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Approximating irrational numbers by rational ones

I intend this essay to be a brief introduction to continued fractions. There is a huge literature on this topic,
but my approach will be more geometric than most. This has the potential to make many points more

transparent, although whether my current version does so is moot.

There are several rather different reasons why continued fractions are interesting. One is that they produce

very good rational approximations to real numbers. In practice this doesn’t seem to be all that useful, but

continued fractions have been used to prove certain numbers (for example e) to be transcendental. (For more
about this, look at the mathoverflow discussion mentioned in the list of references.). Another important

application, and my immediate motivation, is to the arithmetic of quadratic extensions of Q.

Connections with other branches of mathematics are described briefly in the Wikipedia entry on continued

fractions. In addition to arithmetic continued fractions, there are analytic continued fractions, in which

continued fractions involving functions are used to approximate quite general functions. I’ll say nothing
about these, beyond the remark that one place to see at least some information on this topic is the Wikipedia

entry on Padé approximants. There are also applications to combinatorics.
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1. Introduction

Suppose λ > 0 to be irrational. Given a positive integer q, the number λ lies in one of the halfopen intervals

[p/q, (p + 1)/q), in which case
∣

∣

∣

∣

λ − p

q

∣

∣

∣

∣

<
1

q
.

The inequality above is equivalent to

|p − qλ| < 1 .

Given q, finding p is simple since
⌊qλ⌋ < qλ < ⌊qλ⌋ + 1 .

This can be pictured—the claim is just that the line y = λxmeets the linex = q at adistance less than 1 from the

point (q, p). The figure below illustrates how things look when λ is the golden ratio τ = (1+
√

5)/2 ∼ 1.618.

How lattice points approximate y = τx

This is the content of decimal approximations: e− 2718/1000 < 1/1000. Of course we can do slightly better
without extra work, getting a gap of 1/2q rather than 1/q. This is not significant. But the figure also shows

that the way in which lattice points approach the line y = τ x is rather erratic. There are evidently some

which are very close to the line, meaning that some fractions approximate τ very closely. The following well
known result tells us that we can do arbitrarily well:

1.1. Proposition. There exist points of the lattice arbitrarily close to the line y = λx, on both top and bottom.

This is equivalent to the superficially more general:

1.2. Proposition. If λ is irrational, the points nλ modulo 1 are dense in [0, 1].

Proof. I’ll first show that for any N > 0 there exists m, n such that |nλ−m| < 1/N . Plot the N + 1 numbers

nλ − ⌊nλ⌋ for 1 ≤ n ≤ N + 1. Because there are N intervals [i/N, (i + 1)/N in [0, 1] and N + 1 of these
numbers, at least two of the numbers must lie in the same interval, say for n1λ and n2λ with n2 > n1. But

then there exists some integer m such that

|(n2λ − n1λ) − m| = |(n2 − n1)λ − m| < 1/N .
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If nλ = m + ε with |ε| < 1/N then each interval of width 1/N will contain a number of the sequence knλ
modulo 1.

There is a very simple if inefficient procedure for finding good approximations, just scanning horizontally

from one approximation until you find a closer one. However, we can do much better.
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2. Continued ...

It is natural to ask, what are the best rational approximations to any given real number λ? In a precise

formulation, I call (m, n) with n > mλ optimal if (m, n) is closer to the line y = λx than any other point
(q, p) such that p > λq and q < n. Similarly for a point with n < mλ. In the following figure, the point

(n, m) is optimal.

(n,m)

y
=

λx

How can one find optimal points? Continued fractions give a good answer to this question. I’ll present here

a graphical version of the method due implicitly to the nineteenth century English mathematician Henry J.
Smith (in a casual observation at the end of [Smith:1876]) and explicitly to Felix Klein.

Let λ+ be the set of all lattice points in the positive quadrant above the line y = λx, and λ− be that of all
lattice points in the same quadrant below it. Let C± be the corresponding convex hulls. The space between

C+ and C− contains no lattice points, since λ is irrational. Let ∂+ be the bottom boundary of C+, ∂− the
upper boundary of C−. Let d+ be the set of lattice points on ∂+, d− those on ∂−

The following figures illustrate these sets for λ = τ and
√

2.

