
January 15, 1980

Dear Jim,

I see as I revise my earlier version that it was written on November 27, which seems to me
years ago. Given what problems I had finishing it, I propose to write you in installments,
if necessary, to explain, at least in summary, what I know about the relationship between
embeddings into principal series and the behaviour at ∞ of matrix coefficients. I realize
that you are most interested in real groups, but the results for p-adic groups are not only
much simpler but historically motivated the real case, so I will discuss them first. In order
to expedite things, I will send you these letters as they are written.

Throughout, let

k = a local field
G = the rational points on a reductive group defined over k
K = a maximal compact in G, which perhaps I only use for k archimedean
P∅ = a minimal parabolic with factorization P∅ = M∅N∅, M∅ stable under the Cartan

involution if k is archimedean, compatible with K in the sense that K ∩ M∅ is a
maximal compact in M∅ otherwise

A∅ = the maximal split torus in M∅ if k non-archimedean, the connected component of
the identity otherwise

Σ = roots with respect to A∅
Σ+ = choice of positive roots determined by P∅

∆ = basis of Σ+

W = Weyl group

For Θ ⊆ ∆ let PΘ ⊇ P∅ be the usual standard parabolic subgroup.

Of course by restriction of scalars one may assume an archimedean k to be R. In this case,
let g, k etc. be the complexified Lie algebras of G etc.

Let k be p-adic for a while. For ǫ > 0 let

A∅(ǫ) =
{
a ∈ A∅

∣∣|α(a)| < ǫ for all α ∈ ∆
}

Thus as ǫ → 0 one gets a sort of neighbourhood system at ∞ in one direction on A∅.

For convenience, for the moment let P = P∅, A = A∅ etc. By an admissible representation
of G I shall always mean one which is finitely generated and admissible in the usual sense. If
(π, V ) is one, then as you know the Jacquet module (πN , VN ) is the representation of M on
the maximal N -trivial quotient of V . The assignment taking V to VN is an exact functor.
The space VN has finite dimension, and is an admissible M -module.

If (σ, U) is any finite-dimensional representation of P , let Ind(σ | P, G) be the induced
representation of G, normalized. It is

{f ∈ C∞(G, U) | f(pg) = σ(p)δ1/2(p)f(g)}

The group G acts on the right. The representation σ is necessarily trivial on N , and we
have Frobenius reciprocity

HomG(V, Ind(σ)) ∼= HomM (VN , σδ1/2)
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for all smooth V . The isomorphism is obtained by composition with the P -map Ind(σ) → U ,
f 7→ f(1). This connects the Jacquet module with embeddings into principal series.

Let (π, V ) be any G-admissible representation. Consider the matrix coefficient 〈π(g)v, ṽ〉

for v in V , ṽ in Ṽ (the admissible dual of V ). Since G is more or less KA−−K for suitable
K it suffices for most questions involving the asymptotic behaviour of matrix coefficients to
choose g in A−−. The basic fact is that for a given v and ṽ and ǫ small enough (depending
on v, ṽ) 〈π(a)v, ṽ〉 is A-finite on A−−(ǫ). In other words, ‘asymptotic to’ means ‘equals’ on
p-adic groups. Now any A-finite function on A−−(ǫ) has a unique A-finite extension to all of
A; hence one may define a function 〈π(a)v, ṽ〉∞ on all of A by specifying that it agree with
〈π(a)v, ṽ〉 on A−−(ǫ) for ǫ small and that it be A-finite everywhere. One can then define
what I a pairing 〈•, •〉N by the rule

〈v, ṽ〉N = 〈π(1)v, ṽ〉∞ .

This pairing descends to a non-degenerate pairing between VN and ṼNopp which I call the
canonical pairing between the two spaces. It induces an isomorphism of ṼNopp with the
contragredient of VN .

These things are all explained in my notes on p-adic groups.

A picture might help.

. . .

Look at A additively. The region marked . . . is A−− and the region . . . is A−−(ǫ). If
one goes along the walls of A−− one must look at Jacquet modules of larger parabolic
subgroups. Of course for p-adic groups VN might be 0, which is what happens for cuspidal
representations. And what happens on A−−(ǫ) might not tell you anything about what
happens in other directions. However, if V embeds into some Ind(σ | P, G) the module VN

with respect to the minimal parabolic P controls asymptotic behaviour everywhere, by an
induction argument on Jacquet modules. Thus, for example, such a V is square-integrable
precisely when |χ(a)| < δ1/2(a) for all a in A−− − (ZG ∩ A), for all central characters χ of
VN .

