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Abstract: A variant of Hadamard’s notion of partie finie is applied to the

theory of automorphic functions on arithmetic quotients of the upper half-plane.

As a consequence, conceptually simple proofs of the volume formula and the

Maass-Selberg relations are given. This technique interprets Zagier’s idea of

renormalization (Jour. Fac. Sci. Univ. Tokyo 28 (1982), 415–437) so that it can

be generalized easily to higher rank quotients (which is not done in this paper,

however).
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Extended automorphic forms on the upper half plane

W. Casselman

Introduction

Formally,
∫ ∞

0

xs dx =

∫ 1

0

xs dx +

∫ ∞

1

xs dx.

The first integral on the right converges for Re(s) > −1 and is then equal to 1/(s+1). The second

converges for Re(s) < −1 and is then equal to to −1/(s + 1). Hence, defining the integral by

analytic continuation, we can write (at least if s 6= −1)

∫ ∞

0

xs dx = 0.

This paper will show how to justify this calculation, and similar ones where the domain of inte-

gration is replaced by arithmetic quotients of the upper half plane and the integrand by certain

automorphic forms. It will also explain by examples why being able to justify such calculations is

useful. The first example will be a new calculation of the area of such a quotient, and the second

will be a new derivation of the Maass-Selberg formula for the inner product of truncated Eisenstein

series. These examples may not seem very interesting, but I hope they will offer evidence of the

potential of the idea. I will show in a subsequent paper that all of the notions in this paper can

be extended to the case of arithmetic groups of arbitary rank, taking into account the the Arthur-

Langlands theory of truncation. The examples here generalize easily to give respectively the volume

formula of Langlands (1966a) and Lai (1980) and the inner product formula of Langlands (1966b)

and Arthur (1980) (see also Labesse-Langlands (1983) and Arthur (1982)).

When I described some of the results of this paper to Jacquet several years ago, he pointed

out similarities with the ideas of Zagier (1982), and the current formulation has been strongly

influenced by that paper. It provides a more automatic method of justifying Zagier’s calculations,

and in such a way that extension to groups of higher rank is straightforward. It is worthy of remark

that one of Zagier’s topics is the Selberg trace formula, which is not covered here at all. I would

like to think that eventually a serious connection may be found to it.
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It is also perhaps worth remarking that the techniques of this paper extend with mild modifica-

tion to reductive groups over local fields. The main application to local representation theory is an

inner product formula for truncated matrix coefficients, generalizing the formulas of Waldspurger

(1989) and Arthur (1991) and it turns out that this can be used to give a direct construction of

the Plancherel measure.
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1. The multiplicative group

The simplest reductive arithmetic quotient is the multiplicative group of positive real numbers.

Define the Schwartz space S(0,∞) to be the space of all functions in the Schwartz space of R which

vanish identically on (−∞, 0). In other words a smooth function f on the open interval (0,∞)

lies in this space if and only if it and all the derivatives dnf/dxn vanish at infinity and at 0 more

rapidly than any power of x. This is equivalent to the same condition on the derivatives D nf where

D is the multiplicatively invariant derivative xd/dx.

In this paper I define the extended Schwartz space S[0,∞) to be that of all smooth functions

f on (0,∞) obtained by restricting to (0,∞) smooth functions on all of R which lie in the Schwartz

space of R and whose Taylor series at 0 comprises just a constant term. This definition is the crux

of this paper. It may seem at first somewhat arbitrary, but in the context of arithmetic quotients

seems to balance nicely several ultimate requirements. In another context, that of representations

of SL2(R), the correct definition would be simply the restrictions to [0,∞) of all functions in the

Schwartz space of R. The difference between the two contexts is essentially the difference between

the asymptotic behaviour of automorphic forms and of matrix coefficients—the second case is more

complicated. In any event, the basic idea in all cases is a variant of Hadamard’s definition of the

partie finie.

I will define the spaces of tempered distributions A(0,∞) and extended distributions A[0,∞)

to be the respective duals. The multiplicative group Rpos acts on these spaces by the right regular

representation.

The canonical inclusion gives a short exact sequence of Rpos-modules

0 → S(0,∞) → S[0,∞) → C → 0

where the third term is the trivial representation, and dually

0 → C → A[0,∞) → A(0,∞) → 0. (1.1)

Let C[s] be the one-dimensional module on which Rpos acts by the character xs, and on which the

differential operator D acts as multiplication by s. The integration formula

〈xs, f〉 =

∫ ∞

0

f(x)xs dx/x

corresponds to an Rpos-injection of C[ s ] into A(0,∞). As a functional as well as a function it thus

satisfies the equation Dxs = sxs.
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1.1. Proposition. For s 6= 0 there exists a unique eigenvector of D in A[0,∞) extending the

functional xs on S(0,∞).