C−

C+

λ = τ

C−

C+

λ =
√

2
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2.1. Lemma. If P = (q, p) is a point of ∂+, then in the region x ≥ q the line y = λx lies below the line
through P parallel to it. Similarly for a point of ∂−.

Proof. Both C+ and C− are convex. Proposition 1.1 implies that each of them approaches arbitrarily closely

to the line y = λx.

The points of the sets d± will certainly give good rational approximations to λ, and it turns out that there is

a very efficient way to find them. The starting point is this elementary observation:

2.2. Lemma. Set ℓ = ⌊λ⌋. Then
(a) (0, 1) is a vertex of C+;
(b) the points (1, i) for 0 ≤ i ≤ ℓ lie in d−, and the endpoint (1, ℓ) is a vertex of C−;
(c) the points listed above are all the points of C− in the region x ≤ 1.

The coordinates here are, of course, in the standard rectangular system.

u0

v0
v1u1

But now I change the basis of the lattice Z2. To make notation simpler, set λ0 = λ and ℓ0 = ⌊λ⌋. The old

basis is u0 = (1, 0) and v0 = (0, 1), while the new one is

u1 = v0 = (0, 1)

v1 = u0 + ℓ0v0 = (1, ℓ0) .

In other words, I shear the original basis and reverse orientation as well. With this new basis, we have a new

coordinate system (x1, y1). The associated change of coordinates is

x0 = y1

y0 = x1 + ℓ0y1 .

We can substitute and solve for y1.

• The line y0 = λ0x0 is now the line
y1 = λ1x1 .

if λ1 = 1/(λ0 − ℓ0).

The next basic observation is:

The points of d± in the new coordinate system are the same as those of the old, except that we have
lost all the points on the line x = 1 in the old system, other than the vertex v1.



Approximating irrational numbers by rational ones 6

v1u1

v2

u2

In other words, we are in essentially the same situation as when we started out.

This leads to an infinite inductive process. We may continue on forever to find new boundary lattice points

and new bases, as well as edges connecting them to one of the boundary points already found. Sooner or

later every boundary lattice point will arise. The extremal points among these are vertices of C±. Expressing
the points we find in the original coordinate system, we find the approximations we are looking for, as in the

classical form of continued fractions.

Restricting ourselves to vertices, we get in this way a sequence of bases (un, vn):

u0 = (1, 0)

v0 = (0, 1)

λ0 = λ

ℓ0 = ⌊λ0⌋

u1 = (0, 1)

v1 = (1, ℓ0)

λ1 = 1/(λ0 − ℓ0)

ℓ1 = ⌊λ1⌋
. . .

un = vn−1

vn = un−1 + ℓn−1vn−1

λn = 1/(λn−1 − ℓn−1)

ℓn = ⌊λn⌋ .

Note that un + ℓnvn = vn+1 = un+2.

As a consequence of this construction and Lemma 2.2:

2.3. Theorem. Each set ∂± is the union of segments u, u + v in which u and v make up a lattice basis, and
one each in d±.

Define sequences (pn), (qn) by the specification un = (qn−2, pn−2). The recursive formula for the vectors un

then give us initial conditions and recursive formulas. The basic step goes

(2.4)
pn = pn−1ℓn + pn−2

qn = qn−1ℓn + qn−2 .

One can make the process into a simple worksheet:
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n λn ℓn pn qn

−2 0 1
−1 1 0

0 λ ℓ0 = ⌊λ0⌋ 1 1
. . .

n − 2 pn−2 qn−2

n − 1 λn−1 ℓn−1 pn−1 qn−1

n λn = 1/(λn−1 − ℓn−1) ℓn = ⌊λn⌋ pn−1ℓn + pn−2 qn−1ℓn + qn−2

For example with λ =
√

2:

−2 0 1
−1 1 0

0
√

2 1 1 1
1 1 +

√
2 2 3 2

2 1 +
√

2 2 7 = 2 ·3 + 1 5

I recall that the pn/qn are the successive approximations to the original λ.