What is the canonical pairing for the principal series? This breaks up into two questions:
(1) If I = Ind(σ | P, G), how to describe IN? (2) Given this, what is the canonical pairing?

I will answer these questions, in fact, when I is induced from a parabolic which is not
minimal. Thus, choose Θ ⊆ ∆ and let P∗ = PΘ etc. Let W∗ be the Weyl group of MΘ,
[W∗\W ] the particularly good representatives of the cosets of WΘ in W , with w−1Θ > 0.
Thus G is the disjoint union of the cosets PΘwP (w in [W∗\W ]). Introduce on W∗\W the
partial ordering by closure of cosets:

x ≤ y ⇔ G(x) ⊆ G(y) .

If σ∗ is an admissible representation of M∗, there is the Bruhat filtration of Ind(σ∗ | P∗, G)
by the subspaces

Iw = {f with support in
⋃

x≥w

G(x)} .

We have Ix ⊆ Iy when x ≥ y, and I1 = I. This filtration is also P -stable. Let Iw be the
associated graded module:

Iw = Iw/
∑

x>w

Ix
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The usual Knapp-Stein integral

∫

w−1N∗w∩N\N

f(wn) dn

induces an isomorphism of (Iw)N with

w−1(σN∩M∗
δ
−1/2
P∩M∗

) δ
1/2
P

Here δ• means modulus character. If P = P∗, for example, this is just

(w−1σ) δ
1/2
P

These expressions make a little more sense if one notices that corresponding to the normal-

ized induction is a normalized Jacquet module VN δ
−1/2
P , which I think was always used by

Harish-Chandra. I’ll use this from now on, so we rewrite the first expression as

w−1σN∩M∗

So we don’t know the Jacquet module exactly, but we do have a filtration of it and an
identification of the graded pieces. Of course if all these graded pieces are distinct, this
filtration splits and becomes a direct sum. This happens generically. In general, however,
there are non-trivial extensions here. This happens when there are poles of intertwining
operators.

The contragredient of Ind(σ∗|P∗, G) is isomorphic, but not canonically, to Ind(σ̃∗|P∗, G).
The decomposition G =

⋃
P∗wP gives also

G =
⋃

P∗wℓ,∗wwℓP
opp

where wℓ is the longest element of W , wℓ,∗ that of W∗.

The map w 7→ wℓ,∗wwℓ is an involution of [W∗\W ] with itself, inverting the partial ordering.

Hence
G =

⋃
P∗wP opp

where gain the union is over [W∗\W ]. The space INopp is therefore filtered by the same set,
but with inverse ordering. Thus, for example, P∗P

opp is the open coset, where P∗wℓ,∗wℓP

is the old one. Knapp-Stein integrals again give a filtration of ĨNopp as of IN , the first a
decreasing filtration, the second increasing. Now we know that IN is the contragredient
of ĨNopp , so we shouldn’t be surprised by the way these dual filtrations work out. By the
way, this is a different way of understanding one of Langlands’ arguments in his paper on
classification of representations of real reductive groups.

I should make this a little more precise, but it will take some time, and I’ll postpone it until
next time. I mean to include this in a revised version of my notes on p-adic representations.
This line of reasoning gives in the end, for example, a new derivation of Macdonald’s formula
for spherical functions.

All of these things must be well known to Harish-Chandra in some form or another.

So we haven’t gotten too far, but I’ll send it off while I ponder.

Regards,

Bill C.
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February 26, 1980

Dear Jim,

This is the second letter in this series. Again time has passed very quickly. This time there
were some details to be worked out that required more concentration than came easily to
me. We can probably thrash things out at Sally’s conference in Chicago.

The first topic I want to look at is a precise version of the asymptotic behaviour of induced
representations to which I alluded in the last letter. As I mentioned there I had never
thought this out in detail and a satisfactory formulation took some thought. I hope what
I have to say is comprehensible. I dwell on the p-adic case, even though I realize you want
me to deal with k = R, because a correct approach should work with little modification in
both cases.

My notation will be pretty much what it was before, with a few small changes. The imme-
diate ingredients are G and

P = minimal parabolic
P∗ = PΘ ⊇ P
σ = admissible representation of P∗
I = Ind(σ |P∗, G)

I want to describe the behaviour at ∞ of matrix coefficients of I—or, equivalently, describe
the canonical pairing on the Jacquet modules IN , ĨNopp .

