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This paper will formulate and offer evidence for a conjecture on the analytical behaviour of residual
Eisenstein series in the positive Weyl chamber. It should play a major role in an also conjectural
Paley-Wiener theorem about the Schwartz space of arithmetic quotients. If things work out as I
expect, this development should be logically independent of Chapter 7 of [Langlands:1976], and in
the end one should obtain a new proof of Langlands’ completeness theorem.

Suppose G to be the group of real points on a reductive group defined over Q and further set

Γ an arithmetic subgroup of G
K a maximal compact subgroup of G
ZG the centre of G

For a rational parabolic subgroup P , set

N = NP its unipotent radical
M = MP its reductive quotient P/NP

ΓM the image of Γ ∩ P in M
AP the maximal Q-split torus in M
δP its modulus character detAdn

If |AP | is the connected component of AP , then M is as an analytic group equal to the direct
product of |AP | with a subgroup of M which contains the image ΓM of Γ ∩ P in M . There are
unique liftings of both AP and MP to P stable under the Cartan involution of G determined by
the choice of K, which I’ll also call AP and MP . The group |AP | may then be identified with
AP /K ∩ AP . The characters δQ for Q a proper maximal rational parabolic subgroup containing
P make up a basis of the characters of |AP |/|AG|, considered as a complex vector space. Let the
dual basis in the group |AP |/|AG| be {aQ}, identified with elements of P .

Let X(P ) be the set of unramified characters of P , those smooth homomorphims from P to C×

trivial on K∩P , Γ∩P , and (necessarily) N . Because of well known density results, it is equivalent
to require that such a character factor through projection onto |A P |. The space X(P ) may be
identified with a Euclidean space—if (ai) is an isomorphism of |AP | with a product of copies of the
positive real numbers, then the correspondence takes (z i) to

∏
azi

i . The space of unitary characters
becomes thus a real Euclidean space; choose a Euclidean norm on it. For any character χ, ‖IM(χ)‖
is the norm of the unitary character χ/|χ|.
Because G = PK, any unramified character χ of P extends to a unique function on all of G fixed by
right K-multiplication, one which I’ll also express as χ. This applies in particular to the function
δP . The positive cone in the vector space X(P ) is the subset X

++
(P ) where all |χ(aQ)| > 1. If

d(χ) =
∏(

|χ(aQ)| − 1
)
,
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then the boundary of this cone is where d(χ) = 0.

The space A
(
N(Γ ∩ P )\G

)
of automorphic forms on N(Γ ∩ P )\G is that of all smooth C-valued

functions ϕ on G which are (a) right K-finite; (b) Z(g)-finite; (c) left ZM -finite; and (d) which
satisfy in addition a condition of moderate growth I won’t specify precisely. This space may be
identified with the representation of G induced from that of P on the space A(ΓM\M). If ϕ is a

function in this space such that ϕ(zg) = χ(z)δ
1/2
P (z)ϕ(g) for some unitary character χ of the centre

ZM of MP , then |ϕ|2 lies in the space Ω
(
NP ZM (Γ ∩ P )\G

)
of one-densities on NZM (Γ ∩ P )\G.

Define A2
(
NP (Γ ∩ P )\G

)
to be the space of all such functions ϕ such that |ϕ|2 is integrable. In

particular |ϕ(ag)| = δ1/2(a)|ϕ(g)| for any function in this space and all a in |AP |. This space is
also induced, here from the automorphic forms on ΓM\M that are square-integrable modulo ZM .

Recall from [Casselman:1989] that the Schwartz space S(Γ\G) is that of all K-finite functions all
of whose U(g)-derivatives decrease more rapidly than any character on Siegel sets. (This is what
[Franke:1998] calls S−∞.) For ϕ in the space A2

(
NP (Γ ∩ P )\G

)
the Eisenstein series

Eϕχ(g) =
∑

Γ∩P\Γ

δ
1/2
P (γg)χ(γg)ϕ(γg)

converges for χ in some open cone of X(P ) and extends to a meromorphic function on all of X(P ).
For f in S(Γ\G) the Fourier-Eisenstein integral

f̂ϕ(χ) =

∫

Γ\G

f(g)Eϕχ−1(g) dg

defines a meromorphic function of χ. A Paley-Wiener theorem for Γ\G would characterize a
function in the Schwartz space by such integrals. One fundamental property in a characterization
is laid out in the following:

Conjecture. Suppose Ω to be any bounded region in the Euclidean space of real unramified
characters of P . There exists a product P (s) of affine functions on X(P ) and some integer
r > 0 such that

Pϕ(s)f̂(χ−1
s ) = O




1

(
1 +

∥∥IM(χ)
∥∥
)N ∥∥d(χ)

∥∥r



 .

for all N > 0 and RE(s) in Ω ∩ X
++

(P ).

The significance of this property will be better understood if one looks at §13 of [Casselman:2004].
Roughly speaking, it allows contour motion in the proof of a Paley-Wiener theorem. The Conjecture
is somewhat imprecise, since it does not specify conditions on an Eisenstein series independent of
its pairing with functions in the Schwartz space. I have such conditions in mind, and I shall in fact
exhibit some later on, but I am not so sure of their general validity as I am of the assertion above.

