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Preface
The purpose of these notes would have been better explained if we had
chosen another title, n‘amely, " Jacquet- Langlands' theory made easy"; '
-it occurred to us at the-last moment that a more pedestrian choice would
be more prudent, since after all the author is in a rather bad position
to judge ...
These notes cover a very large part of §§2,3,5,6,9,10 and 11 of

Jacquet-Langlands' work, Automorphic Forms on GL{2), VII + 548 pp.,

1970, Springer (Lecture Notes in Mathematics, No. 114). Since the volume
of our notes is about one fifth lof 548 pp., it is not to be expected that we
have been able here to explain everything. In-fact, we have entirely omitted
the explidit construction of discrete series from guadratic extensions or
quaternion algebra (§4 of J.1.), the connection with zéta functions of
matrix algebras (§13), and the most interesting, or at any rate newest,
part of their work, namely, the relations between the "apectra" of a
quaternion algebra and a 2 X 2 matrix algebra. The reader who ia
sufficiently interested by the present notes will of course have to go back
to Jacquet and Langlands anyway.

We have given full p:lroofs in §1 j_gnd nearly complete ones in §3,
but not in §2. For the bibliogra.ﬁhg;, we refer the reader to Jacquet and
Langlands, where references will be found.

These notes have been written after lectures on the same subject

at The Institute for Advanced Study, where we found from September, 1969,
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to April, 1970, a very welcome atmospheré of quiet intellectual work. It is
for us a great pleasure to express here our deep gratitude not only for the
conveniences we were provided with, but also for the fact that we were spared
the duty to thank the U, S. Air Force for its main contribution to Culture

and Civilization, namely, the highly palatable Napalm-and-Mathematics

cocktail that is the mark of the times in the most advanced country of the

world.

Princeton, March, 1970
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1.1

§1. Representations of the GLZ group of a /d(ﬁ -adic field

In this section we denote by F a non-archimedean locally compact

e

field, by /ﬂ"F and EF =/r?"l; the ring of integers and group of units of F,

and we choose once and for all a non-trivial character TF of the additive

group, which will be used to define Fourier transforms. The prime ideal of
F will be denoted by ? and a generator of it by #J. The largest ideal on
which To is trivial will be /?;d for a certain integer d. There is an
absolute value on F defined for instance by the relation d(ax) = |a.| dx, where
dx is an invariant measure on the additive group of F. We shall assume dx is
chosen in siich a.way that the Fourier inversion formula can be written as

By = [eoT L beylax => £(x) = [#)7 beyday
for nice functions, e.g., for fe J(F), the space of locally constant functions

with compact support on F . The invariant measure d x of F will be

chosen in such a way that

so that d x = c‘x] -ldx with a constant ¢, the value of which is unimportant
for the time being.
We shall put

Gp = GLE,F) My = GL{2,07)

so that MF is a maximal compact (and open) subgroup of GF' The set of

locally constant functions with compact support on G_ will be denoted by

F

}FF ; it is an algebra (the Hecke algebra of GF) under convolution product

E

tge =/ toey Deid’y
GF

such that [ dxy = 1.

Mg

#
where d y denotes an invariant measure on GF
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1. Admissible representations

Let 7 be a linear representation of G_ on a complex vector space

Dl[. For every (finite dimensional) irreduciblch‘ontinuous representation F
of the compact group Mg, let D\[(49) be the set of all £ ¢/ which trans-
form under rr(MF) according to a finite multiple of 4? The representation
w will be called admissible if
) V=0V and dimYf(H< +o.
Equivalent conditions: every £ ¢ 7/ is fixed under some open subgroup
of GF, and the set of all £ ¢ ]/ which are fixed under a given open subgroup of
GF is finite-dimensional. These conditions arise in a natural way from the
study of automorphic functions as well as from general representation theory.
For such a representation we can define, for every { E}FF’ a linear operator
n(f) on U by
(2) wmg=f £po)m bt d x

GF
(the "integral'' of course reduces to a finite sum--lock at the open stabilizer

of £ in GF). Hence x extends to a representation of the group algebra }\[F,

with two properties which characterize, as can easily be proved, the repre-

sentations of }’FF which can be obtained in that way: (i) for every £ e )/

there is an f ¢ N_. such that ()} = £&; (ii) every r(f) maps V on a

F
finite-dimensional subspace of elf Such representations of JHLF will still be

called admissible.

Let 7 be an admissible representation of GF on 7/ We may con-

-1 13 x4
sider the representation g+ tn-(g } on the dual space “lf = TTY(,S') . The

fe Al

subspace of those 5;',‘ € EV which are invariant under some open subgroup

of GF is evidently

() VoV,

\'4
. t c
we denote by (g} the restriction of r(g) to V We thus get an admissible

v
representation of G on V, which we call the contragredient of .

¥
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If a subspacé v}. .of "]/ is inwvariant under -;r(GF), i, 8., under Tr(},LF),
then the subspace ‘1/'1!" of all f_:',* ] 7\// which are érthogdnal to °]/1 ig invariant
under ¥, and we ha.ve (‘)/dl')“L = "]fl., Thus we get a one-to-one correspondence
between invariant subspaces of V and of le/, A representation with no non-
trivial invariant subspaces will be called irreducible. The purpose of this section
-is to clasgify these representations, and to associate to é{ach irreducible admissible
representation a ""local zeta function” which will more or less characterize it,

Note finally that the Schur lemma is valid for irreducible admissible
representations: if an operator T @9'5(7/) cormmutes with 4, then it operates

in every V(ﬂ’), hence rmust have eigenvectors, so that T is a scalar,

2, The Kirillov model: preliminary construction

Our firet goal (numbef 2 to 4) will be to show that every admissible irre-
ducible repregentation of GF can be realized in a very concrete way on a space
of functions on F*, the multiplicative group of'non-gzero elements of F. For
finite dimensional representations the problem ig not intez_"esting--a finite
dimensional irreducible admissible représentation n of GF “"is orxle-difnensional,
and given by xl(g) = ¥ (det g) for some cha,r:3.4::‘c.er=:'E y of E.‘*.,“"In fact, .‘the finite- ..
ness of dimv implies that the kernel of w is an open hence non-trivial in-
variant subgroup of GF; but any non-trivial invariant subgroup of GL(2,F)
contains SL{2,F): hence g is trivial on SL(2,F), the space of l-|.-r is one~
dimensional by Schur's lemma, and we get the result by taking into account the

fact that every g ¢ GL(2,F) is the product of something in SL{2,F) and the
detg O

0 1
only, For such representations the following theorem will be proved:

matrix ( )e We shall thus congider infinite-dimensional representations

Theorem 1, Let w be an irreducible admissible representation of CrF on an

" .infinite-dimensional vector space °[f, Then there exists one and ohly one space

b
Y' of complex valued functions on F , and one and only one representation

% : #*
By a character we mean a continuous homomorphism in & , Characters

guch that l){ (x)l =1 will be called unitary,
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m of C’rF on V', satisfying the following two conditions: is equivalent

to 1, and we have

(4) ' }13)53' () = 7o (bx)E" (ax) @, x ¢ F\ b e F)

for every &' ¢ Y ,

Furthermore each function in 9/' is locally constant, and vanishes outside

some compact subset of F; each locally constant function which vanishes out-

ok 3
side some compact subset of ¥ belongs to /', and the space J(F ) of

such functions has finite codimension in 9/'.

Suppose for a moment we have constructed ‘}f’ and x', and let
£+ &' denote an isomorphism of V on V' compatible with n and g ';
hence

a

(5} M = 'rr(o ;))E, =>n' (x) = T bx}E! (ax).

Consider the linear form L on {/ given by L(£) = £' (1); we evidently have
&) L[TF(B 1ti)fg,] = 'rF(b)L(E,) for all £ ¢ e]f and b e F,

and furthermore,

1,

(7) £ (x) = L[n(’g f)g] forall £¢V and xe F .
From (6) it follows that

1 x

-1l

for each n; if we consider in 7/ the subspace '[/O of all vectors £ such that

(9) f 2TF (X)'rr(]é );)g dx = 0 for all large n,

¥

then it is clear that :UOC Ker(L). The main step in the proof will be to show

that | ?1\T lﬁ&“
(10) aim (V7 “1/0) =1.

If we can prove (10), and then denote by L a non-zero linear form vanishing
on °1/0, then we shall get the space /' by associating to every £ ¢ Q[f the

function (7), and the existence and uniqueness of /' and ¢' will easily follow
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as we shall see later.
For the time being we start with the subspace clfo defined by condition
(9) and denote by X the factor space 1// :1/0 and by L the canonical map

s
from V to X. For every £ e/ we congider on F  the X-valued function (7).

Lemmea 1. The relation n = -n-(z 113)5_5, implies 7' (t) = TF(bt)é' {at).

] t O at 0 .
We have to show that °)f0 contains n—(o 1)7] - 'TF(bt)'rr( 0 l)g i.e., that
— 1 =x,; ta tb ta 0 _
(1) ) T EIm (G I)[-IT( 0 1) - Tpbtin(, 1)]&' dx = 0

for large n, which is clear (take n large enough so that tb ¢ Aj,-n, and replace

the integration variable x by x-bt in the first term of the difference).

Lemma 2. FEach function &' is locally constant, and vanishes outside a com-

pact subset of F.

B 0
For every a e F sufficiently close to 1 we have -n-(g 1)&, = £ and
hence £' (xa) = £' (x) for all =x, from which the first assertion follows. Simi-

— . 1 b
larly there is in F a non-zero ideal AU such that 1-;-(0 l)g = £ for all b e,

hence £'{x} = T (bx)E' (x), which of course implies the second property.

Lermma 3. The map £+ £' is injective,
0
Assume E' =0 , i.e., Tr(g l)g € vo for all t # 0. We see at once

that for every t # 0 we have

(t2) [ 7 (tx) n—(%) );)E- dx = 0 for all large n.

,g""n B
. . ] 1
The first step is to prove that the function @ x) = "(0 ’;)g is constant. In

fact, there is a non-zero ideal?l (C ? such that n-(lc:)L {))E, = £ for all
uel+4.. Defining

13) (Fn(t) = f(-nTF (tx)CP(x)dx
v
~1

u

we then see at once that q}n(tu) = 7 0)\1; (t} for all n, all t, and all u
n e

0 1

in 1+ Since any compact subset K of F  is a finite union of cosets
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mod 1 +A%, it follows that c‘? () = 0 for all te K provided n is large
. n
enough, because we assume (12). But let ¥ be a Schwartz-Bruhat function

on F, and suppose its Fourier transform

k) et ——
14) Do) = [ Tk bdx
F
vanishes at t = 0, hence outside of a compact subset K of F . Since 1/

vanishes outside of %-n for large n, we get, by making use of Fourier

inversion formula,

{15) IFI,.{} (X)CF(X)dX :f,g—nq)(x)dX/;{lE(t)TF {tx)dt :fKCFn(t)g@(t)dt =0

for large n. Hence the function CP(x), which is translation invariant under
an open subgroup of ¥, is orthogonal to all ¢ ¢ gD(F) which are orthogonal
to the function 1. It follows that CF(X) is constant, i.e., that

(16) W(f) ’;)g = ¢ forall xe¢ F.

The second step in the proof of Lemma 3 is to show that (l6) implies
£ =0. Let H be the subgroup of all g« GF such that w{g)}t = £. It is open
and contains the subgroup UF of all matrices of the form (%) ﬁi). Since H

is open, it is not contained in the subgroup (=F ) of GF, hence H intersects

the ""bhig cell" ¢ # 0, and since H containsOUF, it follows from the '""Bruhat
décomposition' that H contains a matrix g = (0 0) But then H must contain
the subgroup generated by UF and such a maltrix, namely, SL{2,F). But the
set of all £ ¢ v that are fixed under SL/(2,F)} is an invariant subspace of 7/

on which GL(2,F) operates as a commutative group. There can thus be no such
£E£0 if dimVY > 1, q.e.d.