The contragredient Ĩ may be identified with Ind(σ̃∗ |P∗, G) once one has chosen a Haar
measure on Nopp

∗ :

〈f, ϕ〉 =

∫

N∗

〈f(n), ϕ(n)〉 dn .

Fix such a measure once and for all. Explicitly the pairing comes from the composition

Ind(σ |P∗, G) ⊗ Ind(σ̃∗ |P∗, G) → Ind(δ
1/2
∗ |P∗, G) → constants in Ind(δ

−1/2
∗ |P∗, G)

where the first is f ⊗ ϕ 7→ 〈f, ϕ〉 and the second

Φ 7→

∫

Nopp
∗

Φ(n) dn

This last is G-covariant, so it may be written as

Φ 7→ RwΦ 7→

∫

Nopp
∗

RwΦ(n) dn

for each w in [W∗\W ], which in turn is also

∫

w−1Nopp
∗ w

Φ(wn) dn

(measure on w−1Nopp
∗ w determined by w-conjugation from the one on on Nopp

∗ ).
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Now I will modify my notation in the first letter slightly and define

Iw = {f ∈ I | suppf ⊆
⋃

x≥w

P∗xP}

Ĩ0
w = {ϕ ∈ Ĩ | suppϕ ⊆

⋃

x 6≥w

P∗xP}

We have Iu ⊆ Iv if u ≥ v but Ĩ0
u ⊆ Ĩ0

v if u ≤ v. So {Iw} filters I and {Ĩ0
w} filters Ĩ, but in

the opposite direction.

For u in the space U of σ, let u be its image in UM∗∩N . Incidentally, in this letter I always
use the normalized Jacquet module as I suggested in the first letter.

Define spaces

I0
w =

∑

x>w

Ix

Ĩw = {ϕ ∈ Ĩ | suppϕ ⊆
⋃

x 6>w

P∗xP opp}

Then I0
w ⊆ Iw, Ĩ0

w ⊆ Ĩw. For f in Iw the restriction of f to P∗wP has compact support
modulo P∗, so the integral

∫

w−1P∗w∩N\N

f(wn) dn = Ωw(f)

is well defined. Similarly

Ω̃w(ϕ) =

∫

w−1P∗w∩Nopp\Nopp

ϕ(wn) dn .

where here means image in the Jacquet module. These integrals induce isomorphisms

(Iw/I0
w)N = w−1(σM∗∩N )

(Ĩw/Ĩ0
w)Nopp = w−1(σ̃M∗∩Nopp)

and thus identify the composition factors in the filtration of IN , ĨNopp corresponding to the
Bruhat filtration of I, Ĩ .

Theorem. In the canonical pairing, (I0
w)N is the annihilator of (Ĩ)Nopp , (Ĩ0

w)Nopp that of

(Iw)N . The canonical pairing induces one of (Iw/I0
w)N with (Ĩw/Ĩ0

w)Nopp . This pairing is the

same as the canonical pairing of w−1(σM∗∩N ) and w−1(σ̃M∗∩Nopp), using the isomorphisms

written above.

In other words, for a in A−− near 0

δ−1/2(a)

∫

w−1N∗w

〈f(wna), ϕ(wn)〉 dn = 〈w−1(σM∗∩N )(a)Ωw(f), Ω̃w(ϕ)〉 .

This holds for all σ, but for generic σ we can use the direct sum decomposition of the
Jacquet module ands write

〈Raf, ϕ〉 =
∑

[W∗\W ]

〈w−1(σM∗∩N)(a)Ωw(f), Ω̃w(ϕ)〉 .

I laboured much over proving this, but I will postpone the proof to some later letter. When
w = 1 this is essentially Langlands’ argument in ‘Classification . . . ’ The whole theorem is a
formal version of that.

Next letter I hope to begin with k = R.

Regards,

Bill C.
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March 13, 1980

Dear Jim,

This is #3, where I begin to get down to real business. I have kept putting this stuff off
because I hoped I could find a better way through the maze we seem to be in, but in fact
this is probably not possible. The situation is intrinsically complicated, alas. I have been
wondering in particular if you could get by with some version of Osborne’s conjecture, now
proven by Hecht . . .

In this letter let k = R. What I will first do is explain about Jacquet modules for real
groups. I enclose a copy of my talk at Helsinki, which covers some of the territory I will
cover here, but I understand things much better now than when I gave it.