The Conjecture has little direct bearing on the location of the singularities of Eisenstein series.
In particular, it says nothing about the square-integrable residues of Eisenstein series, but only
about the Eisenstein series constructed from such residues. Indeed, I expect the Conjecture to be
established without any explicit information about residues other than square-integrability.
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According to the main result of [Franke:1999], there exists a real polynomial P (s) with P (s)Eϕχ

holomorphic in X
++

(P ), and this could be used to sharpen the Conjecture. However, I can’t
imagine proving the Conjecture without simultaneously providing a new proof of Franke’s theorem.
Furthermore, [Franke:1999] depends on [Franke:1998], and since one of my aims is to provide
eventually a new proof of many of Franke’s results in this earlier paper, I hope to establish the
Conjecture independently of them. The Conjecture is also closely related to results in a series
of papers by Werner Müller on the trace class conjecture, but I can’t see any direct relationship.
Again, Müller’s work depends to some extent on Franke’s, so the same remarks apply to it.

If ϕ lies in the space of cusp forms on N(Γ∩ P )\G, the Conjecture is implicit in known theorems,
as I shall explain to some extent in the next section. For some ϕ that are not cusp forms it is
probably implicit in the calculations that have gone into verifying various conjectures of Arthur
on the discrete spectrum of Γ\G. But in the generality I formulate the Conjecture it seems to
be new. The importance of the matter can be judged from the fact that much of the difficulty of
Langlands’ proof of his spectral completeness theorem is caused precisely by his not knowing much
about the analytical behaviour of Eisenstein series constructed from residues. Because of this, the
contour movements he dealt with were technically intricate. If the Conjecture is true, I expect
that his argument can be simplified. Well . . . perhaps not simplified, but at least redone so as to
yield a stronger result, along the lines of the Paley-Wiener theorem demonstrated for SL 2 in my
Shalika volume paper. In addition, the argument I have in mind promises to avoid the peculiar
redundancy and occasional cancellation that afflicts Langlands’ contour movement.

I have tried to make this paper as self-contained as possible. This will undoubtedly make it verbose
for some, but of course they can skip familiar material.

1. SL2(R)

I start with the simplest case. This should make clear the nature of the Conjecture as well as some
of the problems involved in proving it, and should also suggest a line of attack on it.

Let G be SL2, P the subgroup of upper triangular matrices, H the upper half plane. Take Γ to be a
discrete subgroup of G with one cusp, located at ∞. Of course SL2(Z) will fit the description, but
it is too special to serve as a good example. Conjugating if necessary we may assume Γ∩N to be
the group of horizontal integral translations. For Y ≫ 1 the region |x| ≤ 1/2, y ≥ Y embeds into
Γ\H with compact complement. If HY is the region where y > Y , the projection from Γ ∩N\HY

to Γ\H is an embedding. The Schwartz space S(Γ\H) is that of all smooth functions f such that
all ∆kf are more rapidly decreasing than any 1/yn as y goes to infinity.

If α is the single positive root, the coroot is

α∨: x 7−→
[

x
1/x

]
.

For s in C, let χs be the character taking α∨(x) to |x|s. The function y1/2+s/2 is an eigenfunction
for the Laplacian ∆ with eigenvalue λs = (s2 − 1)/4. The Eisenstein series we are interested in is
the corresponding Γ-invariant function on H:

Es(z) =
∑

Γ∩P\Γ

y1/2+s/2(γz)
(
y(z) = IM(z)

)
,
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which converges for RE(s) > 1. Its constant term specifies its asymptotic behaviour as t goes to
∞, and is explicitly

y1/2+s/2 + c(s) y1/2−s/2

for some meromorphic function c(s). When Γ = SL2(Z)

c(s) = Ξ(s) =
ξ(s)

ξ(s + 1)
,

where ξ is Riemann’s function
ξ(s) = π−s/2Γ(s/2)ζ(s) .

Most of what happens can be indicated in a single diagram, which shows the case Γ = SL 2(Z):

a simple
pole at

s = 0 s = 1

co
n
ti

n
u
ou

s
sp

ec
tr

u
m

lots
of
poles

Figure 1. Behaviour of Eisenstein series for SL2(Z)

Here, there is a solitary and simple pole at s = 1 in the region RE(s) ≥ 0, where the residue of
the Eisenstein series is the constant function 1/ξ(2). There will be a plethora of more interesting
poles at all s with ξ(s + 1) = 0, which are located in the region −1 < RE(s) < 0. This is a region
best left unexplored, at least for now! The continuous spectrum is supported on the imaginary
axis RE(s) = 0.

Here are two ways to verify the Conjecture in this case, each with its own virtues.

(1) I follow [Langlands:1966]. Truncate the entire constant term at Y , getting an orthogonal
decomposition

Es = ΛYEs + CYEs .