I will call the extension e(xs). Zagier calls it the renormalization of xs.

Proof. Any short exact sequence of C[D ]-modules

0 → A → B → C → 0

gives a long exact sequence

0 → KerA(D − s) →KerB(D − s) → KerC(D − s)

→ A/(D − s)A → B/(D − s)B → C/(D − s)C → 0.

Hence if D−s is invertible on C with itself, inclusion induces an isomorphism of the C[D]-modules

A/(D − s)A and B/(D − s)B.

Apply this argument to the sequence (1.1). If s is not 0 then D − s is an isomorphism on

C, so that restriction induces an isomorphism between the subspaces of elements of A[0,∞) and

A(0,∞) annihilated by D − s.

Another way of formulating the main point of the argument is to say that the spectrum of the

quotient S[0,∞)/S(0,∞) (with respect to the operator D) is exactly {0}.

More explicitly, since the derivative of any f in S[0,∞) lies in S(0,∞), for every s 6= 0

integration by parts suggests the definition

〈e(xs), f〉 = −
1

s

〈

xs+1, df/dx
〉

This definition of the extended functional e(xs) (a very simple case of Hadamard’s partie finie) is

easily seen to agree with the previous one. It shows that the definition of the extension may be

characterized as by analytic continuation.

More generally, if M is any module over the polynomial algebra C[D] on which multiplication

by D is bijective (say on which D − s acts nilpotently for some s 6= 0), then the proof of Proposi-

tion 1.1 shows that any D-covariant map from M to A(0,∞) possesses a unique lifting to A[0,∞).

Corresponding to the product formula

Dxs logn x = sxs logn x + nxs logn−1 x

xs logn x =
1

s
Dxs logn x −

n

s
xs logn−1 x
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or (again) integration by parts, we define the extension of the distribution associated to x s logn x

by induction on n:

〈e(xs logn x), f〉 = −
1

s

∫ ∞

0

(df/dx)xs logn x dx −
n

s
< e(xs logn−1 x), f > .

For any s in C define As(0,∞) to be the subspace of distributions of the form xsP (logx) where P

is a polynomial. Then in summary:

1.2. Proposition. For s 6= 0 every element in As(0,∞) possesses a canonical lifting to A[0,∞).

More precisely, if P is a polynomial of degree n then e(xsP (logx)) varies meromorphically with s,

holomorphically in the region C − {0}, and with a pole of order n at 0. In particular the residue

of xs at 0 is δ0.

We are not quite to the point where we can integrate x s over all of (0,∞), but close. Define

now third and fourth Schwartz spaces S(0,∞] and S[0,∞] to be respectively the smooth functions

f on (0,∞) such that f(1/x) lies in S[0,∞); the sums of functions in S[0,∞) and S(0,∞]. Define

A(0,∞], A[0,∞] to be their duals. Since the constant functions are elements of S[0,∞], any

element of A[0,∞] can in effect be integrated over the whole interval (0,∞). All that remains is

to show:

1.3. Proposition. For each s 6= 0 every element Φ of A(0,∞) possesses a canonical extension

e(Φ) to A[0,∞]. This functional varies meromorphically with s and has a single pole at 0.

Proof. Not much different from that of Proposition1.1. Explicitly one can define the extension

locally near 0 and ∞, by writing an element of S[0,∞] as a sum of two parts.

If δ∞ is the functional on S[0,∞] which takes f to f(∞):

1.4. Proposition. The residue of the extension of xs at s = 0 is equal to δ0 − δ∞.

Proof. I leave this as an exercise.

1.5. Corollary. For s 6= 0,

〈e(xs logn x), 1〉

(

formally

∫ ∞

0

xs logn x dx/x

)

= 0.
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Proof. Look at the case n = 1: by definition of the dual representation

〈Dxs, 1〉 = s 〈xs, 1〉

= 〈xs,D1〉 = 0.

It is useful to keep in mind that multiplication makes the space A[0,∞] into a module over

S[0,∞]:

〈fΦ, ϕ〉 = 〈Φ, fϕ〉 .

Similarly of course if s, t, s + t are all non-zero then the product of any two elements F t and Fs in

As and At, which lies in As+t, as well as Fs and Ft, have canonical extensions. The product rule

for differentiation holds in all these cases. Since 〈D(Fs · Ft), 1〉 = 0:

1.6. Proposition. For any two functions Fs and Ft in As[0,∞) and At[0,∞) (with all of s, t,

s + t not 0) we have

〈DFs · Ft, 1〉 = −〈Fs · DFt, 1〉 ,

and more generally

〈LFs · Ft, 1〉 = 〈Fs · L
∗Ft, 1〉

for any polynomial L in D, where L∗ is the differential operator adjoint to L.