Lemma 3 makes it possible to identify each vector £ ¢ |/ with the
corresponding function £', and from now on we shall write £ and £(x) in-
stead of &' and £' (x), so that the elements of r]f will be certain X-valued
functions on F én which GF operates through 1w in such a way that
'n"(g ;))E,(x) = TF (bx)E {ax). The canonical map L .V -~ X can now be

identified with £+~ £(1).
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s
Lemma 4. The space JX(F ) of X-valued locally constant functions with

compact support on F is contained in v Furthermore, 'rr(%) };)g -Ee¢ JX(F')
for all be F and £ ¢ /.

The last assertion is obvious since 7_(bx} - 1 vanishes in a neighborhood

of zero for every be F. To show that JX(F*) = J(F*) ®@ X is contained in

(]f, it will be enough to prove that, for vectors c¢ € X which generate X, 3,11
functions x+ <P(x)c with P e (f(F*), belong to V. But the subspac:e ,da (F )

of those ﬁD ¢ J(F*) such that 7/ contains the function CP is of course stable
{*)

under the operators
a7) (x> @)} {xm T bx)Plx)} e F, be F).

Hence it will be enough to prove that {i) the space ,go(F* is irreducible under

the above operators, and that (ii) one has ,gf’ (F ) # 0 for enough vectors c ¢ X.
To prove (i) let 3 be a subspace of )J(F ) invariant under the operators

(7). Since every £ ¢ JYF‘ is invariant under a subgroup of finite index of the

of units of F, it is clear that }'{’ = Z:H(x) where we denote, for

by Jh('(x) the set of all £ € B such that £ (xu) =

gEroup EF

every character y of EF’
€ (x}y (u). If we define
Y(x) if xe E

19) Xub) =30 i x § E

™

F

then J(F*) is generated by the functions X (ax) for all y andall ae F’*.
To prove that H =J(F*) is M # 0, it will be enough to prove that X € }gL
for every y.

But there is a y' )1! ¥ such that M (' ) # 0 [otherwise we would have
M) =W, which is not compatible with the behavior of the additive characters
of F]. Choose sucha y' # ¥ and a non-zero £' ]D#(x' ). Since Jf is invariant
under (17), ¥ (¥) contains, for all a’f 0 and b, the function

)

The use of this notation springs from an attempt by the author to bridge
the generation gap. We hope it will have a good reception.
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(20) E6o) = | 7o oxa)g! faxu)x @14 u = ¥ (x, X' X)E ax)
E
F
with a Gaussian sum defined by
(21) Y (¢, A) =‘f TF(xu)Mu)d*u
EF

for every character X\ of EF. But it is well known that if M is non-trivial

then

(22) Y, A) f O =>v, (x) = -d-{(N)

t

where f(A) is the exponent of ,j, in the conductor of A. Since Y # x' in (20)
we can thus choose b # 0 in such a way that vy {bx, ¥ x) # 0 &=>xc¢ EF We
can also choose a suchthat £'(ax) # 0 if xe E_. Then (20) is evidently pro-

portional to X g hence _H, = J(F*) and the irreduciiility of J(F*) under
the operators (17). is proved.

The proof of property (ii) is similar. To prove that J f 0 for
enough vectors c ¢ X we may of course limit ourselves to vectors c for which
there is in 7/ a function £' such that £'({l) = ¢, and satisfying a relation
£' (xu) = €' (x)y ' (u). Consider then such a £' and choose any character ¥ £y
clearly V still contains the function vy (bx, X'Q)g' (ax) given by (20). If we

choose a =1 and a suitable b, we thus get in ‘1/ a non-zero function propor-

tional to X (x)c, from which it follows that Jc (F'.‘) # 0.

3. The commutativity lemma - C}g‘,

For every character y of E_, every te F and every a ¢ X define

P

X x)a i xe tEg
(23) (x) = .
Xt,a * 0 if x;/ tEF

These functions generate the vector space JX(F’P), and every £ ¢ JX )

can be written as a series (in fact, a finite sum)

(24) £= X Ext where a = aft,y) =f € (tuly (w)du
. tEFx EF
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if we assume the total mass of the Haar measure of EF is 1. Consider now

the action on JX(F .‘) C L]f of the operator g({w), where

0 1

-1 0);

(25) ' w = (

for every te F  and every character ¥ of EF’ we define in X a linear

operator

(26) J_(tx)arm mewlx, () =Liztwx, I

If we put Xa = XI . then we evidently have Xt a(X) = xa(t %), hence

¥

1/t o 1 O

@) (602 = Llrtwinty )y ] = LinC | wtly ]
- 0 -
=u_(THLlel Pty 1= 0 ¢ wbe, @),

Y,

where W is the character of F  defined by
T

(28) 6 (B = m(g

Formula@7and Lemma 2 show that each function J (t,¥)a is locally constant
T

and vanishes outside a compact subset of F'; it is furthermore clear that

(29} J oGxu,y) =T (xx)x ()

m m
for every character y of EF. By making use of (24) we get

riw)Et) = Z £7J {t,y)a =X J (t,x)/ £ (tu)y {u)du ,
tE_ %X " T E

¥ F
hence
(30) rwEQ) =2 T rx)Emd y

xE 7

for every £ ¢ ,/;{(Fﬂ‘) - a substitute for the more pleasant formula

(31) w{w)§ (1) =fJ (y}§ly)d y
m

which we cannot write at this point. If we now apply (30) to the function

-1 g
11-(38 1)&, instead of £, we get at once

(32) PG =0 ()T [ T by, XIEGI Y ;
m X F' o
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each integral converges in a trivial way, and the series is actually a finite

sum.
Lemma 5. The family of operators J (x,¥) is commutative,
ot - -
To prove this lemma we define uft) = (0 ch) for every te F and
0 %
hit) = (B 1/ t) for every te¢ F and start from the relation
(33) walt)w " = u(-1/ t)wh )u(-1/ t), te F

We shall compute the function
(34) n, =l k= alul-1/ twh a1/ 0t

£ .
for a given £ ¢ JX (F ) by making use of Lemma | and relation (32). Using
the right hand side of (33) we find at once

e

2 b
TF(-x/t)ww(x)i fJn_(xy,x)wn_(l/t)’TF(-tY)ﬁ(t yid y

(35) nt(x)

[H

o e/ 0 [ 5 eyl 8, )7 -t bety)lE()d
T Y T ’ ¥ '

To compute the same function from the left hand side of (33) we write

rlon) [ ) mtw DE - wiw DE] + £

1

(36) M, = n[wu(t)wdl]ﬁ

[y
~

= ww(-l)n(w)[w(u(t))n'(W)E - niwlE] + &

and observe that glu{t)]lnw)€ - r(w)é belongs to JX(F*) although n{w)§
may not. Using (32) twice we thus get
B s
n, (%) = £&) + ww(—-x)irij(xz,x")[ﬂ‘F(tZH]w"(Z)d z X fanw(zv,x”)ﬁ(y)d y
(37)
=fx) tw (-x) X fj-] (xz,x "} (zy,x" )&(y)[TF(tz)-l]w (z)d>::yd="z.
™ ¥ v, X 1" ™ T . i

st € F  and compute M =M We thus get

If we choose any two t
1" "2 1 5
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-1 2 . -1 o
ww(—tl) EfJTr xy/ 1:1,x)'rF[-t1 Gety)lEty)d v -
(38) - wTr(-tz)“leJ1T (y/ é, X )TF[-tél(xw)]é d y =

”f J {xz,y%' )J' (zy, x ") ( y)['r - TF(tZZ)]wn—(z)d vd =z.
X' X
Since the kernels J (xy/ tz,x)TF[t
T

functions of x and vy, the same must be true in the right hand side, i.e., we

-1 :
(x+y)] in the left hand side are symmetric

must have
. 11 - * =
= ”wa bz, x ' N_tey, X T (62) - T (6,200 (e)d 2
(39) X o X
)3 I (zvy, XH)J xz,y' )[’r tz - 'TF(tzZ)]uJ (z.)d'sz
™

X X”

Looking at the way both sides transform under xt+ xu or y+ yu for

ue E_, we see that for any two characters ¥' and y" of EF the function

(40) ¢ (2z) = wn_(Z)[Jﬂ_(XZ: X' )J1T (yz,x") - J'rr yz,x" )JTr (xz, X" )]

(where = and y are arbitrary elements of F'P) must satisfy

(41) fCP(z)['rF (tlz) - TF(tzz)]d z = 0 for all tl’tZ. e F

since (F(z)a., for every a ¢ X, is a locally constant function on F  which
vanishes outside a compact subset of F, it follows at once from (41) that ¢ is or-
thogonal to-all functions in @jﬂF ), hence ¢ = 0, which concludes the proof of the

lemma.

Lemma 6, The space X is one-dimensional.

We first prove that
(42) V = c]/* + w(w)T[::: where rl/ IJX(F )

In fact V is spanned by the subspaces «n-(g)rlfz= since it is irreducible; but

g
V is stable under the operators 17( .); Bruhat' s decomposition thus

shows that 1/ is sum of 'V( and the subspaces w[u(t)w]']/*. Since we know

that wlut)w - m(w)t belongs to Vt for every te F and every gev,

our assertion follows.
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We now prove that if a linear operator A on X commutes with every

(x X) then A is a scala.r To see that we consider the operator T

A

(defmed on functions F -+ X) given by TA§ () = A€ (x)); we

shall prove that '\f is invariant under TA and that TA induces
in v an operator which commutes with ¢ (hence a scalar, from which it
will evidently follow that A itself is a scalar). In fact, any £ ¢ V can be
written, as we have just seen, as § = §' + r{w)f" with two functions £' and

£ in JX(F‘I‘). We then have

T, 6& = AlE &) + Tw)E" )]
(43) -
= A ) + Ao (x)Z il;‘*-fﬂ(xy,‘x e (vd vl;
and since A commutes with the J (x,¥) we see (use the fact that the series
™

and integrals above are actually finite sums) that
e
(44) T B0 = A () + v (x) fa (xy;x)'A(ﬁ” yhd v;
F;‘

since the function x+ A(K)) =T is st)ill ma‘? F ) for every £ ¢ J F"),

a5 60)
this can be written as TA(g’ + ww)E) = TAg' + w(w)TAg” , which of course
concludes the second part of the proof since 7w{w) = + 1

Finally, the above argument and Lemma 5 show that in particular-all operators

J (x,¥) are scalars, hence that every linear operator A on X commutes
T

with the J (x,¥), hence is a scalar. This implies dim(X) =1, g.e.d.
T

4. The {finiteness property

Since X 1is one-dimensional we may identify it (in a non-canonical way)
with C, and replace JX(F*) by )QV(F*). We thus get an identification of v
with a space of complex-valued functions on F* (in fact, locally constant and
zero outside compact subsets of F) on which « operates in such a way that
1;(3 b)§ (%} =TE (bx)€ (ax); and we know that ;:jp 7/ We are now going to
prove that dim V/}'&F(F is finite. Because of (42} it would of course be

enough to prove that

(44) dim[ [,/ nt) VNV I < + 0 ;
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if we denote by ]f:‘= x) = J(Fq‘, ¥}, for every character y of EF’ the subspace
of all £ ¢ ']/* such that £ {xu) = £(x}¥ (u), then in order to prove (44) it will clearly

be enough to prove the following two lemmas:

Lemma 7. The space Tr(wﬂ/u:ﬂ V {x} has finite codimension in ']/ {x¥) for

every character y of EF'

Liemma 8. The space 1-1-('\7ir)"\/>:< contains ']/*(x) for almost_aﬁ. characters y of

EF'

To prove L.emmma 7 we observe that it is actually enough to show that the

subspace }P= -n-(w)f!/*m]/* {x) of ']/ x) =J(Fp,x) is non-zexo. In fact, every
A
linear form » on ,d?(F »X) is given by a formula
(45) NEY = Do @)
n
ne Z

where W is a generator of /j,., and where the hn are arbitrary complex co-
efficients. Since JNL is invariant under (multiplicative) translations, it is clear

that if H# 0 then all A orthogonal to J°1L satisfy a non-trivial recursive

relation
P

{46) ok =0,
1 I ni~1

But the space of solutions A of (46) is finite-dimensional, hence the lemma.
Before we start the proof of the fact that

r) VNV, x) #0

we observe that

-1 -1
(47) wla®w JE - wlw g - wlh@ul/ 81g e VN riw) ),
for all te F'ﬁ and £ e ']/’,F. First of all it is clear that M‘.: contains

w[u(t)w-}']g - n(w-l)g and r[h{tyu(-1/t)]£, hence it remains to prove that the left

-1
hand side belongs to 'rr(W)'\/* = nlw )M_, i.e., that

(48) w[wu(t)w-l] - £ - glwh(t)u(-1/ t)]€ e (]/* ;
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but this follows from (33) since we can then write the above expression as
mlu(-1/t)]n - m - £, with n = g[wh{t)u(-1/t)]€. Hence (47).
The value of (47) at x ¢ Fzr is

(49) 0 (D7 (B -Un)E ) - 0 67 (-t 65 5
™ i

since w(wﬂf*ﬁ 'l/:,_ is invariant under the operators h{t), we conclude that for
ue "
all te F , £¢ "l/;. and characters y of EF the space w(wn[‘ﬁ ']f*(x) con-

tains the function

60)  xmw (-D) f [7 . () L ) bcu)- X () w0 - w0 (tql’f T (B (X .
- ™
Choosing
y!'{x) if =xe EF
(51) E6) = x50 =1 i xf Eg

where Y' 1is another character of EF’ we have

(52) rwE(x) = w (x)T G, x')
" I

and thus see that -;r(w)"i/:,:m M () contains the function

(63) === ww(—x)J'ﬂ'(x’ X ]l )L/\[ﬂlF(txu)—'-l]wﬂ(u)w-(u)ﬁ#u-ww(t _1))( "- (tzx)f'fp(‘txu)x '-)z(u).d*u

i.e., the function

S e | 2 -
(54) w”(-X)JW(x,X')[v(tx,wwxx' ) - G(wﬂxx’)] -0t xRy teoxx ")

with Gaussian sums vy given by (20), and the obvious meaning for the Dirac
symbol 6. We shall show that, (if v %V), it is always possible to choosze a
X' such that (54) does not identically vanish; this will prove Lemma 7, as we

have seen.

The lemma will thus be proved if we can choose x%,y¥' and t in such a way

that B —_—
(55) Jn,(x,x')‘f- 0, yltx,uxx ') - SwxX') £ 0, 2vit) +vix) # 0

because for such a choice of x,y' and t the first term in (54) will be nonzero,

while the second one will vanish since X ) (tax) = 0 as soon as 2v(t) + vix) £ O.
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Now for every character x¥' of EF there is 9__t_least one integer nf(y') such

that

(56) v =nle') => yoGoxX') - Sloxx’) £ O
[and in fact exactly one if X' f wi] The problem is thus to choose x,Y' and t
such that
(57) 2v () + vx) #0, vit) +vilx) =n{y'), T G, x') #0
)

But if we have v(t) + vi{x) = n{y') and 2v(t) + v(x) = 0 then v{x}) = 2n(y"').

Hence the problem is to choose ¥' and x such that
{58) T x,%')#0 and V(x)on(x').
™

K this s not possible then all functions .]“ (x,%') belong to ;J * )}, and we evi-
dently have then x(w) V C']/Jc, i.e., V v which contradicts our assump-
tion [or proves the lemma! ].

We still have to prove Lemma 8. This is clear if Tr(w)\/*ﬂ'tf* {x}

contains a function whose support reduces to one single class mod E To prove

ot

that such is the case for almost every Y, we consider the function (54} with

X' = id, and assume the conductors of w 55 and ;(- are the same (which is true
™

as soon as the conductor of y is large enough, hence for almost all y}. Let

f
'j/ be this conductor. In the expression (54), which now reduces to

{59) w (-x)T (x,id)y {tx, w z) - W (t-l)id* {tzx)y (—tx,;(-),
T ™ ™ ™ '

the second term is 0 except if
(60) vty + vi{x) = 0, v{t) + vx) = -d-f,

i.e., exceptif v(t) = d+f and vix) = -2(d+f). But J(x,id) = 0 if v(x) is
large negative. If f is large enough and if t is such that v{t) = d+f, we
thus see that (59} is non-zero if and only if v{x) = -2(d+f); this concludes the
proof of Lemma 8.

To conclude the proof of theorem 1 we still have to prove the uniqueness

of the space ' and of the representation ' on V'. I we use again
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temporarily the notation of theorem 1 then it is clear that all we need to prove

is that there is, up to a constant factor, at most one mapping £+ £' from "/
E

to a space of complex valued functions on F  such that

(61) n=al DE =0 ) = rL BRE (ax).

But consider, for such a mapping, the linear form L{£) = &' (1) on V; we

clearly have
(62) &' ) = Lin(y
as well as

(63) Lix(, &) =7 BILE) .

By (62) the map £+ £' is uniquely determined by L. Hence it is enough to
prove there is on \/ (up to a constant factor) at most one linear form L
satisfying (63). But as we have seen after the statement of theorem 1 such a
linear form vanishes on the subspace '\/O. Since dim(]f/rlfo) =1, the result

follows.

5. Whittaker functions

Let 7 be an irreducible admissible representation of GF. If the space
AR
V of 7 is made up of cornplex valued functions on F on which r operates
in such a way that 11'(3 ;))E,(x) = TF {bx)€ (ax}, then ¢ will be called a Kirillov

representation of GF {or the Kirillov model of the corresponding class of

irreducible representations), and the space Yof m will be denoted by }{ {(r).
Fach class of irreducible admissible representations of GF contains exactly
one Kirillov representation.

Let 7 be a Kirillov representation of GF' For every £ ¢ :}ﬂ('n—) con-

sider the function

(64) WE €) = w{@)e ) = Lir(g)t]

on GF; we get a bijection £~ Wg of Kfix) on a space W) of functions

on GF satisfying
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(65) Wi el = T W)

and locally constant; clearly ¢ acts on ']/1((1:) through right translations. The

elements of W(-n-) will be called the Whittaker functions of %, and W(Tr) will

be the Whittaker space of 1.

If 1 is an irreducible admissible representation on an "abstract' vector
space r\f, then as we have seen there is on '\f essentially one non-zero linear
form I. such that

(66) Lini, DE] = ro6OL(E)

for all xe¢ F and & ¢V ; and the choice of such an L defines an isomorphism

£ = t' of ) on the Kirillov space Mir) of w, given by

(67) £ = Llels ).
The Whittaker function WE is then.given by
(68) Wg(g) =r(g)€)' (1) = Lin @) .

In particular, suppose V is contained in the space of solutions of (65) and that

GF operates on v through right translations. We may then choose for L

the linear form L(CF) = ?(e); it satisfies (66) because each CjD ¢/ satisfies (65),
and i is not zero everywhere on 1/ because clﬂ(g) = L[w(g)cr?] since mw(g) is
the right translation defined by g. We then have W_ = C.F, and thus ']/ :W(Tl')-

¢

In other words we get the following

Corollary of Theorem 1. Let n be an irreducible admissible infinite dimensional

representation of GF. Then there is in the vector space of solutions of

lx)]

(69) wl(, Dgl=7 W)

one and only one right invariant subspace on which the right translations define

a representation isomorphic to w, namely, the Whittaker space Ww) of .

This result will play a fundamental role in the applications to automorphic

forms.
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6. A theorem on the contragredient of a representation

Let 7w be an admissible representation of GF on a vector space V,
and suppose we have another admissible representation %' on another vector
space /', as well as a non-degenerate bilinear form <£,£'> on V x

such that
(70} <mw(@E, n' (@)E'> = <E,E'>.

Then x' 1is isomorphic to the contragredient % of 1 defined in No. 1. In fact,
we get from (70} a homomorphism from /' into ‘17 by associating to every
€' € ' the linear form £+ <£,£'> on |/ ; and this homomorphism trans-
forms ' into ;;— Hence it remains to prove that it is bijective. But we have
Y' =@ '\f' () and ’]Vf =9 i’f(,\% as in No. 1, and the homomorphism of V!
into \7 evidently maps V' (W9 into ‘\V/(,&) for every .%. On the other hand,
since the canonical bilinear form on V X ]vf and the given form on V ox Vv
are invariant and non-degenerate, it is clear that we can identify 1?(«9-) and
‘\f’ (%) with the dual of the finite dimensional vector space ']/(:9‘), where :9‘
is the contragredient of A} in the usual sense. Hence the homomeorphism
']f' -+ ]Vf under consideration induces a bijection ']/' (;‘9-) —*']Y(,,}) for every
A5, which shows that it is an isomorphism as was to be proved.

We shall now use these trivial remarks and theorem 1 to prove

Theorem 2. Let ¢ 39.6_3 an irreducible admissible representation o_f GF. Then

. )

'}'1- _13. equivalent to the representation

g w (g)‘l'n'(g), and the Kirillov
T

space X(x) is the set of functions w (x)-lg(x) with £ € X.(r). Furthermore
Space 15 ot - witn

the invariant duality between Y {r) and R(TV]‘) is given by the bilinear form

<§,m> such that
{71) <g,m> = J' gl(}c)- n(-x)d*x + fgz(x)- %(W)T; (-x)d*x

i =g+, with £,6, ¢ JIF) and ne K@),

)

e £
) We put w(g) = w(det g) for every ge GF and every character w of F .
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To prove that T is equivalent to the representation
-1
{(72) ' (g) = w-rr(g) m(g)

it is enough (since m is admissible and irreducible) to construct on K (n) a
non-degenerate bilinear form <£,7n> such that <gx(g)&, ' €)n> =<E,n> .

™ T T
The construction and study of this form will be cut into several steps. In what

follows we put V' = XK(r) and V| = ,\{F(F"‘)C Y as in the proof of Lemma 6.

Step 1.  We define

(73) <gm> = fij(x)n (—x)ww(x)_ld*x if eV, meV;

the integral converges in a trivial way. We first show that

(74) <miwlg, > = <$g,w(w)“1ﬂ>Tr if £eV Naw)V, and nel,.
In fact, we have by No. 3

(75) wlw) ) = 0 (-Dmtwin ) =

#

= u (-x)sz by, X nly)d y
. T X T
since ne J{Fq‘), and thus
<gowt) = [e60 a0 GE[T_(xy.xinta’y
0 T i3 m
(76) =5 [3_(y. 08 bmtyraxa”y

=.fﬂ(-v)w (Y)-ld*Y'w n|J (XV:X)ﬁ(X)d*x
™ ™ his

)-1

= fTr(W)g(Y)'ﬂ('Y)UH(Y d*y = <Tr(\’v)§,n>1T

hence the result. Note that this kind of formal computation is justified as soon
as §,1 € J(F*), because the summation over the characters y of EF is
actually a finite sum.