The first term is square-integrable for all s. Its L2-norm is given by the Maass-Selberg formula

‖ΛYEs‖2 =
Y σ − |c(s)|2Y −σ

σ
− c(s)Y −it − c(s)Y it

it
(s = σ + it)

for neither σ nor t equal to 0.
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Lemma 1.1. In any region where 0 < σ ≤ σ0, t ≥ t0 the c-function is bounded. In a region where
0 < σ ≤ σ0, t ≤ t0 the product c(s)t is bounded.

One consequence is that c(s) has poles in the region σ > 0 only on (0, 1], and that those poles are
simple. Another is that if those poles are the si and we set P (s) =

∏
(s − si), for some N

‖ΛYP (s)Es‖ = O

( |t|N√
σ

)

on regions where σ > 0 is bounded.

Proof. The expression in the Maass-Selberg formula must be non-negative. Hence:

(
Y σ − |c(s)|2Y −σ

)
≥ σ

it

(
c(s)Y −it − c(s)Y it

)

Y 2σ ≥ |c(s)|2 +
σ

it

(
c(s)Y σ−it − c(s)Y σ+it

)

ZZ ≥ cc +
σ

t

(
cZ/i + cZ/i

)
(Z = Y σ−it)

ZZ

(
1 +

σ2

t2

)
≥ cc +

σ

t

(
cZ/i + cZ/i

)
+ ZZ

σ2

t2

|Z|
∣∣∣1 +

σ

it

∣∣∣ ≥
∣∣∣c +

σ

it
Z
∣∣∣

∣∣∣1 +
σ

it

∣∣∣ ≥
∣∣∣
c

Z
+

σ

it

∣∣∣

=
∣∣∣
( c

Z
− 1
)

+ 1 +
σ

it

∣∣∣ =
∣∣∣
(
1 − c

Z

)
−
(
1 +

σ

it

)∣∣∣
∣∣∣1 − c

Z

∣∣∣ ≤ 2
∣∣∣1 +

σ

it

∣∣∣ .

In a region 0 < σ ≤ σ0, t ≥ t0 the quotient σ/t is bounded, hence so is c/Z, But |Z| = Y σ will
also be bounded, hence c is bounded.

The last equation can be rewritten

∣∣∣∣t −
tc

Z

∣∣∣∣ ≤ 2
∣∣∣1 +

σ

i

∣∣∣

and from this it follows that in a region 0 < σ ≤ σ0, 0 < t ≤ t0 the product tc is bounded.

Now if we take f in the Schwartz space we have

〈∆kf,Es〉 = λk
s〈f,Es〉

〈f,Es〉 = 〈f,ΛYEs〉 + 〈f,CYEs〉

≤ ‖f‖ ‖ΛYEs‖ +

∫ ∞

Y

f0(y)
(
y1/2+s/2 + c(s)y1/2−s/2

) dy

y2
.

Here f0(y) is the constant term of f . The second term in the last equation is just a one-dimensional
transform, hence of rapid decrease in s. For the first, we apply the Lemma and derive the Conjecture
with an explicit value r = 1/2.



A conjecture about the analytical behaviour of Eisenstein series 6

(2) Here I recall one of the standard ways (explained most clearly in [Colin de Verdière:1983]) to
construct Eisenstein series in at least a part of the region outside of where the series converge.

Let ρ(y) be 1 for y ≥ Y + 1, 0 for y ≤ Y .

Y Y + 1

Figure 2. The smooth truncation function ρ(y)

We may identify ρ(y)y1/2+s/2 with a function E1,s(y) on Γ\H. Let E0,s = Es − E1,s, λs =
(s2/4− 1/4). The function E1,s is defined for all s, and E0,s, which is square-integrable, is defined
at first only for RE(s) > 1. Since ∆Es = λsEs

(∆ − λs)E0,s = −(∆ − λs)E1,s = (say) Fs .

The function Fs has compact support on Γ\H, and is defined for all s. But now whenever RE(s) > 0
and s does not lie in the real interval (0, 1], λs will be in the resolvent set of ∆, so that (∆−λs)

−1Fs

is a well defined smooth function in L2(Γ\H) that agrees with E0,s for RE(s) > 1. I’ll continue to
call it E0,s. The definition of Es may thus be continued into this region if we set

Es = E0,s + E1,s .

Thus we have an analytic continuation of Es to that region as well. Furthermore, the spectral
theorem allows us to deduce an L2-norm for E1,s in terms of one of Fs, and since

∆ρ(y)yr = y2 ∂2ρ(y)yr

∂y2

= ρ′′(y)yr+2 + 2rρ′(y)yr+1 + r(r − 1)ρ(y)yr

(
∆ − r(r − 1)

)
ρ(y)yr = ρ′′(y)yr+2 + 2rρ′(y)yr+1

the L2-norm of Fs is O(1 + |s|) when RE(s) is bounded. As in the first argument, this finishes off
the proof of the Conjecture in this case.

The first argument uses the full standard truncation, the second only a partial and smooth one.
The first argument will go through with little modification for Eisenstein series associated to cusp
forms for a maximal proper rational parabolic subgroup, and Arthur’s analogue of the Maass-
Selberg formula for Eisenstein series associated to cusp forms will allow the Conjecture to be
verified for that case.