The recursion formulas can be encapsulated in terms of matrices

Γn = [ un vn ]

whose columns are the vectors in the nth basis:

Γ0 = [ u0 v0 ]

=

[

1 0
0 1

]

Γ1 = [ u1 v1 ]

=

[

0 1
1 ℓ0

]

. . .

Γn = [ un vn ]

= Γn−1

[

0 1
1 ℓn−1

]

.

Induction shows that det(Γn) = (−1)n. Since

Γn =

[

qn−2 qn−1

pn−2 pn−1

]

,

this leads to an agreeable fact:

2.5. Proposition. The numbers pn, qn are relatively prime.

Examples. (1) If λ is the root of a quadratic polynomial with rational coefficients, its continued fraction is

eventually repetitive. For example, say λ = λ0 = τ . Then

ℓ0 =

⌊

1 +
√

5

2

⌊

= 1

λ1 =
1

λ0 − 1

=
1

(−1 +
√

5/2)

=
2(−1 −

√
5)

1 − 5

= τ .
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At this point things repeat, and in this case ℓn = 1 for every n. Similar periodicity occurs for every quadratic
irrational number. The earliest systematic reference to this phenomenon that I know of is [Euler:1744].

(2) Other examples for which the behaviour of the sequence (ℓn) is regular or even predictable are rare.

[Euler:1744] finds the sequence of the ℓn for several numbers related to e. For e itself it is

2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . .

This was a remarkable discovery, because ordinary floating point calculations to get a long and accurate

expansion require high precision. Euler evenmanaged to prove the expansion to be correct, by an even more
remarkable analysis (in §§28 ff.) of solutions of Riccati’s differential equation. (This is related to the subject

of analytic continued fractions I mentioned in the Preface.)

In contrast, the continued fraction of π shows no comprehensible pattern.
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3. ... fractions

The equation relating λn and λn+1 can be reformulated as

(3.1) λn = ℓn +
1

λn+1

.

We then deduce by induction a sequence of equations:

(3.2)

λ = λ0

= ℓ0 +
1

λ1

= ℓ0 +
1

ℓ1 +
1
λ2

= ℓ0 +
1

ℓ1 +
1

ℓ2 +
1

λ3

. . .

If pn/qn is the corresponding nth rational approximation, then

p0/q0 = ℓ0

p1/q1 = ℓ0 +
1

ℓ1

p2/q2 = ℓ0 +
1

ℓ1 +
1
ℓ2

p3/q3 = ℓ0 +
1

ℓ1 +
1

ℓ2 +
1

ℓ3

. . .

This explains the term ‘continued fractions’. To avoid typesetting problems, I’ll express the first, for example,

as

〈〈ℓ0, ℓ1, ℓ2, λ3〉〉 .

Another commonly used expression is

ℓ0 +
1

ℓ1+

1

ℓ2+

1

λ3

.

I’ll now be a bit more formal. If (xi) is any finite array of real numbers, define 〈〈x0, . . . xn〉〉 by induction on

n:

(3.3)
〈〈x0〉〉 = x0

〈〈x0, . . . , xn〉〉 = x0 +
1

〈〈x1, . . . , xn〉〉
.

This recipe makes sense even if xi = ∞, with the understanding that 1/∞ = 0.

It is not difficult to verify a second inductive formula:

(3.4) 〈〈x0, . . . , xn−1, xn〉〉 = 〈〈x0, . . . , xn−1 + 1/xn〉〉 .
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3.5. Lemma. Suppose x0 to be an integer and that xi ≥ 1 for i ≥ 0. Then

x0 = ⌊〈〈x0, . . . , xn〉〉⌋
unless n = 1 and x1 = 1. In the exceptional case

x0 = ⌊〈〈x0, . . . , xn〉〉⌋ − 1 .

Proof. Because of (3.4) , since 〈〈x0, . . . , xn〉〉 > 1 if n ≥ 1.

3.6. Proposition. If λ > 0 is irrational then there is exactly one sequence (ℓn) such that

λ = 〈〈ℓ0, ℓ1, ℓ2, . . . 〉〉 .