§EER.2“ We now observe that v = '\f* + Tr(W)V,k and define <§,n>v on the

whole of V xV by
-1
{77) <t, > =<g,m> +<E ,nwlw) >
T ' " x 2 ™

if & = E’}. + -n-(w)ga with gl,gz € \/:", and m ¢V . This definition makes
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sense because if &1 + w(w)gz = 0 then gl € \f*ﬂ w(w)\/ , 50 that if we write

n = ”1 + “(W)'I’]Z with -ql,nz € 'l/* wlre get
<g.,m>_ + <§ ymlw) n> =
1 T 2 ™

-1
= > > 4+ <t > +<E_,m.>
8) <§1,n1 - +<§1’TT(W)T12 .t £, mw) - €501, o

-1
> > < N> <t ,m,>

> - > -< > +<g_,m,> =0

we have of course made use of Step L.

Step 3. We prove that

(19) <17(W)§,T1>Tr = <£, w(w) -q>Tr

for all £,7 ¢ V In fact, if we write § = 61 + w(w)gz and apply definition (77},

we get

-1
<TI'(W)§\:T\>1T = <§1: TT(W) T]>1T + wv("1)<gzs TP_n_

-2

<§,1r(w)-1n> =<§1sﬂ'(w)-1'ﬂ> +<§2,Tr(w) w .
™ ™ k13

(80)

hence the result.

Step 4, Computation (76} shows that

-1 =1 . -1 %
{81) /Tr(w)g(x)-n(—x)ww(x) d x = fg x).wlw In{-x) w“_(x) d x
for any two £,m € l/ The right hand side is <§,-n-(w)-1-n>Tr by (73), hence
<pw)E,n> by (77); hence formula (73) is still valid if £ ¢ -;r(w)“\/* provided
™

M€ \f , from which we conclude that we still have

-]
(82) <€,m> = f& e -x)o ) d x if teV, nell,.
Step 5. We prove that .
a O a-1 0
(83) <17(0 1)€:ﬂ>_n_ = <g! TT' (0 1)1']>“_
for all g,nev, i, e., that
-1

0
(®4) wl Dt = EREn( P
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If £e ‘\f* we can use {73) to compute both sides and then the result is obtained
at once by replacing £{x) by £{ax) in (73} and then x by a-lx in the integral.

If £e¢V isnotin Wf‘, we are (with obvious notation) reduced to proving that
-1

0 0
(85) <@ Intwt,, = @rwt,, g
but
0 0
< Dnt, = <ntwinly e
= <1T(]6 Z)?ﬁ.z,Tr(W)-erTr by Step 3
-1
=o_@inly eyt
(86)

w (@) w (a_1)<§2,w(§ )-;r(w)-l*rP because §, e v‘_
mw ™ 1 "

= <§2, TT(W)-lTI'(}) g)TP_H_

f]

1 0
<w(w)€,, mi, al)'q>‘rT by Step 3

-1
_ a 0
= Uﬁ(a)<17(w)§2,'rr(o 1)’r]>w, q.e.d.
Step 6. We prove that
(87) <g)g, > = <§,11-(u)_1'r]> for all £,n ¢ Vv
T T
i u= (%) 1t])-). Since p{u)f{x) = T (bx)£ (x), this formula is clear if we can com-

pute the scalar products by means of (73), i.e., if £ or m belongs to F\f*

(Step 4). It is thus clear that we are reduced to prove
-1
(88) <gla)ww)E,, mlwin,> =<nwlE,,wla) “nlw)n,>
2 2 n 2 2 7

in case gz,nz ¢ V/,, which by Step 3 reduces to

-1 -1 -1
(89) < lw uw)gz,n2>wz<§2,1r(w uw) n2>w.
Now we have ) 1 1
-1 . o) - ~b~ )(b' N L
Wuww Sl "Y1 o vV 1
1 -2 -1
b 01 -b b 0, 1 -b
(90) = Wi 1 Mo Wl 1)
_ b
= (0 u! hwu!
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with obvious notations. Hence

~1
= ] 1 >
<y lw u‘«}v)gan'}z?‘rr wﬂ_(bkw(u hwu )gz,nz -
= w (b)<ythwu' )E,, wlu' )‘ln > because m, € \/
L 2 A 2 %*

(91) = <g(wu' )EZ' Tr(h)-lv {u! )-1"12)“ by Step 5

= <m(a! ) mt) ) Twl@) > by Step 3

=<, mla) e rm) Te@) > because £, ¢ V.

hence the result.

To conclude the proof of the theorem, we observe that we have proved

identity

(92) <r@lE, =<t ‘g’-l**’w € mel)

L]

for matrices g which generate GF’ go that it is valid for all g ¢ GF' On
the other hand the bilinear form <§,n> on 3{,(11-) X J{(—n-} is non-degenerate,
because a function orthogonal to ‘\f* isﬂ.zero by formula (73).

We have thus shown thus far that ¢ is equivalent to ¢'. To conclude the

proof, we observe that we have

(93) m G DR =0 @) bRt Ex)

for all £ ¢ K(Tr). To get the Kirillov model of ' or 7 we must get rid of

the factor w (a) in the above formula, which can be done at once by trans-

forming K(—;; and 7' under the mapping T given by ng x) =w (x)-lg(x).
Since a given representation has Onlywone Kirillov rea.lizatign, it follows

that ]{G{-) =T (]{(-n-)) and that the Kirillov realization of # is given by
T
-1 -1 -1
(94) 7@ =T on'(geT =wi(g T omwl@gesT .
T T ] " T

Since the duality <£,7m> between K(r) and K(x') is given by <&,n> =

<g, T-l'q> , the proof of the theorem is now complete.
T mw

%
7. Supercuspidal representations

Let 7 be a given irreducible admissible representation of GF' We

%
Much more general results will be found in Harish-Chandra, Harmonic Analysis on
Reductive ,}-adic Groups (Lecture Notes by G. van Dijk).

'
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b

shall say that ¢ is supercuspidal if ¥ (m) = f(F ), i.e., if all functions £ (x)

in the Kirillov model ¥.{yx) of & vanish arocund O.

It is easy to see that an equivalent property is the fact that for every

£ ¢ Ki{x) we have

1 x _
{95) f_nn-(o l)g-dx =0 for n large.
In fact, it is clear in all cases that the left hand side of (95) is the function
(%) g | rpbietas = s 7o beviax
if /?;d is the largest ideal on which T is trivial, then
_ n-d
(97) f_n-rF(xy)dx £0<=>ye ? ;

for the expression (96) to be identically zero for n large, it is thus necessary
and sufficient that £{y) = 0 in some neighborhood of zero, hence the resultf.

If v is a supercuspidal representation then K(*) =;{f(F*) since ]{(-}'r) is ob-
tained by multiplying all functions § ¢ K(r) = ,ga(F*) by the locally constant
function w (x). Hence 5 is also supercuspidal, and the invariant duality between

™
Kix) and }(,(1\;) reduces here to the bilinear form

Fa
S

(98) <E, > =f*§(x)n (--x)cf{= %
F

sie
on J(F }, which thus satisfies

(99) <w(@)E, wign> = <€, n>.

Let ZF be the center of GF {of course ZF is isomorphic to F"). Then for

any two §,m € K(TF) the '"coefficient" <x(g)f,n> of % is a lécally constant

function on G_,, whose support is compact mod ZF' In fact, we have

P
GF = MFHFMF where MF is compact and HF is ihe (c}ilagona.l subgroup of
GF’ which is the product of ZF and the subgroup (0 1); but

t 0 sl
(100} - <mly & > =f «5Exn(-x)d x

F

£
belongs to J(F } as a function on t; hence the result.
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This property of supercuspidal representations is a characteristic one.
In fact, let 7 be an irreducible admissible representation on a vector space M
and assume the function <gx(g)€,n> has compact support meod ZF for all £¢ 1/
and mn € \7 We may assume V“K(‘n‘) and '\7 = ]{(—r‘;) and take £ in
Ef(F*); the function

(101) <TI'(B 2)5,1? =f€ (tx)n (—X)d*x

b sk

must then vanish outside a compact subset of F for all £ ¢ J(F )} and all
U

n ¢ X{r). Evidently it follows from this condition that Kir) = J(F ), g.e.d.

In short:

Theorem 3. Let n be an irreducible admissible representation of GF on a vector

space V. o . The following conditions are equivalent:
(i} m is supercuspidal, i.e., ¥ (n) = J(Fﬂ‘)
(ii) *rr(t )& dx = 0 for n large for every § ¢ Vv

(iii) %e functxon <w{g)E,n> has compact support mod ZF for all £ e VY,

v

neV.

8. Introduction to the principal series

Ag we shall see, all irreducible non-supercuspidal representations of

GF can be explicitly described in a simple way. The first step is to define,

t : £F, i f G
for any two characters ul ”2 o a representation Pulnuz o F 28
follows: the space 63 , of p is the set of all locally constant functions

CF on GF such that

(to2) CF[(B’ j:n)g] =yt e, )|/ ¢ 1/ ZCF( ),

and the group operates on & through right translations. We thus get a series
of ~ admissible representations, wzhich we shall refrain from calling the

" principal series' because not all of them are irreducible {see theorem 6 below),

The first basic fact is the following:

Theorem 4. If an irreducible admissible representation « of GF is not
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supercuspidal, then it is a subrepresentation of p for some choice of u

ul, IJ’J‘: E
In fact, consider the Kirillov space }({r) j,f(F } of . Then J(F )

0 ,)» so that they operate on the finite -

. # 1
dimensional space ]{,(w)/gp(}? ); furthermore the matrices (0

is invariant under the operators 1

F

trivially there because [TF (bx)-1]E (x) is always in J(F‘). We conclude at

) operate

once that if J(Fq‘) %K,(n-) there is on K, {(r) a non-zero linear form B and

characters Foys By of F' such that

1

,JUZ-

g 1/ 2
103) Blel ¥ 8] = a0, et e | Y P e,

0 t 1 2
We then get an isomorphism of ¢ into p by associating to every £ € X )

. Hy#a
the function
=B
104) P, le) = Blr@)E],
which evidently belongs to B , g.e.d.
'ul"u2

Theorem 5. The contragredient of p is P (where -pu = ,u-l).
- — MI,HZ - “#1:‘#2

We need first of all some remarks on invariant measures on groups.
Let P be a closed subgroup of a locally compact unimodular group G. If P
is unimodular, there is an invariant measure on P\G. In the general case,

consider the character {SP of P given by
-1 -1
(105) d,tpp, ) =4, pp ) =Pl )d,p.

where dEp is a left invariant measure on P. Let L(G, P} be the space of

continuous functions on G such that

{(106) CF(pg) = ﬁP(p)QO(g)

and whose support is compact mod P. Then there exists on L(G,P}) essen-
tially one positive linear form which is invariant under right translations. If

we denote it by

(107) | P o\ PEIE:
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we have decomposition formula

(108) fGCF(g)dg =}§P_\_Gd'gfp?(pg)dzp

for every continuous function (i’) with compact support on G. Finally if M is a
closed subgroup of G such that P{ ) M is compact and G = MP up to a set of

measure zero, then

(109) \}[P\G?(g)d'g = /M(? (mx)drm for all ¢ G and Cfe LG, P).