The second argument was applied to the same Eisenstein series in [Müller:1989], who also extended
Colin de Verdière’s proof of the full meromorphic continuation of Eisenstein series to that case.
The virtue of this argument is that useful partial truncations can be applied to Eisenstein series
associated to arbitrary square-integrable forms. I’ll say something more about this later on. In any
case, the one basic idea that both arguments illustrate is that of applying some kind of truncation
to an Eisenstein series and looking at the pairing of f in S(Γ\G) with each component separately.
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2. Unramified Eisenstein series

From now on, I’ll assume that G is split over Q and that Γ is the full integral group G(Z). This
will simplify things a lot, and in inessential ways. My only aim is to explain a few basic ideas,
after all.

Fix a Borel subgroup P∅ = A∅N∅ in G. Set

∆ the corresponding set of simple roots
Σ the complete set of roots
Σ+ the positive roots
W the associated Weyl group

For every Θ ⊂ ∆, let

PΘ = MΘNΘ the corresponding standard parabolic subgroup containing P ∅

Σ+(Θ) the linear span of Θ in Σ+

Under my assumption on Γ, every rational parabolic subgroup of G is conjugate to a unique PΘ.

An unramified character of A is an analytic homomorphism from A to C× that’s trivial on K ∩A.
An unramified character of P = P∅ is one that factors through an unramified character of A and
the canonical surjection P → A. If χ is an unramified character of AP and λ is in X∗(A) =
Homalg(R

×, A), then
χ
(
λ(x)

)
= |x|sλ

for a uniquely determined complex number sλ. This allows us to identify the space of unramified
analytic characters of P with elements in the complex vector space

X∗
C(A) = Hom(X∗(A), C) .

In these terms, for s in X∗
C
(A)

sλ = 〈s, λ∨〉 .

The lattice of weights X∗(A) = Hom(X∗(A), Z) embeds canonically into this space. The space of
unramified characters X ∗

Θ of PΘ may be identified with those linear functions in X ∗
C
(A) that are

trivial on the coroots α∨ for α in Θ. The cone X
++

Θ is the subset of X∗
Θ where sα > 0 for α in the

complement of Θ.

From now on, I’ll work only with functions on G fixed on the right by K—in effect functions on
the symmetric space G/K.

As I have already remarked, if χ is an unramified character of P∅ it extends to a unique function on
all of G right-invariant under K and left-invariant under N∅(Γ∩P∅). If χ = χs then the associated
Eisenstein series is the function

Es(g) =
∑

Γ∩P∅\Γ

χs(γg)δ
1/2
∅ (γg) .

on Γ\G/K. This converges whenever RE(sα) > 1
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for all α in ∆, and is then an automorphic form. The function Es continues meromorphically to
all s, with a simple pole along each of the affine subsets sα = 1 (α in ∆), as well as lots of other

singularities. If G is semi-simple, this intersection is the single point χ = δ
1/2
∅ and the residue

of the Eisenstein series at that point, which is just a constant function in this case, is known
from Langlands’ work on the Tamagawa number to be the inverse of the volume of the quotient
Γ\G. More generally, the Laurent expansions at singularities of the Eisenstein series give rise to
automorphic forms on Γ\G. Some of these forms are square-integrable modulo the centre of G,

as is the residue for δ
1/2
∅ . The principal result of Langlands’ work on Eisenstein series is that the

entire L2-spectrum of Γ\G is constructed from the Eisenstein series associated to cusp forms on
parabolic quotients, residues of these, and Eisenstein series built up in turn from such residues.

The Eisenstein series construction is transitive, as is the construction of representations induced
from parabolic subgroups. I’ll be interested in just one case of this. On the one hand, consider the
constant functions of MΘ, which are generated by the residue of the Eisenstein series associated

to the image of P∅ in MΘ for the character δ
1/2
∅ δ

−1/2
Θ of A∅. Let ρΘ be the corresponding element

of XC(P ). It is characterized by these properties: (a) ρΘ lies in the linear span of ∆ − Θ; (b)
〈ρΘ, α∨〉 = 1 for α in Θ. This residue is also the Eisenstein series associated to PΘ and ρΘ on G.
Thus

The residue of the Eisenstein series on G associated to P∅ along the whole affine subspace
where sα = 1 for α in Θ agrees with the residual Eisenstein series induced by the space of
constant functions from PΘ to G.

I now want to explore more precisely what my Conjecture means for these residual Eisenstein
series.

If Φ is any function on Γ\G, its constant term with respect to the rational parabolic subgroup P
is the function

ΠP Φ(g) =

∫

Γ∩NP \NP

Φ(ng) dn

on NP (Γ∩P )\G. Since G = PK, the symmetric space G/K may be identified with P/K ∩P and
since N¶ = M this quotient may in turn be identified with ΓM\M/KM where KM is the image of
K ∩ P in M . Thus the constant term of an automorphic form on Γ\G/K may be identified with
an automorphic form on ΓM\M/KM .