Proof. This follows immediately from the Lemma.

3.7. Proposition. If λ is rational there are exactly two such expressions. Given ε = ±1 then there is exactly
one finite array such that

λ = 〈〈ℓ0, . . . , ℓn−1〉〉
with (−1)n = ε.

Proof. Suppose
cf(λ) = (ℓ0, . . . , ℓn−1 .

Here, by construction, ℓn−1 ≥ 2. Thus
λ = 〈〈ℓ0, . . . , ℓn−1〉〉 .

It follows from the Proposition that

λ = 〈〈ℓ0, . . . , ℓn−1 − 1, 1〉〉
is the unique other expression for λ as a continued fraction. Exactly one of these will match ε in parity.

The number 〈〈x0, . . . , xn〉〉 can be calculated most conveniently by following the inductive recipe (2.4) . That
is to say

〈〈x0, . . . , xn〉〉 =
pn

qn

with the (pn), (qn) computed, as before, by induction:

(3.8)

p0 = x0

q0 = 1

. . .

pn = pn−1xn + pn−2

qn = qn−1xn + qn−2 .

This process associates to every λ an infinite array (ℓn) = cf(λ). It is defined by an inductive definition of

pairs:

λ0 = λ

ℓ0 = ⌊λ⌋

λn =
1

λn−1 − ℓn−1

ℓn = ⌊λn⌋ ,

with the convention that 1/0 = ∞. The only case inwhich thiswill be invoked is when λ is a rational number

and the continued fraction is finite.

The continued fraction of λ may obviously be evaluated when λ is rational. We shall see in a later section

that it may also be assigned a value as a limit otherwise. In all cases, the evaluation will be equal to λ.
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4. Optimal approximations

One of the main results of this essay:

4.1. Theorem. The optimal rational approximations to the line y = λx are the d±.

Proof. First of all, if u is a lattice point in d+, the convexity of C+ implies that u is optimal.

u

y
=

λx

This is illustrated in the figure above.

Why are all the optimal points among the d±? Working with both d+ and d− is similar, so I’ll look only at
d+. It is to be shown that any optimal point x lies on the bottom boundary of C+. If not, suppose it lies to

the right of u and the left of u + v, with u in d+ and v in d−. If it is not in d+, it must lie in the region shaded
lightly as below.

u

u + v

v

x

O

forbidden
region

u

u + v

x

The argument depends on two well known facts about lattices, consequences of a theorem of Minkowski.
Suppose u, v to be points in the lattice. (1) They form a basis if and only if the closed triangle Ouv contains

no lattice points other then O, u, and v. (2) If form a basis, the area of the closed triangle Ouv is 1/2.
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x

y

u

u + v

v

O

x

y

u

u + v

The first criterion is satisfied for the points Oxv. By definition of C+, any lattice point in this triangle would
have to be in the region shaded black on the left. But any point in that region would be more optimal than

x, a contradiction.

So Oxv is a basis of the lattice. But now I claim that the area of this triangle is more than 1/2. This is because
if w is any point on the segment from u to u + v, then the area of Owv is equal to 1/2. But if y is chosen to

be the intersection of the line xv with uv, then on the one hand the areas Oyv is 1/2, while on the other it is
strictly contained in Oxv.
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5. Convergence

The formula (3.8) asserts that

〈〈x0, . . . , xn〉〉 =
pn−1xn + pn−2

qn−1xn + qn−2

.

Suppose (x0, . . . , xn) and yn given. Then

(5.1)

〈〈x0, . . . , xn−1, xn〉〉 − 〈〈x0, . . . , xn−1, xn〉〉 =
pn−1xn + pn−1

qn−1xn + qn−2

− pn−1yn + pn−1

qn−1yn + qn−2

=
(pn−1qn−2 − pn−2qn−1)(xn − yn)

(qn−1xn + qn−2)(qn−1yn + qn−2)

=
det(Γn) · (xn − yn)

(qn−1xn + qn−2)(qn−1yn + qn−2)
.

This has two applications.

5.2. Proposition. If xn ≥ 1 for all n then the sequence

〈〈x0, x1, x2, . . .〉〉
converges.