The '"twisted" invariant measure {107) is useful in particular in the following
context. Let F and F' be two topological vector spaces in duality, and suppose
we are given two continuous representations 4 and p' of P on F and F';
suppose they are contragredient to each other, i.e., that <uf{pla,u' {pla'> =<a,a'>
for all pe P, a¢ F and a' ¢ F'. Denote by L(G,P, u) the vector space of

all continuous mappings CIO : G~ F which satisfy

(110) Cf(pg) = u (p)ﬁ}P/ 2(9)?@)

and have compact support mod P; define in a similar way the space LI{G,P,u');
these spaces are stable under right translations by elements of G (and right
translations on L(G, P, u) more or less define the representation on G '"induced"

by u; see below). It is now clear that

(111) <¢lpg). o' (pg)> = BP(pk(f(g),cP' {g)>

for all CP e LG, P,u) and (P' e L{G,P,u'}); hence we can define a duality

between these two vector spaces by

112) <cf),cP'> =fP\G<cP(g),q>' {g)>dg,

and this bilinear form is invariant under right translations; this means that the
representations of G induced by 4 and u' are more or less (i.e., depending
on your definition of " contragredience') contragredient to each other.

We now prove Theorem 5. If we consider the subgroup P = PF of all

t1! st

triangu.lar matrices p = (0 t”) in G, then we evidently have ﬁp(p) = lt' /t" I
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We can thus define a pairing

a13) @t § g =/ @mimdm
. _ M

PF\ GF F
between the spaces 8 and B , Which satisfies
# ] lu -!J ) "u
172 1 2
(114) <p ®)p,p > = <@,u>.
”1) u 2 -uli # 2
To conclude the proof it remains to prove that the bilinear form <CP»¢’> is non-
degenerate. But the restrictions to MF of the functions CP € &3# L are the
1’72
locally constant functions on MF such that
15) (& Vim] = p e, (o ) lm)
Pl o Mty e
for all u', u' € EF and v E,OJF, the ring of integers of F; and the restrictions
of the i€ &3 u " are similarly characterized, with ,ul(u' )-1 = ,ul(u' ) and
Bl A

-1
,uz(u”) = ,uziu”s instead. Hence the restrictions to M_ of the functions ¥ are

F
the conjugate functions of the restrictions of the @ . Thus {113) reduces to the

2
L (MF) scalar product, and the proof is now complete,

9, A lemma on Fourier transforms

We are now going to show that there exists a Kirillov model for the

representation ¢ on the vector space @ , even though p may
Mo, M ' Mo M 0o, M
172 172 172
not be irreducible; this construction will furthermore lead to complete resulis

as to the decomposition of p

BosH,
Since the '""hig cell' is everywhere dense in GF, it is clear from (102}
that every CP € @“ L is uniquely determined by the function =+ Cp[w-l(t :;)]
'~z
on the additive group F; in fact, the decomposition
-1
_~a b, ¢ -detg % -11 dfc .
(116) g=( =0 4 Jw o p ) i efo
shows that

w) o Z) = u, (det g} det g|Y 2t el s it e to,
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where we put

ws) elw ™l I = 86

The function & (x) is clearly locally constant (in fact, it is translation invariant

under an open subgroup of F), and its behavior at infinity is given by

{119) ¢ (x) = (F(e)u (x)lx] -1 for [x[ large enough.

A1l x 1 -x 0.1
_ )(3;

In fact, we have w (0 1) = (0 1 -1 S) for x%O, hence

CF[W"l(lo 3;)] = /J(X)-lixl -lﬁo(l_x 1 ?) by (102); but since ﬁ&' is locally constant

0
we have CP(];X_l 1) = (P(e) for le large, whence (119). Conversely, it is easy

to see that every locally constant function ¢ on F such that pu x)| x| o (x) is

constant for lxl large, is given by (l18) with a function ﬁOE {Q’l i
| R

To get a2 Kirillov model for the representation P we shall associate
l‘lli ua
to ever € the function
v f e B

2
1 ——

(120) £ (x) = uz(X)IXlll qu[w"1(0 3{)]'rF(xy)dy - ué(X)IX'iI/ 2f§ (y) 7o Gey)dy,

ki

which is nearly the Fourier transform of (118); it will be seen in a moment that
this Fourier transform does make sense if we consider § as a distribution(ﬂ‘)
and that this Fourier transform is actually a function on F  (not always on F).

Taking that for granted for the time being it is ' of course not difficult' to see

that the mapping CFH' 3 "is injective, and - - that if we look upon ¢
¢ By Hy
as a representation of GF on the space of functions (120), then the fundamental
condition for Kirillov' s models, namely
(121) & Pyt ) = 1 bx)E (ax)
Pujpn,0 1 F ’

is satisfied, if only because formula (120) has been selected with {121} in sight,

# A1, %
) It even makes sense in the traditional way if f l,u {y) ld y <+, e,
lx‘>1

if |ux)| = ‘xlc with o> 0. The case ¢ < 0 could be reduced to the previous
one by using theorems 2 and 3. Unfortunately, the case o =0 -cannot be handled
in that simple way. Similar convergence problems arise, not surprisingly,
in the construction of the well-known '"intertwining operators'.
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To replace (120} by something more meaningful, we shall need the

following lemma:

Lemma 9. Let g be a character of F and let 3—’- be the space of locally

constant functions § on F such that §é)ux)|x| is constant for |x| large.

For every ¢ ¢ 3;1 define
122) §e0= £ ) blyirobay)dy for xe F
neZ v{y)=n

e

Then the above series converges uniformly on every compact subset of F , and

L. . . -1, . .
the mapping ¢ a is injective except if u(x) = lxl » in which case its kernel
is the set of constant functions in &fl-i. The image &’;IJ of jﬂu under @HE

is the set of locally constant functions ¥ on F  which vanish outside some com-

pact subset of F, and whose behaviour in some neighborhood of 0 is given

by the following formulas:

aufx) +b if ,u(x)%l, |X|-1
(123) Yix) = ¢ avix) +b  if plx) =1
b i pi) = x|

with arbitrary constants a and b.

It is clear that ’jr'y is the direct sum of J () and the one-dimensional

subspace spanned by the function

-1 -1 ,
(124) § (x)=<F )| x| if x| >1
u

0 if x| < 1.
The convergence of (122} and the behaviour of @ near 0 and o« are clear if

) EJ(F), so that the main part of the proof will be for §;U

The corresponding series (122) is clearly (up to an immaterial constant

factor due to the choice of Haar measures)

(125) T ! ?F bey)u L d s
n<0 vy

. . ‘e f ;
assume first y is ramified, and let ,?, be its conductor. Then
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{126) f :th (xy),u_l(y)d*y 74 0<=> vx) = -d-f-n;

this makes obvious the fact that (125} convérges uniformly on every compact

s

subset of F'r, is locally constant, and vanishes for |x| large. Furthermore

we have
o — -1 e

127) ¢ {x)= f T xylu (y)d v = au{x) for vix)> -d-f

7] _ F

vity)=-d-{
where
128) a= [ rotwTt@d s do,
viz)=-d-f

hence (123) in this case for all ¢ ¢ '&-ru.
If now u is unramified, so that u(x) = |x| ® for some s, then we have
—_— - # . —
by lyl Cdy =qnsf*TF(w“xu)du=qns[f -f_} =
(129) v{y)=n > et
+1
= " h(w=x) - |@|h(@ =]

where ¥ is a uniformizing variable, q = N(?), and

= bt i v 2 -d
(130) hix) —:LTF(XU)GH = {0 if vix) < -d .

The series (122) thus reduces to

as1) $6c) = F_(x) - || F_ (@)

where

132) F )= 5 ¢"%n@) = T "%
s n<0 -d-v(x)iniﬂ

it ig thus clear that(Edconverges uniformly on compact subsets of F*, is
locally constant on F*, and vanishes if v{x) g -d-1. If qs 1, i.e., if u

is non-trivial, then we have for v{x)> -d a relation Fs(x) = a' lxls +b' with
a' # 0; hence é\(x) = a|x|s +b with a=a'( -~ |57 s+l

character x~ [xl-l, and a =0 if u(x) = |x|-1. I q° =1 then Fs(x)¥

) # 0 if u is not the

vix)+d+1 and @u(x) =avx) +b with a=1- |8 #0, for vix) > -d.
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We have now proved everything except for the determination of the kernel
of ¢ § For every fe J(F‘P) we have

{133) f* f(x)g (x)dx = Ef flx)dx j ;F v )9 (y)dy
¥ F v{y)=n

~

n
=5 f £7)8 (yydy = jf(y)é {y)dy,
viy)=n F

which means that the Fourier transform of the distribution ¢ (x)dx induces on F*
the measure @(x)dx. If $ = 0 we thus see that the Fourier transform of ¢ {x)dx
must be proportional to the Dirac measure, which means that ¢ must be constant--
and this can happen if and only if u(x) = | x| —1. This concludes the proof.

It is still useful to observe that if I,u (x)l = \xlg with o > 0, then

ﬁ(x) :f@ (y)-;F xy)dy with an absolutely convergent integral. If o> -1/2 then
¥
Ps 2
§ is square integrable on F, and ¢ is its Fourier transform in the L sense.

Finally, it is clear by (123) that the functions @ are integrable on F provided

o > -1, and that in this case we have ¢ (x) ﬂfﬁ(y)TF(xy)dy for every ¢ e SC.U

10. The principal series and the special representations

We can now go back to the representation p‘u ) It follows from (119)
. 1’72
that the representation space 6” u is the same as 3; under the map
1’72
C]’—* ¢ given by (118). With the same meaning for $ as in Lemma 9, let us
associate to every ?5 2 the function § given by
Hys Moy

Bt b=l B =,k f glwl (o irg beylay.
P viy)=n

A trivial computation then shows that

a

(135) P’ =p“1,u2(0

7

and since the functions £ _ are locally constant and vanish outside compact

"o => £ ) = T (X0 )

subsets of F, we see that the mapping ? m £  yields a Kirillov model for
the representation P,u , except for the fact that this mapping may not be
1’72
-1 .
one-to-one. This occurs if and only if u({x) = || ™", in which case the kernel
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of this mapping is generated by the function Cf for which ¢x) =1, i.e., [use

(117)] by the function

, _ 1/ 2

(136) . %(g) = u,(det g)ldet g| ™" "

Of course the one-dimensional subspace generated by (136) is invariant under

P‘u u and ?i—* £  then induces a bijection of the corresponding factor
1’72

space on the space of functions £

Note that the image ]«(: ? of @ under Cf? £ can be de-
oy M [T, P

1’72 1" 2 o
scribed from Lemma 9; it is the space of locally constant functions on F  which

vanish for |x\ large and whose behaviour near 0 is given by the following

formulas, which follow at once from (123) and (124):

el Y Pla b + by b] i b L x|
(137} Ex) = |x11/ Z[a,uz(x)v(x) + b,uz(x)] if px)=1,
b‘xl”z 2(x) if uix) = |xl‘1.

This space contains alwavys J(FT) as a subspace of codimension 2, except if
__1 13
¢ is the character xk ]x| in which case J(F ) has codimension 1.