It is also useful to keep in mind that if χ is the characteristic function of a half-line (0, T ] or

[T,∞), then χ(x)xs can be interpreted canonically as an element of A[0,∞]: write f in S[0,∞]

as a sum of elements f1, f2 in S[0,∞], one with support on the half-line, the other eventually

identically vanishing on the half-line. Then the definition

〈e(χ(x)xs), f〉 := 〈e(xs), f1〉+ 〈χ(x)xs, f2〉

is independent of the particular choice of the f i. One could also define the functionals by means

of integration by parts:

∫ T

0

xsf(x) dx/x =
T sf(T )

s
−

1

s

∫ T

0

(df/dx)xs dx.

Of course
∫ T

0

xs dx/x = T s/s,

∫ ∞

T

xs dx = −T s/s

for all s where e(xs) is defined.
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2. The upper half plane

Let Γ be a discrete subgroup of SL2(R) such that (a) Γ\H has finite volume and (b) Γ has one

cusp. The second condition is for convenience. Let P be the subgroup of upper triangular matrices

in SL2(R), N its subgroup of unipotent matrices. For further convenience I will assume that the

cusp is ∞ and that

(

1 1
0 1

)

generates Γ ∩ N . The best known example would be SL2(Z).

Choose on H the SL2(R)-invariant metric

(dx2 + dy2)/y2

with associated volume form and Laplacian

ω =
dx dy

y2
, ∆ = y2(∂2/∂x2 + ∂2/∂y2).

I recall that the Schwartz space S(Γ\H) is the space of smooth functions f on Γ\H such that

f and all its derivatives ∂nf/∂mx∂n−my decrease more rapidly than any power of y as y goes

to infinity. Define the extended Schwartz space SExt(Γ\H) of the quotient to be the space of all

smooth functions f on Γ\H which may be expressed as the sum of a function in S(Γ\H) and a

function of y alone which lies in S(0,∞]. Define A(Γ\H), AExt(Γ\H) to be the respective dual

spaces.

We have a short exact sequence of ∆-spaces

0 → S(Γ\H) → SExt(Γ\H) → C → 0.

Of course since functions in SExt(Γ\H) are bounded, there is a canonical embedding of L1(Γ\H),

and of its subspace L2(Γ\H), into AExt(Γ\H).

The space A(Γ\H) contains the space Aumg(Γ\H) of functions f on Γ\H such that for some

integer n all the ∆mf are of order yn at infinity (such functions are of uniform moderate growth). It

is well known (see Casselman (1984) for an awkward attempt at a direct proof) that the asymptotic

behaviour of f at infinity is under this assumption controlled by that of its constant term, defined

as the function f0(y) where

f0(y) =

∫ 1

0

f(x + iy) dx.

The exact statement is that for y >> 0 the function f(x+ iy)−f 0(y) has order of decrease greater

than any inverse power of y. The space Aumg(Γ\H) contains as a subspace that of automorphic
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forms, which have in addition to the growth condition the requirement that they be annihilated

by some ideal in C[∆] of finite codimension.

For any finite subset S ⊆ C define AS(Γ\H) to be the space of functions in Aumg(Γ\H) whose

constant term is a sum of terms of the form y sP (log y) for s ∈ S, P a polynomial. If Φ is any

element of AS(Γ\H) where S does not contain 1, then we may extend Φ to an element e(Φ) of

AExt(Γ\H) in the following way: given f in SExt(Γ\H), let f∞ be the function χ(y)f0(y) made

Γ-invariant, where f0(y) is the constant term of f , and χ(y) is a suitable smooth cut-off function,

identically 1 for y large, identically 0 for y a little less large. Then f − f∞ lies in the Schwartz

space and we set

〈e(Φ), f〉 = 〈Φ, f − f∞〉Γ\H
+ 〈e(ϕ), f∞/y〉(0,∞]

where ϕ is the constant term of Φ. The factor 1/y arises because of the difference between the

measures dy/y used in the last section and dy/y 2 used in this one. This definition turns out not

to depend on the choice of cut-off χ(y). It is canonical in any of several ways:

2.1. Proposition. This manner of extension is compatible with ∆:

(a) For any Φ in AS(Γ\H) where S does not contain 1, ∆e(Φ) = e(∆Φ).

(b) For any two functions Φ1 and Φ2 in AS1(Γ\H) and AS2(Γ\H), where S1 +S2 does not contain

1, Green’s formula holds:

〈∆Φ1 · Φ2, 1〉 = 〈Φ1 · ∆Φ2, 1〉 .