The map from Φ to ΠP Φ is in some sense adjoint to the Eisenstein series construction from functions
on NP (Γ ∩ P )\G to those on Γ\G. For us there is one practical meaning to this. If f lies in the
Schwartz space of N(Γ ∩ P )\G then the ‘pseudo-Eisenstein series’

Ef (g) =
∑

Γ∩P\Γ

f(γg)

defines a function in the Schwartz space of G. The adjoint relation between Eisenstein series and
constant term means that

〈Ef , Eϕ〉 =

∫

N(Γ∩P )\G

f(x)Eϕ,P dg .

This also says that an Eisenstein series is determined as a distribution by its constant term, since
the image of pseudo-Eisenstein series from all rational parabolic subgroups is dense in the Schwartz
space.
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The constant term of Es for generic s with respect to P∅ is

δ1/2(g)
∑

W

wχ(g)
∏

λ>0,wλ<0

ξ(sλ)

ξ(sλ + 1)
= δ1/2(g)

∑

W

wχ(g)
∏

λ>0,wλ<0

Ξ(sλ) .

Recall that sλ = 〈s, λ∨〉. The constant term of a residue is the residue of the constant term. Thus,

for example, when χ = δ
1/2
∅ and σ = sχ the residues of all the terms in this sum vanish except for

w = wℓ, the longest element in W , and then we get

∏
λ>0,λ/∈∆ ξ(ρλ)

∏
λ>0 ξ(ρλ + 1)

.

One of the ingredients in Langlands’ identification of the Tamagawa number is a well known
theorem of [Kostant:1959] that asserts some curious cancellations to take place in this quotient to
make it

1∏r
1 ξ(ai)

where r = card∆ and the ai are the degrees of the polynomial ring of invariants of W in Rr. This
has subsequently been proven by many means (see for example §3.20 of [Humphries:1990]), but
Kostant’s original proof is still of interest.

3. SL3(R)

Because pseudo-Eisenstein series are in the Schwartz space, the Conjecture requires that the con-
stant term of residues of Eisenstein series satisfy a certain growth condition in the positive cone
X

++
(P ). In this section and the next, I shall verify and comment on this in the cases where G has

rational rank two. The results themselves are also implied by the principal result of [Franke:1999],
but there is nonetheless some point in bringing them up here. The growth condition amounts to
a combinatorial cancellation of terms in the numerators and denominators in the constant term,
generalizations of Kostant’s cancellation. These are of independent interest, since they are pre-
sumably closely related to conjectures of Arthur’s about the discrete spectrum of L 2(Γ\G). Such
things have been observed before in, for example, work of Moeglin and Waldspurger, but I am
not aware that the general phenomenon has been explained completely satisfactorily nor even fully
recognized.

Now let G = SL3(R), Γ = SL3(Z). The group A∅ can be taken to be the group of diagonal matrices
of determinant 1, P∅ the subgroup of upper triangular matrices. Here W has six elements, and
there are three positive roots α, β, and α+β. Suppose that the root α takes (a i) to a1/a2, β takes
it to a2/a3. Then

α∨: x 7−→




x

1/x
1





β∨: x 7−→




1

x
1/x



 .
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αβ

α + β

Figure 3. The root system for SL3

How the Weyl group acts can be pictured nicely.

s

rαs

rβs

rαrβs

rβrαs

rαrβrαs

Figure 4. The Weyl group action for
SL3

For each w in W let Rw be the set of positive roots λ such that wλ < 0. If ℓ(xy) = ℓ(x) + ℓ(y) we
have Rxy = y−1Rx ∪ Ry. Since (α + β)∨ = α∨ + β∨, the expansion of the constant term is given
in this table:

w Rw coefficient of wχs

1 ∅ 1

rα α
ξ(sα)

ξ(sα + 1)
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rβ β
ξ(sβ)

ξ(sβ + 1)

rαrβ β, α + β
ξ(sβ)

ξ(sβ + 1)

ξ(sα + sβ)

ξ(sα + sβ + 1)

rβrα α, α + β
ξ(sα)

ξ(sα + 1)

ξ(sα + sβ)

ξ(sα + sβ + 1)

rαrβrα = rβrαrβ α, β, α + β
ξ(sα)

ξ(sα + 1)

ξ(sβ)

ξ(sβ + 1)

ξ(sα + sβ)

ξ(sα + sβ + 1)

The table can be summarized in a diagram.