We shall now be able to decide whether P,u i is irreducible or not:
1’72

Theorem 6. The representation p‘u u is irreducible except if uf{x) = lxl or
R - _"
-1
|| 7. If ux) Ix\ then 63# y contains a one- dlmensional invariant sub-
v /2
space, generated by the function g i-g ,u (det g) \det g[ , and the representa-

tion on the factor space is irreducible. If pix) = || then @,u [ contains
rre

-1 1/ 2 . -11
(138) fPF\GFC?(g),ul (det g)| det g| / dg =fcr [wr (0 };)]dx = 0.

an irreducible subspace of codimension one, namely, the set of (F such that

Since the kernel of CF £ is invariant in all cases, this mapping

transforms P into a representation of G on the image space ]{
My M ¥ Mo M
1'7 2 1’ 2
and property (135} shows that if an invariant subspace of J{ L contains a
1’ 2
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function §{ then it also contains the function £ (x) - T (bx)£ (x) for all b, and
thus contains (if it is not zero) non-zero functions in J (F*). But J(F*) is
irreducible under the operators (135) as we have already seen; hence every non-
zero invariant subspace of contains sj (F*), hence contains the function

1'72
£ (x) - T (bx)€ (x) for all £ e ]—{,u u and all be F, and has furthermore co-
| R
dimension at most 2 in J% [ {and at most 1 if u is the character x b |x§ _1).
1’72
If we apply this to the image under iO = £ of a non-zero invariant sub-

-1
space V of 6)# u ,we see that unless u(x) = |x| and 7V is the obvious one-
1’72
dimensional subspace then V" will contain ﬁo -p

1 b
( 1)? for all P e @#1:#

) 0
HpHa 2
and all b€ F. That means thatin the contragredient representation p u y
: Rt M

L
on 6"# u (Theorem 5) the subspace V orthogonal to V must contain only
1" 72

functions ¥ invariant under the operators corresponding to matrices (E 1;). Such

a function must satisfy

S N B -1 -1

139) ol Twl D= et Y2y

w)

(t" )I AL |

and furthermore be continuous on GF' Since the big cell is dense in GF’ this

shows that codim (}/) < 1, and it is furthermore not difficult to see that a con-

tinuous and non-zero function satisfying {139) exists if and only if u(x) = |x

-1 t/2
in which case we may choose t(g) = My (det g)| det g / 3 this explains why
the only non-trivial invariant subspace V' of 8“ u is then defined by (138).
r2
To conclude the proof we still have to look more closely in the case where u(x) =
| x| —1—-but by Theorem 5 the invariant subspaces of 63” i are the orthogonal
1’72
supplements of the invariant subspaces of @H y which shows that the situa-
P TTe

-1
tion for u(x) = le follows at once from the situation for u{x} = 1x| which

we have just cleared off, q.e. d.

Theorem 6 makes it possible to define an irreducible representation
T of G_ for every couple of characters of F.oIf fx) = ou xu (:rc)“1
My My F 1 2
-1
is neither the character xr lxl nor x> |x| , we define W,u y to
| R
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be the representation p on the space %) ; we get in this way the so-
Has M Aas M
172 'z
called principal series of representations. Lemma 9 yields at once the Kirillov

model for it: if 7 = W,u u we denote by }'ﬁ(?r) the space of functions £ (x) on
wls 1’ 2

¥  which are locally constant, which vanish outside of a compact set in ¥, and

whose behaviour in some neighborhood of 0 is given by

1/ 2
| x| / [ap. (x) +bu.x)] if u is not trivial

1 2

o) ) =4 1 -
|x| [‘a.,u,z(x)v(x) + b,uz(x)] if u is trivial;
then the map Cf b gcp given by (56) is a bijection of @,u i on H (), so that
) 1’72
we may assume that ﬂ-,u y {g) is a linear operator on J‘C(?r), and since we then
"7 2
have
(141) 7@ D) = 7 bx)E fax)
o 1/68&) = Tnbx)t{ax
we have found in this way the Kirillov model for 7.
If pfx) = |x| we denote by 7 (g} the restriction of p (g) to
Moo i My M
'™ 2 | R
the invariant hyperplane of @# u whose existence is asserted by Theorem 6.
'z .

To get the Kirillov model for 7 = 7r‘u u we still use Lemma 9 and formula {134},

| R

but we have to find a characterization of the functions § _ for those (F € 8# u
1’72

which belong to the hyperplane under consideration, i.e., are such that

fq) [W_l(](-) .};)]dx = 0. Now we have ¢ [wwl(lo };)] = §{x), see (118), and ¢ (x)

is proportional to ,u,_l(x)lx| _1, i.e., to le‘z for large values of |x|, hence
is integrable on F; consequently, the far-flung Fourier transform é'f\ given by
Lemma 9 is nothing in this case but the obvious one, and condition {138) means
that @(0) = 0; since @(x) = alx| +b for |x| small this means that b = 0.

In other words, and taking care of (137), we see thatin this case the Kirillov
model is a representation on the space K(?T) of functions £{x) on F* which

are locally constant, which vanish outside compact subsets of F, and which

behave near 0 according to formula
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142) 60 = x| 2 00

in other words, X(7) is the space of functions |x|1/ 2,ul(x)f(x) with f EJ(F).

-1
Finally, if uf{x) = ]xl , there ig in 63“ u a one-dimensional invariant
172
subspace; we shall then define Tr“ i to be the obvious representation on the
1’2
corresponding factor space. Since this one-dimensional subspace is the kernel

of the mapping C)UH- £ we see that this mapping will induce an isomorphism

between the representation space of 7= 7 and the image of B under
Jula.uz gul:luz.” '

CFi—> gq) ,whichis thus the Kirillov model for 7. In this case X (7) is therefore

the space of all functions £(x} on F  which are locally constant, which vanish

for |x| large, and which behave near the origin according to ({137), i.e., as

1/ 2
143) 660 = bl 2, )
; . . 1/ 2 .
in other words, ¥.(#) is the set of functions ]xl ,uz(x)f(x) with fe J(F).
-1
The representations wu i for pix) = |x| or lxl are the so-called
” 1’72

special representations:" It follows from Theorem 4 that there are no other

irreducible admissible representations of GF than the one we have found: the
principal series, the special representations, and the cuspidal ones. Since the
argument above shows that the Kirillov space K(?T) for an irreducible repre-
sentation 7 satisfies

2 for the principal series

(144) dim[}ﬁ(:rr)/éf(F"‘)] = {1 for the special representations

0 for the cuspidal representations,

we see that these three "series'" of representations are mutually disjoint.
The following table describes the space Y (r) for the various repre-

sentations in terms of "arbitrary' functions f,fl,f2 in ){f(F).

("‘Z.Fhey are denoted by o(u_, ]JZ) in Jacquet and Langlands' paper.

1
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1/ 2
Principal series = l |1/2 ()£, (x) + | %] / Mo,z (%)
#1:#2 1 I3 2 2
with My ¥ M
Principal series = 1/ 2 1/ 2
T x| 6T Be) + || T, v ) )
with ,ul = ,uz
. . 1/ 2 B
Special representation 7 | x| M G (x)
Moys by 1
: -1 _
with ,ul,uz (x) = |x|
. . 1/ 2
Special representation ?Tu u | x| ,uz(x)f(x)
1’72
. -1 -1
with 'Hluz (x) = le
Supercuspidal representations fix) with fe J(F), f{0)y =0
11. The equivalence 7 ~

via
Hla M > M 27 .Ul
Theorems 2 and 5 can be used to give a very simple proof of the following

result:

Theorem 7. The representations 7 and 7 are equivalent if and only

A fupp,) = (o) o = ).

The necessity of the condition is clear if we look at the behavior near 0 of

the functions in the Kirillov models, so that we only have té show that -

T ~ T . But from the fact that 5 =p we see at once that
CRpHy Hp My | Hpby o THy -k,

v
(145) T =7 ,

"u]_: ‘Juz uls)uz

even for the special representations. By theorem 2 this can be written as

~w_1®7r

(146) T
#1’“2 T "”1:"”2

where 7 =7 ; but w;rl ) = u uz(x), hence the theorem since the mapping
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(147) {g~ @)}~ {g~ Hb, (det g)CF(g)}
i i hi £ t .
1S an Lsomorp 18T O 05_“1, -‘L[Z onto 05”2, Jul

Another way of proving the theorem would consist in showing that

(w) on S E),

(148) T (w) =7
which would of course be enough to prove that the Kirillov realizations of ﬂ,u i
I'"2
and « are identical. To do that one can compute explicitly n (w);
Mo M s

271 ; 172
one then easily gets
149 e x) = x){J X dzl:
149) o 0BG = u / o BYEEE Y

I'"2 172
with
1/ 2 -1 -1 #
(150) J x) = | x| / ,uz(x) = f 'TF(xz+z i {z)d =,
‘“1"”2 n v({z) n

1 and ,uz. Note

=

that (150) reduces to a finite sum on every compact subset of F , and that (149)

an expression that is obviously symmetrical with respect to u

is valid for £ ¢ ,J(F*) only. Similar formulas are to be found in a recent paper

by P. J. Sally, (Am. J. of Math., 1968, vol. 90, p. 406-443),
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12. The fundamental functional equation

I.et 7 be an irreducible admissible representation of GF'; we may
consider that 7 is obtained by letting GF act on the space 'Vl/(:rr) of No, 5
through right translations. For every W e W) and every character X of

F"b, we define
0 -1 2s-1 *
(151) Ly (X, s) = fW[(z L glX ) | ] d x,

at first formally. We shall now prove

Theorem 8. The integral (L151) converges for Re(s) large, and can be analytically

continued to a meromorphic function with at most two poles. Furthermore there

exists Emeromorphic function Yﬂ_(x,s), which depends neither on W e Wf(w)

nor on g € GF, and is such that

{152) (Wg;ww- X,1-s) =¥y W(X’S)Lw(g;x’s)

LW
for all W e 'YY('.T) and g s GF. _I_‘g__satisfies

{L53) vﬂ(wﬂ—x,l-s)vw(x,s) = ww(-l).

To prove the convergence and analytical continuation we may-assume that
g =e (replace W by its right translate by g); we then have to study the inte-
gral

(154) M, (x,s) = fg Gy 60 x| 257l x

where £x) = W(’S S) belongs to the space Yx). 1If 7 is supercuspidal we
have £ € J(F'P) and then (154) is clearly an entire function of s. If 7 is
not supercuspidal then we have the following possibilities:

| Y 2e, b o) + £, b, 6]

x| 2”1"‘)“1"‘) + £, v ()]
(155) £(x) =

el 2 o)t )

2| 2u, o)t 0
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where fl’fZ € J (F), as we have seen at the end of Section 10. Hence (154)
is the sum of at most two integrals of the following kind:

2 ES 2 B
(156) ff(x)x(x)lxl ®a x, /f(x)x(x)v(x)1x| ®d x

2

with a character M\ of FP, hence the results {more detailed information will
be found in No. 14).
It thus remains to prove the existence of a functional equation (152).

0 -
Here too we may assume g = e; since §&{x) = W(Jg 1) implies

157) Wi el = 7@)E 6o,
it is clear that (152) can still be written as
as®) Mg @, 18) =Y G eIM (¢ 8).

We shall proveyfithfitsiﬁziﬁ”’fﬁi‘é'e ‘steps.
Step 1. We prove (158) for all £ ¢ \g(F*)C jC(?T).

It is clear from the definition that if (158) is true for a given £ .then itisalso
true for all its multiplicative translates. To get (158) for all £ e ;5 (F*) it is

true enough to prove it when

Ap) if xe E
{159 Ex) = ¥

0 if x¢ B,

where A is a given character of EF' Both sides of (158) then vanish unless X

is the restriction of ¥ to EF. In this case we have 7w(w)f{x) = w &)}J (x,¥%)
T T

by (27}, where we still denote by ¥ the restriction of y to EF’ and thus
(160) M -y, l-s) =fJ e,y )x ()| x| 7% %
7lwlE w T
(L61) M, (¢, 5) :/E ¥ ey be) M) 287w = 1
EF
if f d*x = 1. We thus see that (158) is satisfied for all £ EJ(F*) if we choose
EF

{162) v, (x> s) =f5ﬂ(x, X)X (X)|x|1'zsd*x,
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provided/I d x=1.

