2x3 + x2x3x1 + x3x1x2 − x2x1x3 − x1x3x2 − x3x2x1 .

Evaluated on a C­algebra R, this polynomial is anti­symmetric, hence factors through
∧n

R. If R has
dimension< n itmust therefore evaluate identically to 0. In particular, forMn the polynomial [x1, . . . , xn2+1]
must vanish identically. Let p(n) be the least p such that [x1, . . . , xn] vanishes on Mn.

This number p(n) has been known explicitly since 1950:

8.1. Proposition. (Amitsur­Levitski) For all n, p(n) = 2n.

Since the original proof in [Amitsur­Levitski:1950] this has been an almost inexhaustible source of interesting

mathematics (see for example [Formanek:2010], who surveysmany of these, and particularly [Kostant:1958]).

I’ll not prove it here, but follow [Atiyah:1988] in getting by with a weaker statement taken from Lemma 6.3.2
of [Herstein:1968].

8.2. Lemma. The number p(n) ≥ p(n − 1) + 2.

Proof. Embed Mn−1 into Mn:

A 7−→
[

A 0
0 1

]

.

Let p = p(n−1)−1. There existmatricesA1, . . . ,An−1 such that [A1, . . . , Ap−1] 6= 0. If ei,j is the elementary
matrix with a sole non­zero entry 1 in position (i, j), then for 1 ≤ k < n we have

[A1, . . . , Ap, ek,n, en,n] = [A1, . . . , Ap]ek,nen,n

= [A1, . . . , Ap]ek,n

But since [A1, . . . , Ap−1] doesn’t vanish, we can find k such that [A1, . . . , Ap−1]ek,n 6= 0. Therefore p(n) ≥
p(n − 1) + 2.

Now to conclude the proof of Theorem 7.1. If n = dimσ and Hσ embeds into the product of rings Mm with

m ≤ n, the ringHσ satifies the standard identity of degree p(n). Therefore it cannot contain a matrix algebra
of Mm with m > n. But it is dense in End(Vσ), so dimVσ ≤ dimσ.

9. Representations of the Lie algebra

Let Z(g) be the center of the universal enveloping algebra U(g). One of the consequences of the Proposition
is:

9.1. Corollary. Suppose (π, V ) to be an irreducible unitary representation of G. Then

(a) if v is a K­finite vector in V , there exists f in Cc(G) such that π(f)v = v;
(b) its K­finite vectors are smooth;
(c) there exists a homomorphism

ζ: Z(g) → C

such that π(X) = ζ(X) I for all X in Z(g).

Proof. According to Lemma 7.3, the image of the Hecke ring Hσ is dense in the finite­dimensional algebra

End(Vσ), hencde equal to the whole of End(Vσ). In particular, it contains the identity operator. This implies

(b), which implies (a), which in turn implies (c).
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