1
ξ(sα)

ξ(sα + 1) ξ(sβ)

ξ(sβ + 1)

ξ(sβ)ξ(sα + sβ)

ξ(sβ + 1)ξ(sα + sβ + 1)

ξ(sα)ξ(sα + sβ)

ξ(sα + 1)ξ(sα + sβ + 1)

ξ(sα)ξ(sβ)ξ(sα + sβ)

ξ(sα + 1)ξ(sβ + 1)ξ(sα + sβ + 1)

Figure 5. Coefficients for the constant term of Es

As I have already remarked, the behaviour of an Eisenstein series is essentially determined by
that of its constant term. The constant term in the case at hand has poles where the numerator
ξ(sα)ξ(sβ)ξ(sα + sβ) does, but also where the denominator

ξ(sα + 1)ξ(sβ + 1)ξ(sα + sβ + 1)

has zeroes. You can anticipate the problem—conjecturally we know some very severe restrictions
on the location of these zeroes, but in practice we can only say that they are located in the regions
−1 < RE(sα) < 0, −1 < RE(sβ) < 0, −1 < RE(sα + sα) < 0. The general idea is that Eisenstein
series behave badly as we exit the positive cone. The Eisenstein series induced from P∅ really do
behave badly, too.
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Among other things, we can see directly now that the two-dimensional residue of the constant term
of Es at s = ρ∆ is the constant function

ξ(2)

ξ(2)ξ(2)ξ(3)
=

1

ξ(2)ξ(3)
.

The Eisenstein series and its constant term also have simple poles along the lines sα = 1 and
sβ = 1. Since these are equivalent under automorphism, we may just look at one, say the first.
The residue of the constant term is the sum of the residues of the individual terms. The residue
vanishes unless wα < 0. Thus this table gives the constant terms along sα = 1:

w Rw coefficient of wχs

rα α
1

ξ(2)

rβrα α, α + β
1

ξ(2)

ξ(sβ)

ξ(sβ + 1)

rαrβrα = rβrαrβ α, β, α + β
1

ξ(2)

ξ(sβ)

ξ(sβ + 1)

ξ(sβ + 1)

ξ(sβ + 2)

From now on I am going to leave out the constant ξ(2) in the denominator, which amounts to
normalizing the Eisenstein series by a factor of ξ(2).

It is the last coefficient which interests us, since (taking into account my normalization) it can be
simplified:

ξ(sβ)

ξ(sβ + 1)

ξ(sβ + 1)

ξ(sβ + 2)
=

ξ(sβ)

ξ(sβ + 2)
.

This cancellation is in fact required by the Conjecture. It is also required, incidentally, by the
principal Theorem of [Franke:1992], which is that all the poles in the positive cone must be real.

According to what I have said earlier, these representations make up the residue of the Eisenstein
series Es on the complex line sα = 1. This is because the Eisenstein series constructed from P∅

to G can be built in two stages, first from P∅ to P{α} and then from P{α} to G. The first is an
extension of that from P∅ ∩ M to M , and the character χs is a residue of that along sα = 1.
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1

ξ(sβ + 1)

ξ(sβ + 2)

ξ(sβ + 1)

ξ(sβ + 2)

ξ(sβ)

ξ(sβ + 1)

s β
=
−1

/2

s

rαs

rβrαs

rαrβrαs

Figure 6. A diagram of the constant terms of the residual Eisen-
stein series. The endpoints of the rays mark the real part of the
L2-spectrum. The coordinate sβ is that of the original point
at which the residue is taken, so the term with ξ(sβ + 1) in
its denominator has a potential problem when the ray exits the
positive chamber. The obtuse cone at the bottom is the region
in which constant terms are square-integrable. The bar on
the one ray marks the region sβ < 0 of potential trouble.

What’s going on here? Suppose again, for the moment, that G is an arbitrary split group, P = P Θ,
and that we are looking at the residue along the subspace sα = 1 for α in Θ. The constant term
of the residue along the affine space sα = 1 for α in Θ is

δ
1/2
Θ

∑

wΘ<0

wχs

(∏
λ>0,wλ<0,λ/∈Θ ξ(sλ)

∏
λ>0,wλ<0 ξ(sλ + 1)

)
.

Here, if λ∨ =
∑

Θ nαα∨ +
∑

∆−Θ nαα∨ then

〈s, λ∨〉 =
∑

Θ

nα +
∑

∆−Θ

nαsα .

If λ lies in Σ+(Θ) then these terms are constants, and we can normalize the Eisenstein series so as
to get rid of them. The constant term then becomes

δ
1/2
Θ

∑

wΘ<0

wχs

∏

λ>0,wλ<0

λ/∈Σ+(Θ)

ξ(sλ)

ξ(sλ + 1)
.
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The denominator ξ(sλ + 1) will cause trouble if 〈ρΘ, λ∨〉 < 0, and then in that case, according to
the Conjecture (or according to [Franke:1989]) it must be canceled out by a term in the numerator.

We have therefore this combinatorial result:

Suppose wΘ < 0. The expressions sλ + 1 with (a) λ > 0, (b) wλ < 0, (c) λ /∈ Σ+(Θ) and (d)
〈ρΘ, λ∨〉 < 0 are matched by expressions sµ with µ satisfying (a)–(c).

This is intriguingly related to Kostant’s cancellation theorem, and it ought not to be too hard to
prove directly. Of course it is only the simplest case of a much more general conjecture that applies
to residues more complicated than the constant functions on the rational parabolic subgroups. But
since in general we know so little about the coefficients that appear in constant terms, we must
find a way to understand the situation in a different way. There is in fact an interesting geometric
interpretation of these cancellations that we shall come back to in the last section.