Ep

5 e
Step 2. We now prove ({153) by choosing a function £ e ;J{F )M W(W)J(F )
and applying (158) twice; we get

163) w UM Os) =M g X0 ) T YR sIM L - 1-8)

= v W -X.l-s)y X, S)Mg (X ,s)
from which (153) follows provided we can choose £ in such a way that I\/JCé (¥, s)
is not identically 0. DBut we know by Lemma 7 that there are non-zero §{ in
;X(F*)ﬂ ﬂ(w);g (F*) which satisfy £(xu) = £ &)y (u) for every uce EF; for such

a £ we have

© n n.-1;, n2s-1
(164) M, (¢, 8) = Z £(@ )X (@) |

(& finite sum), and this of course is not identically 0 if £ 3{ 0,
Step 3. We eventually prove (158} for an arbitrary £ ¢ M (7) by using the fact
that £ = gl + w(w)gz with gl, &2 € J(F'I‘). If we use Steps 1 and 2 of the proof

we get
Myt @y X 1m8) = MW(W)gl(wwax,I-—s) + mﬁ(~1)M€z(wW-x,1-s)
(165) = YW(X’S){MgI(X’S’ + vw(ww~x,1~s)M§2(w7r-x,l-s)}
= yﬂ(x,s){Mgl(x,s) + M?r(w)ﬁz(x’s)}’

which concludes the proof.

13. Computation of yw(x ,8) for the principal series and the special repre-

sentations.

Before we start performing the computation announced in the title of

this section, we recall that if we define

166) L (X,s)=f=,= Ge)y bo) | x| %" x
¢ o+

e
Ed

for every CF € tj (F') and every character ¥ of F , then we have the



following properties:

(i) the integral (166) converges for Re(s) large enough--in fact, for
Re(s)> 0 if y is unitary;

{ii} the function {166} is meromorphic in the whole plane for every
@ e J (F) [more about the poles later! ];

(iii) there is a factor vy (x.s) depending only on ¥ and s and such

that

167) L (-y,l-8) = y{x,s)Laly,s)
¢ '
for all Q@ ¢ J ).

We now propose to compute yw(x ,5}) in terms of such factors when

T=7 belongs to the principal series or is a special representation.
M ik,
To do it we choose a function

o2
o

168) te f @M rd E )

such that I\/Ig (¥ »s) is not identically zero (the existence of such a { has been

proved in Step 2 of the proof of Theorem 8) and we observe that there exists a

function CF € @ such that
#1, H 2

169) olw e 1= [uiteolxl T P T beydas

in fact, the left hand side of (169} is clearly the Fourier transform of a function

in :_;/,{(F‘P), hence is in sg(F), hence in the space }H of Lemma 9, and thus

does extend to a function CP € @,u u by making use of (117}, p. 1.27. Com-
| R/

paring (169) and (134) we see by making use of Fourier's inversion formula

that

1
0

1/ 2 ?[w-l( 3;)]?F(:‘:'yr)fw = £ _{x),

T

with no need here for the sophisticated Fourier transform of L.emma 9. But

170) £c) = p, )| x|

ale
e

since the mapping CFH £ is one-to-one and compatible with the obvious

o
bl

-1
except if ux) = |x| as we have seen at bottom of p. 1. 31, but since 7

T we may assume this is not the case.
IJ'ZJ Hl

IJI’.UZ
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actions of GF’ we conclude from (170} that w(w)€ COfresponds under this
mapping to the function gr @ (gw). Since 7(w)g e 45 (F'ﬁ) by our assumption
(168), we can still use {169} with 7{w)§ and g"*CP'(gW) instead of £ and
gr qo(g), and we thus get

71) olw g vl = fu;(x)lxr”Zfr(wmx)-rrF(x ).

Since we have

-1 v :(1 0 1 -lYy. ¥y o0 1 -Vy

172) o Pw=Cy =G 1 N’ P D)
and since Qe @“1,#2 we get [use (102) and u = py - ,uz]
-11 -1 -1 1 -Vy
[w (o Dwl=ut My |@lwl Y]
173) ¢ 0 1 Pl 1
_ S -1 -y
=w_(Dply Wy |CP[W o 1

making use of Fourier inversion formula in (171) we thus get

w3 el Y Prie e = 6o =
(174)

11 -l/y

= (0 [et Iy g TG D TR bdy,

while (170} can also be written as

-1 -1/ 2

075) ultealxl M P60 - g e =[@ v Dlrgberlay.

We can now start the computation of \(ﬂ_(x ,s). Making use of the defini-

tion {175) of g' we get

Mg (x,s8) = fﬁ x)¥ (X)dlxl Zs-ld*x

1

25~

1
- —_ R 1
:fg‘(x),uzx l(x)lx‘ 2dx=Lgl(,u2-x, ZS-E)

where we use definition (166). Butby (175} the function £' is the Fourier

transform of yr CF[W_I(E f)]; using (167) we thus getq‘

b : :
We put s' =2s - 1/2 in order to simplify the computation. This is the
parameter used by Jacquet and Langlands throughout.
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=11 -1 1-s'
(176) Y, - X, 8 M (X, 8) :fgo[w 1(0 Dixus oyl Say.

Consider now

| = r 1- Zs
Mﬂw)g(wm_ - ¥,1l-s) —J?;(w)g(x),u u X(X) | x| g

—-?-s «

- [r e lxl? a1

(177}

by (174) and (l67) we get in a similar way

Y(X-H ) s' )MW(W)g(wﬂ~x,1-s) =
-1

-11 i, -1 x
w (-1) (B Gy Yy~ iﬁo IY )k X Wyl dy

-1
w (-1)fcio[w'1(1 e,y eyl Ty

fcp[wlé Nixu eyl dy.

Comparing with (176), and since M, (x¥,s) is not identically 0, we get at once

g
(w?T-x ,1-8)/ I\/lg (¥,s)

(178)

tl

Yalkos) = My

179) p
=X Dy #,-x, s Yyt -k s1-8")

But it is clear that by iterating functional equation (167) we get

(180) vi{x,s)y(-x,l-s) = x (-1).
Hence
{181) Y,H_(X:S) E\J(Ml-x,S’)\((uz—x,S'),

and if we replace s' by Z2Zs -1? we eventually get the result:

Theorem 9. For every character ¥ of F  and every function CF € J(F)

define

{182) L_{y,s) =/ x}y (x)|x| sd*x
P ?

and let vy {x,s) be the factor such that

(183) L_{-y,l-s) = v({x,s)La(y,s)
¢ ?
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b

are any two characters of F  and if

2 =

for all <]'a EJ(F). Then if ';11 and u

T =T , then the factor y (X,s) is given by

“1"”2 T — —
(184) (,8) =y =X »28 - =)y 25 - =)
A v{uy=x,28 - )V (u,-X,2s = )

14. The local factors Lﬂ_(x .8},

Let's go back to Tate' s Ph, D. for a while and consider the Mellin trans-~
forms
(185) qu x,s) = fcp Gy b0l x| %d x

of the functions CP € é (F). We evidently have

(186) L {x.,s) = CfD(O) f ¥ (x) | x| ®d x + entire function,
? || <1
so that if we define
1 if ¥ 1is ramified
{187) L(x,s) = 1 if ¥ is nonramified

1-x (?)N(?)‘s

we see at once that (for given ¥ and variable cF) this expression is the

greatst common divisor of all functions ch (X ,s), i.e., that the ratio

(x »s)/ L{x,s) is always an entire function which furthermore is 1 for

g

a suitable choice of CP Strangely enough, the functions L{y,s) are the

local factors used to define global Hecke's L functions by means of Euler
products.

We shall now try to define in a similar way local factors Lﬂ_(x , 8)
for every irreducible admissible representation # of GL(2,F). We put

L (x,s) = g.c.d. of all functions M, (X, s)
™ g

(188)
for all £ ¢ %(W),
and require in addition, to avoid ambiguities, that Lw(x ,8) should be a
finite product of Eulerian factors or, which is clearly the same, that

189) L X,s) = P %)t
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where g = N(ﬁ/) and P is a polynomial such that P(0) = 1. The computation

will be very easy to perform because of the characterization given on p. L. 36

of the vari spaces # (7).

The case of a supercuspidal 7. Then the functions

ﬂ‘(lgo) I\./.[‘g (X . S) :‘/ g(x).x (X)-llx| Zs-ld*x

are entire since %(11') "—"r,g (F'“), and there is a £ E;C(ﬂ') such that Mg {x,8) = 1,
Ly g., the function equal to X on EF and 0 elsewhere. Hence we define
(191) L?T(X,S) =1

in this case.

" The case of a special 7. Assume

with &) = |x|;

{192) T=7
)ul: HZ
then ?{,('n) is the set of all functions
(193) Efx) = lX|1/ 2‘”1(")?(") with ¢ e ;5 (F);

for such a £ we clearly have

(194} M, {x,s) = L_(u,-x,2s - 1/ 2);
gx Clo 1 X
since cF is arbitrary in J (F), we must therefore choose
(195) Lw(x ;) = Lifp,-x.2s - 1/ 2)
in this case. The case where u(x) = |x| -1 is the same, with B, instead of ,ul--

use Theorem 7.

The case of a generic member of the principal series. We now assume

T=7 with
ulluz

(196) wie) flx|, |xl'1 , L.

Then

a97) 60) = |l Y a0 ) + ), 0]



£

with arbitrary Ci)l, crz € J(F), hence

198) M, (x,8) = Iy, (#)-X.s') + L

1 T2

so that Lw(x ,8) must be the g. c. d. of the two functions L(,ul-x ,8'} and

()uz'x:sr):

L(,uz-x ,8'). This g.c.d. is also their product. This is clear by (187)

unless Mi=X = ?Ll and Hy=X = ?\.2 are unramified; but then

1
-gt

199) Lis-x,8') =
W AN

and since ?\1 cj,) f= ?\2 Lj,) [because we assume My ;’= "y by (196)] our assertion
follows., Thus we define in this case

) 1 1
(200) LW(X’S} —L(ul-X,ZS - Z)L(HZ—X,ZS - 2)-

The existence of a £ e%(w) such that M, (y,s) = Lﬂ(x , 8} follows from the

g

fact that, if X, and 7\2 are distinct unramified characters, there are constants

1

c1 and c2 such that
(201) L()Ll, s)L(kz, s) = clL()\.l, g) + CZL(?\Z, s).

There remains to study the case where

(202) T=7 with My = My

Then %(w) is the set of functions

(203) £t = x| 2

,ul(X)[(fl(X) + ?Z(X)V(X)]

with arbitrary P CPZ € J {F}. We thus have

(204) M, (x,s) =L_ {\s')+ (x)v(x)h(x)lx‘Sl d'x
£ ¢, /92

where we set ,ul-x = \. The second integral is an entire function if Cf)Z(O) = 0,

. Hence it will be enough to lock at

T
(205) [ veonel=l® d x;
x| <t
* We again set s' = 2s -1/2. Some people might even like to get rid of s

altogether by replacing the character ¥ by the function xF—>Y% () | x]zs"l.
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this is clearly 0 if A is ramified; if not, it is proportional to

o0 -g!
(206) T i) N " = —MEINE) — = )N P L, e,
S - MgIN )™ PN S

We thus see that in all cases we have
2
(207) I\/Ig x,s}) = L(,ul-x ,8') X entire function,
which suggests formula
(208) L (x,s) = L 2s - 5)°
T X : S .ul x H - 2 ’
the same as for the generic members of the principal series. In fact it will be
justified if we prove the existence of a § E?{,(ﬂ') such that
2
(209) M, (X,8) = Lly-Xss')
which of course is clear if A = ,u1-x is ramified. If it is not then the com-
putation of (205) at any rate shows there is a § such that
(210) M, (x,8) = Liu,-x,s')°Nig) ™
g 3 1 L ﬁ ¥
if we replace £({x) by cf(ax) with suitable constants a £ 0 and ¢ we evidently

get the result.