These follow from the definition and the corresponding results in one dimension.

Recall that the Eisenstein series Es for s in C with Re(s) > 1 is defined by the convergent

series

Es(z) =
∑

Γ∩P\Γ

y(γz)s.

If Γ = SL2(Z) then this is the Maass function

∑

(c,d)=1, c>0

ys

|cz + d|2s
.

The function Es is real-analytic on Γ\H, and an eigenfunction of ∆ with eigenvalue s(s − 1). It

continues meromorphically as a function of the parameter s to all of C. For all s where defined

satisfies the equation

∆Es = s(1 − s)Es;
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and near infinity it is the sum of a Schwartz function and its constant term

ys + c(s)y1−s

where c(s) is a meromorphic scalar function on C. Furthermore E s satisfies the functional equation

Es = c(s)E1−s.

If Γ is SL2(Z) then

c(s) =
ξ(2s− 1)

ξ(2s)

(

ξ(s) = πs/2Γ(s/2)ζ(s)
)

.

2.2. Corollary. Any Es where Es is defined and s 6= 0, 1 has a unique extension which remains

an eigenvector of ∆.

The poles of Es in the right hand plane Re(s) ≥ 1
2

are known to lie in the interval ( 1
2
, 1]. The

residue at 1 is a constant function (since it is harmonic and asymptotic to a constant). It is in fact

the constant

c∗(1) = Residues=1c(s).

If Γ is SL2(Z) this is just 1/ξ(2). This residue is of course also the residue of E(s) considered as

a tempered distribution on Γ\H. The extended distribution e(Es) has also a simple pole, but its

residue is slightly more complicated. Note that at least since constants are square-integrable, they

may be canonically identified with extended distributions.

2.3. Proposition. The residue of e(Es) at s = 1 is c∗(1)− δ∞.

Since constants lie in SExt(Γ\H), any extended distribution may be paired with constants, or

in other words integrated over Γ\H. Since the extension of Es is still an eigenfunction for ∆, an

argument entirely similar to that for the proof of Proposition1.4 implies:

2.4. Lemma. For non-integral s where Es is defined

〈Es, 1〉

(

formally

∫

Γ\H

Es
dx dy

y2

)

= 0.

Letting s = 1 and applying Proposition2.3:

2.5. Proposition. The volume of the quotient is

∫

Γ\H

dx dy

y2
=

1

c∗(1)
.
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The product of two Eisenstein series Es and Et has as asymptotic expansion near infinity the

sum of four terms whose exponents are s + t, 2 − s − t, 1 − s + t, 1 − t + s. As long as s and t

are not singular parameters and as long as none of these exponents is 1, the product E sEt can be

extended canonically, hence integrated over all of the quotient. From Proposition2.1 and the usual

argument for the orthogonality of eigenvectors:

2.6. Proposition. Whenever the product EsEt may be canonically extended

〈EsEt, 1〉

(

formally

∫

Γ\H

EsEt
dx dy

y2

)

= 0.

Let T be a large positive number. Define the corresponding truncation ΛT (F ) of any function

F on Γ\H to be just F in the region y ≤ T of the fundamental domain, but F − F 0 in the region

y > T . Let CT (F ) be the remainder, equal to 0 inside and F0 outside. The decomposition

F = ΛT (F ) + CT (F )

is orthogonal in practically any sense. If F is an automorphic form, then its truncation is rapidly

decreasing near infinity. In particular the truncation of Es will be square-integrable. Since trunca-

tion is an orthogonal projection, it may be therefore defined on the spaces of tempered distributions

and extended tempered distributions by duality.

2.7. Corollary. (The Maass-Selberg formula) For any values of s and t

〈

ΛT (Es),Λ
T (Et)

〉

=
T s+t−1 − c(s)c(t)T 1−s−t

s + t − 1
+

c(t)T s−t − c(s)T t−s

s − t
.

Proof. By Corollary 2.2, for generic s and t the product of Es and Et may be integrated over Γ\H,

and by Proposition 2.6 the integral is 0. But expressing Es as ΛT (Es) + CT (Es) we then have

〈

ΛT (Es),Λ
T (Et)

〉

+
〈

CT (Es), C
T (Et)

〉

= 0,

where the second term must be interpreted in the light of the remarks at the end of the previous

section, that is to say by analytic continuation. Thus in the same spirit

〈

ΛT (Es),Λ
T (Et)

〉

=

∫ T

0

(

ys + c(s)y1−s
)(

yt + c(t)y1−t
) dy

y2

which gives the Corollary.
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