4. Other rank two groups

The situation for the other semi-simple groups of rank two can be deduced from tables and dia-
grams.

• The root system C2

α

β
α + β 2α + β

Figure 7. The root system C2

The coroots are α∨, β∨, α∨ + β∨, α∨ + 2β∨.
w R∨

w (coroots associated to Rw)
1 ∅
rα α∨

rβ β∨

rβrα α∨, α∨ + β∨

rαrβ β∨, α∨ + 2β∨

rαrβrα α∨, α∨ + β∨, α∨ + 2β∨

rβrαrβ β∨, α∨ + 2β∨, α∨ + β∨
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rβrαrβrα = rαrβrαrβ α∨, α∨ + β∨, α∨ + 2β∨, β∨

Coefficients for the residue along sα = 1:

w coefficient of wχs

rα 1

rβrα
ξ(sβ + 1)

ξ(sβ + 2)

rαrβrα
ξ(sβ + 1)

ξ(sβ + 2)

ξ(2sβ + 1)

ξ(2sβ + 2)

rβrαrβrα
ξ(sβ + 1)

ξ(sβ + 2)

ξ(2sβ + 1)

ξ(2sβ + 2)

ξ(sβ)

ξ(sβ + 1)

Since 〈ρα, β∨〉 = −1/2, the dangerous term is ξ(sβ + 1), which is indeed cancelled.

rα

rβrα

rαrβrα

rβrαrβrα

s β
=
−1/

2

Figure 8. Constant terms for the
residue along sα = 1. The poten-
tially singular region is marked by
a bar.

Coefficients for the residue along sβ = 1:

w coefficient of wχs

rβ 1

rαrβ
ξ(sα + 2)

ξ(sα + 3)

rβrαrβ
ξ(sα + 2)

ξ(sα + 3)

ξ(sα + 1)

ξ(sα + 2)

rαrβrαrβ
ξ(sα + 2)

ξ(sα + 3)

ξ(sα + 1)

ξ(sα + 2)

ξ(sα)

ξ(sα + 1)

Since 〈ρβ, α∨〉 = −1, the dangerous term is again ξ(sα + 1), which is cancelled.
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rβ

rαrβ

rβrαrβrαrβrαrβ

s
α

=
−

1
Figure 9. Constant term for the
residue along sβ = 1

• The root system G2

α

β α + β 2α + β 3α + β

3α + 2β

Figure 10. The root system G2

The coroots are α∨, β∨, α∨ + β∨, α∨ + 2β∨, α∨ + 3β∨, 2α∨ + 3β∨.
w R∨

w

1 ∅
rα α∨

rβ β∨

rβrα α∨, α∨ + β∨

rαrβ β∨, α∨ + 3β∨

rαrβrα α∨, α∨ + β∨, 2α∨ + 3β∨

rβrαrβ β∨, α∨ + 3β∨, α∨ + 2β∨
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rβrαrβrα α∨, α∨ + β∨, 2α∨ + 3β∨, α∨ + 2β∨

rαrβrαrβ β∨, α∨ + 3β∨, α∨ + 2β∨, 2α∨ + 3β∨

rαrβrαrβrα α∨, α∨ + β∨, 2α∨ + 3β∨, α∨ + 2β∨, α∨ + 3β∨

rβrαrβrαrβ β∨, α∨ + 3β∨, α∨ + 2β∨, 2α∨ + 3β∨, α∨ + β∨

rβrαrβrαrβrα = rαrβrαrβrαrβ β∨, α∨ + 3β∨, α∨ + 2β∨, 2α∨ + 3β∨, α∨ + β∨, α∨

Coefficients for the residue along sα = 1:

w coefficient of wχs

rα 1

rβrα
ξ(sβ + 1)

ξ(sβ + 2)

rαrβrα
ξ(sβ + 1)

ξ(sβ + 2)

ξ(3sβ + 2)

ξ(3sβ + 3)

rβrαrβrα
ξ(sβ + 1)

ξ(sβ + 2)

ξ(3sβ + 2)

ξ(3sβ + 3)

ξ(2sβ + 1)

ξ(2sβ + 2)

rαrβrαrβrα
ξ(sβ + 1)

ξ(sβ + 2)

ξ(3sβ + 2)

ξ(3sβ + 3)

ξ(2sβ + 1)

ξ(2sβ + 2)

ξ(3sβ + 1)

ξ(3sβ + 2)

rβrαrβrαrβrα
ξ(sβ + 1)

ξ(sβ + 2)

ξ(3sβ + 2)

ξ(3sβ + 3)

ξ(2sβ + 1)

ξ(2sβ + 2)

ξ(3sβ + 1)

ξ(3sβ + 2)

ξ(sβ)

ξ(sβ + 1)

Since 〈ρα, β∨〉 = −1/2, the terms sβ + 1 and 3sβ + 2 ought to be—and are—cancelled.

rα

rβ
rα

rα rβ rα

rβ rα rβ rαrα
rβ

rα
rβ

rα

rβrαrβrαrβrα

s β
=
−1

/2

Figure 11. Constant term for the
residue along sα = 1

Coefficients for the residue along sβ = 1:

w coefficient of wχs

rβ 1

rαrβ
ξ(sα + 3)