To start with I work with admissible representations (π, V ) of (g, K) rather than G. They
will always be finitely generated, hence of finite length. The obvious analogue of the Jacquet
module in this case is V/nV , spanned by {π(ν)v|v ∈ V, ν ∈ n}. This is the maximal n-trivial
quotient, and a module over m. (Here n = n∅, etc.) Also, V/nV is finite-dimensional. The
functor V/nV is not exact, however, and this suggests at once that it is not the ‘real’ Jacquet
module. Indeed, V/nV is the same as H0(n, V ), so that obstruction to exactness can even
be measured by higher homology groups. We do have Frobenius reciprocity

Hom(g,K)(V, Ind(σ|P, G)) ∼= Hom(p,KP )(V/nV, σ δ
1/2
P )

as long as σ is trivial on n. Here KP = P ∩ K, etc. Note however that this condition does
not have the importance it has in the p-adic case, since it is not automatic. In general, all
we can say of a finite-dimensional p-module is that n acts nilpotently. This suggests that
the correct Jacquet module involves all of the quotients V/nmV where nmV is the subspace
spanned by

π(ν1)π(ν2) . . . π(νm)v

with v in V , νi in n. This is the maximal quotient annihilated by nm. No one of these has
any clear superiority over the others, so we look at the projective limit

V[n] = lim
←−

V/nmV

This is a large space, of course. But not too large, because of a remark of Osborne’s: since
V is finitely generated and admissible, V is finitely generated as a module over U(n). This is
what gives the finite-dimensionality of the quotients V/nmV , and implies also a number of
interesting things about the limit. Suppose for illustration that n ∼= Rr, for example as with
an orthogonal group of rank 1. Then U(n) is a polynomial ring, and V[n] is the standard
completion of the finitely generated module with respect to the ideal (n), and itself a module
over the completion of U(n) with respect to this ideal, a formal power series ring. When n

is nilpotent, there is a similar theory of completions. In other words, whenever V is finitely
generated over U(n), I a two-sided ideal of U(n), n nilpotent, one can construct completions
with respect to powers of I. When I is the augmentation ideal, the theory is elementary.
The completed ring U(n)[n] is Noetherian, and the completion functor is exact (a version of
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Artin-Rees). In addition, the completion V[n] turns out to be a module over U(g) and also
over the group P .

This module V[n] is even related to a well known sort of U(g)-module, namely the Verma
modules. To see how this happens, note that the projective limits of the V/nmV translates

into a direct limit of their duals. This direct limit is the subspace V̂ [n] of the linear dual of
V (algebraic, no topology) annihilated by powers of n, and is a kind of Verma module. In
face it is a quotient of some module U(g)⊕p M , with M a finite-dimensional P -module. So

we have two large spaces V[n] and V̂ [n] which are each others’ duals. Both are modules over
(g, P ).

The really interesting facts about these spaces has to do with the asymptotic behaviour of
matrix coefficients. The formulation I am about to give owes something to a suggestion of
Hecht. Let V be admissible, U = Ṽ its contragredient. The theory of differential equations
satisfied by matrix coefficients asserts we have asymptotic expansions

〈π(a)v, u〉 ∼
∑

s

∑

m

∑

N∆

fs,m,n αs+n(a) logm α(a)

I realize here that I am assuming G semi-simple. No matter; for reductive G the facts
are only a bit more complicated. The sets S and M depend only on the ideal of Z(g)
annihilating V . The coefficients f depend on v and u.

We get from v in V a formal series

F (v) =
∑

fs,n,m(v, •)αs+n logm α

=
∑

Fs,m(v)αs logm α

with coefficients Fs,m in the linear dual of Ṽ . Here s ranges over S + N∆. For X in the
root space gγ

〈π(a)π(X)v, u〉 = 〈π(Ad(a)X)π(a)v, u〉

= γ(a)〈π(X)π(a)v, u〉

= γ(a)〈π(a),−π̃(X)u〉

Therefore F (π(X)v) = γ(a)[F (v) · (−π̃(X)u)]. This means that if X is in U(g) in nm then
the first several terms of F (v) vanish So as n → ∞ the series for v in nmV has more and

more terms vanishing. Similarly for u in (nopp)mṼ . I.e. to every v in V[n] we associate a
formal series