Proof. I apply Cauchy’s criterion. If xi ≥ 1 for all i then qn ≥ n for all n, and qnqn+1 ≥ n2. Hence

∑ 1

qnqn+1

< ∞

and the difference between any two terms in the sequence eventually differ by an arbitrarily small amount.

5.3. Proposition. If (ℓi) = cf(λ) and µ = 〈〈ℓ0, . . . , ℓn〉〉 then

|λ − µ| ≤ 1

q2
n

.

Proof. Since by (3.2)

λ = 〈〈ℓ0, . . . , ℓn−1, λn〉〉
this follows directly from (5.1) , since |λn − ℓn| ≤ 1.

It is worth noting that the convergence is actually fairly rapid. If λ = τ , then ℓn = 1. In this case the pn and

qn are among the Fibonacci numbers fn

1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

with
f0 = 1, f1 = 1, fn = fn−1 + fn−2 .

This satisfies a difference equation of order two with constant coefficients. Since the roots of the indicial

equation

x2 − x − 1 = 0

are τ and τ , the solutions are linear combinations

ατn + β τn .

With the given initial conditions this gives us the solution with

α =
1 − τ

τ − τ
, β = α .

Finally. we see that pn and qn both increase in magnitude roughly as powers of τ . So the convergence of the

continued fraction is also geometric.
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6. Rational numbers

I have so far assumed that λ is irrational, but that is unnecessary. In that case, if λ = p/q the procedure

given above amounts to a particular implementation of the Euclidean algorithm to findthe greatest common
divisor of p, q. Everything in (2.4) works fine, say with p > q > 0 relatively prime, up intil the point when

λn = ℓn, because the next step would be to divide by 0. At that moment

p

q
=

pn

qn

=
pn−1ℓn + pn−2

qn−1ℓn + qn−1

.

6.1. Proposition. In these circumstances, if P = pn−1 and Q = qn−1 then p > p◦ > 0, q > q◦ > 0, and

|Pq − pQ| = 1 .

If (P, Q) is any other solution of this equation then (P, Q) = (pn−1, qn−1) + k(p, q) for some integer k.

Remark. The sequence for a rational number is also repetitive in some sense. One way to interpret this is

that if λ is rational, we eventually pass off to 1/0 = ∞, which is a fixed point of the process.

◦———— ◦

And here is the algorithm spelled out in detail:

def euclid(n, m):

p2 = 0
p1 = 1
q2 = 1
q1 = 0
while m 6= 0 :

q = n/m
r = n − m ·q
n = m
m = r
p = p1 ·q + p2

q = q1 ·q + q2

p2 = p1

p1 = p
q2 = q1

q1 = q
return [p2, q2]
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7. Characterization of convergents

Suppose

λ = 〈〈ℓ0, . . . , ℓn−1, ℓn, ℓn+1, . . .〉〉

to be the continued fraction expression of an irrational λ. Then

λ =
pn−1λn + pn−2

qn−1λn + qn−2

for every n, in which

λn = 〈〈ℓn, ℓn+1, . . . 〉〉 .

It is then true that
pn−1

qn−1

= 〈〈ℓ0, . . . , ℓn−1〉〉 ,

but this is not necessarily the continued fraction expansion of pn/qn. For one thing, it cannot be this if

ℓn−1 = 1. It is in fact the alternative with parity (−1)n mentioned in Proposition 3.7.

7.1. Proposition. Suppose

λ =
pµ + p◦
qµ + q◦

,

with µ > 1, q > q◦ > 0, and
pq◦ − p◦q = ±1 .

Then p◦/q◦ and p/q are successive convergents of λ.

Proof. It is quite explicit.

Let ε = pq◦ − p◦q and let

(ℓ0, . . . , ℓn−1)

be the unique array specified by Proposition 3.7 for p/q, such that ε = (−1)n. Now

pqn−1 − pn−1q = pq◦ − p◦q, p(qn−1 − q◦) = q(pn−1 − p◦) .

Since p and q are relatively prime, q divides qn−1 − q◦. But 0 < qn−1 < q and 0 < q◦ < q, which implies that

|q◦ − qn−1| < q. Hence qn−1 = q◦, and then p◦ = pn−1 as well.