ξ(sα + 4)
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rβrαrβ
ξ(sα + 3)

ξ(sα + 4)

ξ(sα + 2)

ξ(sα + 3)

rαrβrαrβ
ξ(sα + 3)

ξ(sα + 4)

ξ(sα + 2)

ξ(sα + 3)

ξ(2sα + 3)

ξ(2sα + 4)

rβrαrβrαrβ
ξ(sα + 3)

ξ(sα + 4)

ξ(sα + 2)

ξ(sα + 3)

ξ(2sα + 3)

ξ(2sα + 4)

ξ(sα + 1)

ξ(sα + 2)

rαrβrαrβrαrβ
ξ(sα + 3)

ξ(sα + 4)

ξ(sα + 2)

ξ(sα + 3)

ξ(2sα + 3)

ξ(2sα + 4)

ξ(sα + 1)

ξ(sα + 2)

ξ(sα)

ξ(sα + 1)

rβrαrβ

rβrαrβrαrβrαrβ

rβrαrβrαrβ rαrβrαrβrαrβ

s α
=

−
3
/
2

Figure 12. Constant term for the
residue along sβ = 1

Here 〈ρα, β∨〉 = −3/2. The dangerous range is sα = 0 to −3/2. The dangerous terms are sα + 1
and sα + 2, which are cancelled.

I have marked by bars in all these diagrams the regions on the spectrum of the constant
terms where singularities would occur if there were no cancellation. As I shall explain in the
next section, it is significant that these barred segments all lie inside the obtuse cone signifying
square-integrability.

5. How to prove the conjecture?

I have in mind a two-step process for proving the conjecture. The first is to prove it for Eisenstein
series associated to maximal rational parabolic subgroups, the case in which the Eisenstein series
form a one-parameter family. The second is to go on from this to higher rank situations.

Both steps use Arthur’s truncation operators. The second step looks almost straightforward—one
can in principle find a formula for the inner product of truncations of arbitrary Eisenstein series,
generalizing Arthur’s formula for those associated to cusp forms. The coefficients in the formula
will involve products of intertwining operators asssociated to maximal parabolic subgroups, so that
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if one has dealt with that case one should be in good shape—one can then use the last part of
the first method of §1 to conclude. In this step, the hard part is finding an inner product formula
explicit enough to work with. I am not so sure how difficult this will be, but it doesn’t seem too
bad. In particular, although I’ll not do it here, one can use the cancellations observed earlier in
this paper to prove the conjecture for all groups of rational rank two.

The more interesting step is the first. What I think will work for this is an extension of the
technique explained in [Colin de Verdière:1983] to construct Eisenstein series for SL2(Z). Here is
the basic idea: suppose that E is an automorphic form on X = G/K that can be written as a sum
E0 + E1, with E0 square-integrable. The Ei in practice will be obtained by a kind of truncation,
and will not be smooth. We can find ϕ in C∞(K\G/K) (of arbitrarily small support) such that
RϕE = E. Then also

E = RϕE = RϕE0 + RϕE1 .

The components E0 and E1 might not be smooth, but both RϕE0 and RϕE1 will be. The function
RϕE0 will in fact lie in L2,∞(Γ\X). If ∆E = λE then, since Rϕ and ∆ commute,

0 = (∆ − λ)E

= (∆ − λ)RϕE0 + (∆ − λ)RϕE1

(∆ − λ)RϕE0 = −(∆ − λ)RϕE1

= −Rϕ(∆ − λ)E1

= (say) F .

Here (∆ − λ)E1 is a distribution. If λ does not lie in the spectrum σ∆ of ∆,

RϕE0 = −(∆ − λ)−1F, ‖RϕE0‖ ≤ ‖F‖
distance from λ to σ∆

.

In the case that Colin de Verdière used this, F has compact support and ‖F‖ remains bounded near
the interval (0, 1]. The spectral theorem then implies that the poles on (0, 1] of E s as a function of
s are simple. However, for the group G2 there is a well known example to be found in Appendix III
of [Langlands:1976] of a case where the pole is not simple. Werner Müller in [Müller:1989] deduces
from this that the method of Colin de Verdière cannot be applied in general to derive properties of
Eisenstein series associated to square-integrable automorphic forms, but his deduction is fallacious.
It is neither to be expected, nor necessary, nor even desired that F have compact support or that
‖F‖ remain bounded near the real s-axis. One can get by with a lot less. The important point is
that:

One should be able to perform a partial truncation of Eisenstein series by chopping away parts
of the constant terms that one knows to behave well, leaving behind parts that are not known
to behave well but which are square-integrable.

For the groups of rank two that we have looked at earlier in this paper, this amounts to the
observation that I have already made, that the bars in my diagrams, as well as certain
reflections of them, lie in the domain of square-integrability. Whether this idea remains viable
for all Eisenstein series associated to square-integrable residues seems to involve a complicated
problem in geometric combinatorics, one I have verified by computer in many cases.
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