F (v) =
∑

Fs,m(v)αs logm α

with coefficients in the nopp-torsion dual of Ṽ . I.e. this series lies in the Verma dual of Ṽ
with respect to nopp. Of course there is no question of convergence here, these really are a
kind of formal power series. However, some elements of V[n] will correspond to finite series:
those annihilated by some power of nopp. These series may be evaluated at 1 on A. This is
entirely analogous to what happens for the p-adic case. So we get ihn this way a canonical
map

V
[nopp]
[n] → the linear dual of (Ṽ )[n

opp]

This is extraordinarily complicated. And yet I think it is necessary if you want to understand
the formula we will get eventually for the asymptotic behaviour of matrix coefficients.
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Let me try to make it a bit more palatable by putting it a different context. Call a g-module
p-finite if every vector in it is contained in a finite-dimensional subspace stable under p. The
algebra n acts nilpotently on every vector in such a space. For example, if V is an admissible
representation over (g, K) then X = V̂ [n] is such a space, and of finite length over U(g),
hence a quotient of some U(g) ⊕p M , hence finitely generated as a module over U(nopp).
We can now complete it with respect to powers of nopp! to get X[nopp]. Then X consists
of the n-finite vectors in this completion. But X[nopp] is also the dual of the nopp-torsion in

X̂. This space X [nopp] is popp-finite and of finite g-length, and X is the continuous dual of
its completion with respect to n. In other words, we have a perfect duality between finitely
generated Pp-finite g-modules and finitely generated popp-finite g-modules

X → X̂ [nopp] .

So a map like the one above should not be too surprising, nor should this fact, which
I conjectured many years ago and which Milic̀ić has proven: the pairing induced by the
asymptotic behaviour of matrix coefficients induces an isomorphism. This seems to be a
difficult, and fundamental, fact.

In particular the map from V to V[n] is an injection, which is also not obvious. This is
related to the fact that every admissible representation embeds into principal series.

What comes next, as it did for p-adic groups, is seeing what happens for principal series,
where we should be able to calculate everything explicitly, and in a natural way.

Cheers,

Bill C.
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September 11, 1980

Dear Jim,

This is #4. In it I will fill up some holes in earlier letters (mainly in the p-adic part) and
begin looking at the principal series of real groups. I will give no proofs at all here for real
groups, but try to point out difficulties.

The first point here is an elementary one. In letter #1 I recalled the ordering on the set
[W∗\W ] related to closures of double cosets P∗\G/P . When W∗ = {1} it is well known that
this is the ordering defined combinatorially, and it is true but perhaps less well known that
the same is true for [W∗\W ]. At any rate I include a proof here. (This plays an implicit
role in the second letter, as I shall explain in a moment.)

Write x ≤∗ y to mean P∗xP ⊆ P∗yP for x, y in [W∗\W ]. Write x ≤ y for the combinatorial
order. Then for any z in [W∗\W ]

Pwℓ,∗zP = Pwℓ,∗P PxP = P∗zP

So, applying the result for W we see that x ≤∗ y ⇔ wℓ,∗x ≤ wℓ,∗y. I recall that wℓ,∗ is the
longest element of W∗. Also, from the combinatorial definition x ≤ y implies wℓ,∗x ≤ wℓ,∗y.
Furthermore

wℓ,∗x ≤ wℓ,∗y ⇔ wℓ,∗xwℓ ≥ wℓ,∗ywℓ

However z 7→ wℓ,∗zwℓ is stable on [W∗\W ]. Thus in turn xwℓ ≥ ywℓ, x ≤ y. All in all

x ≤∗ y ⇔ wℓ,∗x ≤ wℓ,∗y ⇔ x ≤ y .

The point is the validity of something we used earlier:

Proposition. The map z 7→ wℓ,∗zwℓ is an order-inverting involution of [W∗\W ].

The second point is the proof of the fundamental formula for the canonical pairing in the
first letter. I recall here what that formula was.

We are given the representation σ of P∗ and are looking at the asymptotic behaviour of
matrix coefficients of Ind(σ |P∗, G). Suppose f in Ind(σ) and ϕ in Ind(σ̃). We want to
know that

〈Raf, ϕ〉 =
∑

[W∗\W ]

〈w−1(σM∗∩N)(a)Ωw(f), Ω̃w(ϕ)〉

for a ∼ 0. Since we know the relationship between asymptotic behaviour and the canonical
pairing, and know in particular that the asymptotics only depends on the images of f and
ϕ in their Jacquet modules, we can reduce this to special cases where f and ϕ have certain
images in the Jacquet modules.