Suppose that

µ = 〈〈m0, m1, m2, . . . 〉〉 .

then m0 ≥ 1 since µ > 1, so
λ = 〈〈ℓ0, . . . , ℓn−1, µ0, µ1, . . . 〉〉 .

I’ll say that two numbers λ and µ are equivalent if

λ =
aµ + b

cµ + d

for some

Π =

[

a b
c d

]

in GL2(Z). I’ll call them properly equivalent if Π can be chosen to have determinant 1.
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7.2. Corollary. Two irrational numbers λ and µ are equivalent if and only if

λ = 〈〈a0, . . . , am−1, c0, c1, . . . 〉〉
µ = 〈〈b0, . . . , bn−1, c0, c1, . . . 〉〉

for some common tail (c0, c1, . . . ).

One can choose the matrix Π so that det(Π) = (−1)m−n.

Proof. One way is immediate. For the other, suppose that

λ =
aµ + b

cµ + d
= Π(µ)

for some

Π =

[

a b
c d

]

in GL2(Z). Changing signs if necessary, we may assume the denominator to be positive. Suppose that

µ = 〈〈c0, . . . , ck−1, ck, ck+1, . . . 〉〉 .

The claim is that if k is large enough then there exists (a0, a1, . . . , am−1) such that

λ = 〈〈a0, a1, . . . , am−1, ck, ck+1, . . . 〉〉 .

with det(Π) = (−1)m−k.

For each k ≥ 0 let

µk = 〈〈ck, ck+1, . . . 〉〉 ,

so that µ = µ0. We have then

µ = Rk(µk)

(

Rk =

[

pk−1 pk−2

qk−1 qk−2

])

,

with det(Rk) = (−1)k. This also gives
λ = Πk(µk)

with

Πk = ΠRk =

[

Pk−1 Pk−2

Qk−1 Qk−2

]

.

here
Qk−1 = cpk−1 + dqk−1

Qk−2 = cpk−2 + dqk−2 ,

We’ll be through if I show that for k ≫ 0

(7.3) Qk−1 > Qk−2 > 0 .

According to Proposition 5.3,

pk−1 − µqk−1 = δ/qk−1, pk−1 − µqk−2 = ε/qk−2

with |δ|, |ε| < 1. Therefore
Qk−1 = cpk−1 + dqk−1

= c(µqk−1 + δ/qk−1) + dqk−1

= (cµ + d)qk−1 + cδ/qk−1

Qk−2 = cpk−2 + dqk−2

= c(µqk−2 + δ/qk−2) + dqk−2

= (cµ + d)qk−2 + cδ/qk−2 .

But cµ + d > 0, qk−1 > qk−2 > 0, and qk−1 and qk−2 both grow to∞ as k does. This implies that (7.3) holds
for large k.

I’ll show elsewhere how these two results allow us to compute the units and the ideal classes in quadratic
extensions of Q.



Approximating irrational numbers by rational ones 17

8. References

1. Harold Davenport, The higher arithmetic Cambridge University Press, sixth edition, 1992.

2. Leonhard Euler, ‘De fractionibus continuis dissertatio’, Comm. Acad. Sci. Petropol. 9 (1744), 98–137.
Also in Opera Omnia, ser. I 14 , 187–215. Translation into English by Myra and Bostwick Wyman, ‘An essay

on continued fractions’, Mathematical Systems Theory 18 (1985), 295–328.

3. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers (fourth edition), Oxford

University Press, 1960.

4. Patrick PopescuPampu, ‘The geometry of continued fractions and the topology of surface singularities’,

preprint, 2005. Available at

https://arxiv.org/abs/math/0506432

This offers a different way of seeing the geometry involved in continued fractions.

5. Henry J. Smith, ‘Note on continued fractions’, Messenger of Mathematics vi (1876), 1–14.

An interesting discussion of the relationship between continued fractions and transcendality can be found at

https://mathoverflow.net/questions/24958/

showing-e-is-transcendental-using-its-continued-fraction-expansion