Convergence questions cause technical difficulties which I want to avoid. In fact, convergence
need play no role, as it shouldn’t since after all integrals on p-adic spaces are at best finite
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sums. Let me give one example which I shall use in a moment. I have mentioned that the

pairing of Ind(σ |P∗, G) and Ind(̃(σ) |P∗, G) is through the integrals

∫

Nopp
∗

〈f(n), ϕ(n)〉 dn

But this involves convergence questions which I want to avoid. So now let me point out
a technical way to deal with this: (1) The pairing can be defined in terms which involve
no convergence, for example as an integral over K since G = P∗K. (2) For f and ϕ
with support on P∗N

opp
∗ this pairing is (up to a positive constant) the integral over Nopp

∗

just above. Better, since the pairing is G-covariant: we can cover P∗\G by translates of
Nopp
∗ , and on each one of these we have a similar integral formula for functions on those

translates. The coset P∗N
opp
∗ is a neighbourhood of P∗ in P∗\G. The translation P∗N

opp
∗ w

is a neighbourhood of P∗w for w in [W∗\W ]. So for f and ϕ with support on P∗N
opp
∗ w the

pairing is ∫

w−1Nopp
∗ w

〈f(wn), ϕ(wn)〉 dn

The point of this is that integrals over K are rather complicated, whereas integrals over
unipotent groups are simple. So the best way to evaluate the pairing on an arbitrary pair
f , ϕ is to write each of them as a sum of terms fw, ϕw with support on P∗n

opp
∗ w, and then

use the integral just above. This decomposition is possible because of this simple remark
about p-adic spaces: if X is a p-adic space covered by a finite number of open subsets Xi

then the space C∞c (X) is the sum of its subspaces C∞c (Xi).

Something similar is valid for real groups, but with Schwartz spaces replacing functions of
compact support.

Now what we want to prove is that for f with support in ∪x≥wP∗xP opp and ϕ with support
on ∪x≤wP∗xP opp

〈Raf, ϕ〉 = 〈w−1(σM∗∩N)(a)Ωw(f), Ω̃w(ϕ)〉

for a ∼ 0. We shall prove this by a decomposition technique, and for this we need a geometric
result which will play a role for both p-adic and real groups. It must be well known, but I
am not aware of a reference.

Proposition. We have

⋃

x≥w

P∗xP =
⋃

x≥w

P∗N
opp
∗ x (x ∈ [W∗\W ]) .

Proof. Keep in mind that P∗N
opp
∗ = P∗P

opp.

Step (1) It suffices to do this for P∗ = P minimal. This is because for w in [W∗\W ]

⋃

x≥w,x∈[W∗\W ]

P∗xP =
⋃

x≥w

P∗xP =
⋃

x≥w

PxP

To see this it suffices to prove that if x in W satisfies x ≥ w then every element of W∗x also
satisfies it. This is equivalent to x0 ≥ w, where x0 is the smallest element of W∗x. Now
x = sx0 with s in W∗. Since w ≤ x, there exists a reduced expression

x = s1s2 . . . snt1t2 . . . tm, s =
∏

si, x0 =
∏

tj
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where
w = si1si2 . . . sik

tj1tj2 . . . tjℓ

By Lemma 3.7 of Borel-Tits one may obtain a reduced expression for w in this way, and
assume ℓ(w) = k + ℓ. But since w is in [W∗\W ] and the si in W∗, k = 0. So w is a
sub-product of tj and w ≤ x0.

Step (2) To prove the Lemma itself, with P minimal. The argument comes in two halves:
(a) PP oppw ⊆

⋃
x≥w PxP and (b) PwP ⊆ PP oppw. For the first, note that

PP oppwP = PwℓPwℓwP ⊆
⋃

y≤wℓ

PwℓyP =
⋃

y≥w

PyP

since u ≥ v ⇔ wℓu ≤ wℓv.

The second is because

PwPw−1P oppw = PwPw−1wℓPwℓw = PwℓPwℓw

since PuP PvP = PuvP whenever ℓ(uv) = ℓ(u) + ℓ(v).

Corollary.

P∗wP opp ∪
⋃

x 6≥w

P∗xP opp = P∗P
oppw ∪

⋃

x 6≥w

P∗P
oppx

So now what we have to do is look at the matrix coefficient when f has support on P∗N
oppx

and ϕ has support on P∗N
opp
∗ y, where x and y are in [W∗\W ]. But in this case the

calculation is simple, and I leave it as an exercise.

∗ ∗ ∗

Now let me turn to real groups. For p-adic groups I was able to define a filtration of
principal series according to support on Bruhat closures. For real groups, this is not so
simple. Consider as an example the representation of SL2(R) on the space of functions on
P(R). The point ∞ is stable under the Borel group P of upper triangular matrices, and its
complement is one large P -orbit. One candidate for a P -stable filtration might be the one
whose bottom term consists of those functions vanishing at ∞. But for reasons similar to
those leading me to reject V/nV as a Jacquet module, this is not a good definition. Instead,
following the reasoning I used there, we are led to define Iw to be the space of all smooth
functions on P(R) vanishing of infinite order at ∞, and I1 to be the quotient. The trouble
with this is no K-finite function lies in Iw, so we must consider instead the whole space of
smooth functions on P(R). We get an exact sequence

0 → I∞w → I∞ → I∞1 → 0

where the right hand map is that taking f to its Taylor series at ∞. The spaces I∞w and I∞1
are not stable under G but they are stable under U(g). As a representation of N the space
Iw is isomorphic to the Schwartz space of N , while I1 is that of formal power series in 1/x.
The action of N on these spaces is simple.

The space I1 is as a module over g isomorphic to the Verma dual

HomU(p)(U(g), C)
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where p acts trivially on C, on the left on U(g). It is the linear dual of the Verma module
U(g) ⊗U(p) C. So things should look a bit familiar.

We can now filter the space I∞[n] as we did for p-adic groups. The point now is that our
filtration gives although the filtration by Iw, 1 is not one of K-finite functions, it does give
a filtration of the n-completion of the K-finite functions.

Since we know that asymptotic behaviour factors through n-completions, we now do as
before and discuss the asymptotic behaviour of smooth functions with support on various
covering sets of P(R).

Thus, it seems to me plausible that the results we want have to pass through an analysis

of n-completions and smooth representations of G, and even some relationship between the

two.

Let me say a bit more. Suppose G arbitrary. Let σ be a finite-dimensional representation
of P . Define Ind∞(σ |P, G). Frobenius reciprocity holds for smooth induction, too. But it
has a topological qualification:

HomG,cont(V, Ind∞(σ)) ∼= HomP,cont(V, σ)

for any smooth G-representation V . (Here I will forget the δ1/2 factor.) We can write the
right-hand side as

HomP (σ̂, V̂ )

where now V̂ is the continuous dual of V . Since n acts nilpotently on σ, this is the same as

HomP (σ̂, V̂ [n])

Continuity matters disappear if we take V to be one of the canonical smooth representations
defined by Wallach and me. Also, for I itself I/nmI is always finite-dimensional.

We seem to need now the fact that the n-completions of I and I∞ are the same, and (g, K)
maps between K-finite representations extend continuously to smooth ones (more of Wallach
and me).

So we now must look at the asymptotic behaviour of matrix coefficients for the smooth
principal series. Whereas for K-finite functions the asymptotic series converge, this does
happen here. We are in effect doing some simple calculus.

At any rate, the next step is to define a filtration I∞ of any smooth principal series or,
using Casselman-Wallach, representations induced from canonical smooth representations
of parabolic subgroups. I will deal with the general case in the next letter, and here finish
by looking at SL2(R).

We want to describe the matrix coefficient 〈Raf, ϕ〉 where f is inInd(σ |P, G) and ϕ in
Ind(σ−1 |P, G) (σ a character). By techniques described above, we break ϕ into two pieces,
each vanishing at infinity on two open subsets of G. Say, for example, that ϕ vanishes of
infinite order along Pw. We can look at the convergent integral

∫

Nopp

f(na)ϕ(n) dn

where f has some kind of moderate growth along Pw. Here a > 0. The integral becomes

∫

R

ϕ(x)f(cx) dx



Casselman-Arthur #4 13

with ϕ in the Schwartz space, and we now take c → 0. Expand

f(x) =
∑ f (n)(0)

n!
xn

at 0. Then our integral becomes formally

∑
cn f (n)(0)

n!

∫
xnϕ(x) dx

The coefficients here are like those defining intertwining operators, except that they come
from distributions

f 7→ f (n)(0), ϕ 7→

∫

R

xnϕ(x) dx

which is n-nilpotent instead of n-invariant. When n = 0 they are the standard ones, however.
Next time, more details. We are getting close.

Cheers,

Bill
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October 9, 1980

Dear Jim,

This is #5. I continue with the discussion of asymptotics for real groups.

I begin by generalizing the calculation I did at the end of the last letter for arbitrary groups.
Suppose P∗ = P∅ = P , σ a character of P , ϕ in Ind(σ−1|P, G) with support on PP opp.

Restricted to Nopp the function lies in S(R). The matrix coefficient is

∫

Nopp

f(xa)ϕ(x) dx =

∫

Nopp

f(a a−1xa)ϕ(x) dx = σ(a)

∫

Nopp

f(a−1xa)ϕ(x) dx

Express f near 1 on Nopp in terms of Taylor’s series

f(x) ∼
∑

Φ

DΦf(1)Φ(x)

where the sum is over polynomials Φ on Nopp. Keep in mind that U(nopp) and the space
of polynomials are in duality via 〈D, Φ〉 = DΦ(1). Choose Φ to be eigenvectors of A, DΦ a
dual basis. So we get an expansion

σ(a)
∑

Φ

(DΦf)(1)χΦ(a−1)

∫

Nopp

Φ(x)ϕ(x) dx

The coefficients as functionals acting on f and ϕ are all nopp-finite.

In the more general case, nothing quite so explicit is possible, or at least very elegant. The
best framework seems to be the one using by n-completion mechanism. I showed earlier
that for finitely generated Harish-Chandra modules we expect an isomorphism

(V[n])
[nopp] → Û [nopp]

where U = Ṽ , and now I want to add that I expect such an isomorphism to hold for each of
the pieces in the Bruhat filtration of the smooth induced representations, where we extend σ
to be the canonical smooth extension of the Harish-Chandra module constructed by Wallach
and me. We expect this isomorphism to be explicit and natural on each piece.

Let me try to restate what I mean in more precise terms, and at the same time recall what
I need.

Let (σ, U) be a ‘reasonable’ smooth representation of the parabolic subgroup P , σ̃ a rea-
sonable smooth contragredient. We want 〈σ(p), u, ũ〉 to have nice asymptotic behaviour.
Among other things σ should be nilpotent on n. Let X the quotient of Ind∞(σ |P, G) by
the subspace of functions vanishing along P . This is algebraically Hom(g,P )(U(g), σ). let Y
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be the space of ϕ in Ind(σ̃ |P, G) vanishing of infinite order along the complement of PP opp.
We can pair these two spaces and define

〈Raf, ϕ〉 =

∫

Nopp

〈f(an), ϕ(n)〉 dn

The asymptotics of this turn out to depend only on the image of f in X , thus inducing a
map

(X[n])
[nopp] → Ŷ [nopp]

which, like the original canonical map is an isomorphism. This map can be given explicitly
in terms of the canonical dual maps for σ, and that is what you (and I) want to know.

Let me go back again to P = P∅ to avoid topological questions. Then σ is finite dimen-
sional. Here X = X[n]. The subspace of nopp-torsion in X consists simply of the image of
polynomials on Nopp with values in σ. That is to say we are mapping them to their Taylor’s
series at 1. But now such polynomials give rise canonically to elements of Ŷ [nopp] as well,
via integration:

ϕ 7→

∫

Nopp

〈Φ(x), ϕ(x)〉 dx

The theorem is now that this natural map is the one given by asymptotics.

The argument for proving this is the same as the one at the beginning of this section.

Now look at the general case. Suppose we are given the canonical map for σ. The space
(X[n])

[nopp ] is identical with polynomials on Nopp with values in (U[n∅])
[nopp

∅
], which we know

maps canonically into
̂̃
U

[nopp

∅
]

, say via ι. Since nopp is an ideal in n
opp
∅ , n

opp
∅ acts nicely on

this. Again the polynomial Φ corresponds to an element of Ŷ [nopp

∅
], the one taking

ϕ 7→

∫

Nopp

〈ιΦ(x), ϕ(x)〉 dx

A very similar formula always holds for every component of the Bruhat filtration. I find
this independence of context very striking.

This must be almost what you want, although I have to confess your notation is sufficiently
different from mine that I don’t understand your notes so well.

Regards,

Bill
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June 27, 1981

Dear Jim,

This is the last letter in the series. I don’t see any more difficulties. The technical result
we need, the decomposition of a Schwartz space into sums (a kind of partition of unity),
turns out to be already known and indeed in the literature. It is a well known result of
 Lojasiewicz, and I found it referred to in a paper of Kashiwara’s.

Here are some comments on your manuscript . . .

Regards,

Bill