We gather the various definitions of Lﬂ_(x . 8) in the following table:

L .
m L)
rincipal ies L 25‘ 1—)L( 2s }*)
princlpal serile 71'”1,#2 ,ul X, 5 HZ X >
1

special representations L(ul-x , 28 = E)

T with px) = lx|

Jul’ lu'z

special representations L(,uz-x, 2s - 3

: -1

T with @) = lxl

'ul' .Uz

supercuspidal representations 1
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The meaning of these local factors is now expressed in the following

way:
Theorem 10, For every irreducible representation # of GF and every

character x of F*, let LW(X ,8) be the Euler factor defined as above.

Then the ratio

(211) Lw(g;x,S)/ LW(X,S)

. . . . ) Zs
is a finite formal series in N ) for every W E%f(ﬂ and every g e GF’ and

there is a W eW(ar) such that

(212) LW(e;x,s) = Lw(x,S).

15, The factors sﬂ_(x »S).

The introduction of the factors Lﬂ_(x , 8} leads to a different way of
writing the functional equation (152) of Theorem 8; instead of
(213) LW(Wg;UW"X;]-"S) = Y?T(XJS)LW(g;X:S)

we can still write it as

I,,W (wg;ww-x ,1-8) LW (gix »s)
=e s

(214)

Lﬂ(wﬂ—x,l-s) LW(X,S)

with new factors .EW(X ,8) instead of yﬂ(x , 8); clearly

L - -
W(wﬂ X, 1-8)

(215) v, e8) = bcs) L_(x:s)

Since we may choose W,g so that Lw(g;x ,8)/ Lﬂ(x ,5) = 1; then we see that

EW()(_ ,s8) is an entire function of s; it never vanishes, because it follows from {215}
and
216 w -y,1l- . =w (-1
(216) vw( X S)\'W(x s) W( )
that
7 -y ,1- . = -1},
(217) | s',r(qu_ir X s)sw(x s) wﬂ_( )

In fact, € (x,s) is an exBonential function, because the computations of the
T
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previous section evidently show that alleratios,

2s
i R

w8iX8 ) kil s)erhence.also

Y E Y rarerfiniterformalseries.i
7

It is easy to compute € (y,s) for the principal series and the special

7t
representations.

The first thing to do is to replace Tate's functional equation

218 ~y.,1-8) = A,
(218) L(P(x,l s) Y(X,S)LCP(X s)

of local Mellin transforms, see (167), by something similar to (214), namely

L()D (-X,l-S) LC’P (X:S)

{219) -—--————-——-—L(_x’l_s) =s(x,s)~———---—-—-—L(x,s) .

the factors €(y,s) are easily computed, and well known, but we don't need their
exact values now.. Going back to yw(x ,8) we must distinguish two cases,
If »= w“ ,U belongs to the Er'mcipal series, then Lm_(x ,8) ¢
|
L(u1~x ,8' )L.(;uz-x ,s') as we have seen, and we thus get by (215)

Liu-x s’ )L(fuz-x .8')
- - t - t X
(22'0) Eﬂ(X:S) Y(ul X,S )Y(luz X’S ) L(X'“Z’I“S')L(X'”I'I‘S') ?

whence
@21) e (x,8) = ¢ (u,-x 28 - T)e 25 - 3)
'ﬂ'X,S - #lx: S"Z ruz"X: S'Z.
If on the other hand 7 = W,u [ is a special representation with u (x) = le .
I’—2
which we may assume since =« ~ , then we have
Hos M Kol
1"72 2°"71
(222) I.:W(x,s) = L(u1~x,s')
and thus

L(,ul"‘x:s')
223) e _{¢,8) = vl X8 )Yy ,st) X Ll -, 1-s7)

comparing with (220) we get

I—‘(x '#11 l-s' )

(224) eﬂ_(x,s) = s(,ul—x,sl)s(,uz")(:s') X L(IJZ“X’S')
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-1 -
Now put ?xz =,u2-x; then x-—,ul iz the character x> ‘x[ hz(x) 1 since

we assume that ,uly gl(x) = 1x‘ Hence we get at once

(225) Lix-#>1-s") = Ly -4, =s'),

so that the fraction in (224) equals

Lix-#,,-s")
(226) L(IJZ'X:S') .
This is one if Xt is ramified. In the opposite case, putting again Hy=X = )\2,
this equals
-5
A L & g

(227) = =X (’?)NMJ/)" ;
-1 s' 2
1- %, 4) N
an exponential factor as we knew in advance since the left hand side of (224)

must be one in all cases.

To conclude these computations we recall the computation of the factors
v (x.s) and e(y,s) in the functional equation of local Mellin transforms. We

start from the functional equation
228 L _{-y,l-s) = ,s)La (v, s),
(228) CP( X ) = v{X,s) q,(x )

and assuming first that ¥ is ramified we choose @ such that

-1
~ _Jx () if xe E
(229) G &) = 0 if x f Eg .
hence
(230) &) =/ ¥ 7_(xu)du.
9% = x®re

Since m (EF) =1 we have L, (¥,s) =1, hence

@31) v ffx 6™y ) "7 o) ) 00 s = m+(EF)/x ) "hr o) | T

Since we assume that ¥ is ramified, this reduces to
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o (A+£) (L~5) -1
(232) vix,s) =m (E_JN{) ¥ %) T.()d x .
F ? v(x)=f-—d-f F
If we put 1
) + 7 (a+) L et 1
(233 e(x) =m (E_)N() Y (x) v @@)d x=v{,5),
S v (x)2-d-f F 2

so that la(x)[ =1 if y 1is unitary, then

(d—!—f)(%— - 8)

(234) vix,s) =¢ (X)N(/j,)
If now ¥ 1is unramified, we choose ¢ such that
n 1 if xe¢ /O’F
(235) CF(K) = 0 if x/é/ﬂ'F )
hence
m+(,d’F) if xezj,-d
(236} CP(x) = 0 i Xﬁ/ﬁ/”d .
We thus get
(237) La(y,s) = f x(x)[x|5d*x = L(y,s)
P o
F
and
LCP (-x .1-8) = m" WF)%[d X (X)-1|X|1-Sd*x
(238) - m+W’F)x(j,)dN(4tr)d“'s)f v 6 ] % x
/OJF
=m0 (@)dm@)““'s’u-x,l-s).
Hence
Yix,8) = m' WX (@)dN(?d(l“s) T
(.39 = 1
d(= - s)
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We thus get, in all cases, the value

(d+f)(13 - s)
{240) e{X,s) = E(X)N(%)

for the factor e(y,s) in (219), 'where ¢ (y) is given by {233) in the ramified case,
and by

(241) ex) =¥ (?)d

in the nonramified case. Formulas (221} and (224) then yield the values of

E'n‘(x ,8) in terms of the " root numbers' e (x).

16. The case of spherical representations.

We shall say that an irreducible admissible representation 7 of GF
is spherical if its restriction to MF = GL(Z,/QJF) contains the identity representation
of M.F. These representations have been well known for a long time (Mautner,
Amer. J. Math., LXXX, 1958, with generalizations to semi-simple groups by Satake).

The results are as follows:

Theorem 11: An infinite-dimensional irreducible admissible representation 7 of GF

o
1 and uz o_f F  such

that 7 =7 and 7 is not a special representation. The identity representation

—— [ .

of GL(Z,,Si_]") fg_then contained exactly once in 7. If 6-d is the largest ideal of F' on

is spherical if and only if there are unramified characters u

which T is trivial, then W(ﬁ') contains one and only one right-invariant function

under GL(Z,/QI}) with the value 1 at e ; it is given by

0 f -d
. i xfﬂ,

0 0, _ = . .
242) LI x| ° Z ‘“1‘?1)“2‘%% if xe/?d.
L +j=v (%)
We then have ?

n

2"_ e
(242 bis) jWO G f) | %5 1q"x = L_(id, s).
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We first prove that a supercuspidal representation ¥ cannot contain the
. e
identity representation of MF = GL(Z,@’F). Suppose a £ e}{(«rr) =J(F ) is in-
variant under MF’ hence under the matrices

1 b a 0

{243) (o 1),b€/0fF;(0 1),a6x0';;w.
We already get T (bx)€ x} = £(x)} for all b e /0}, so that
(244) £ (x) % 0 => x exj"d

i
Furthermore, €£(ax) = £(x) for all a E/U)F. Evidently ©w has to be unramified,
™

and if we now write the functional equation

(245) Mw(w)g(mw-x,l—-s) = yn_(x,s)Mg (¥, 8)

for y =id, we get, since x{w)f = £,

(246) fg 66| *57a"x = v_fid, s)fg 6| | 2% ",

But y“(id, s) = s_n_(id,s) since 7 is supercuspidal, so that Yw(id’ $) is an exponential
function [see (217) and the argument thereafter] of the form a-qzn S-n for some

E3 -
integer n, where q = N(?. Choosing te F such that |t| =q " we can

rewrite (246) as

(247) f& (xwl)wﬂ_(x)l xl ZS-’ld*x = af € (tx) | xl Zsjld*x;
since £(x) depends only on |x| we conclude that
(248) £67) = aw_6DE ().

™
Comparing with (244) we conclude that

(249) E6) F 0= x,x e «g,'d
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But we may choose T_ in such a way that d = -1 for instance; then conditions

¥
e ?_d and x-l € /%“d are not compatible with each other, and we get £ =0. [The

above argument is essentially Jacquet and Langlands' proof; see p. 118 of their pa er. |
y q pap

If 7w is spherical we thus have 7 = , for some choice of My and

‘ul’ ,UZ

; the fact that contains the identity representation of M_ if and only if

2' Mll #2

and M, are unramified with 7 non special is clear (in the "special' case the

K F

My

is that one-dimensional component of p,u u we
|

have discarded to define =« , so that it is not contained in » ). Itis no less

Nl, #2 —— 'ul’ #2
clear that the space 6 of (see (102) and No, 8) then contains only

essentially one vector invariant under M

identity representation of MF

, namely, the functions @ such that

F 1

(250) pLE *ml = e, e /e |2

tll

To compute the corresponding Whittaker function

@51) Wig) = wle)tg 1)~Zf w7l Vel iy,

v{y)=n

see (134), it is better to replace brute force by a recursion formula expressing that

W is an eigenfunction of the Hecke operators, i.e., that W satisfies not only the

conditions

(252) Wi Mgl = bW, WG el = v 0We)
but also

(253) W o= Na)W

for every « E%F left- and right-invariant under the compact group MF’ where the
eigenvalue \(¢) is determined by the fact that the function {(250) satisfies the
same condition (253) as W; the existence of a relation (253) follows from the fact

that the operator w(), i.e., the right convolution with «, maps into itself the one-
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dimensional subspace of vectors of the representation space of 7 that are

invariant under MF' If in particular @ is the characteristic function of a coset

MFhM , we get

i

(254)  AB)WE) = f W ey Daly)dy = / W(xv'l)dyrz W Germh ™)

M_hM -1
FF . MF/MFﬁh Mz h

oy 0

If we choose h = (0 1) where W is a uniformizing variable, we see at

once that MFm h_lMFh is the subgroup.of matrices (i 2) € MFsu‘ch that ¢ = mod?;

s

if we denote it by B, and by [}'0, the subgroup of matrices (}6 1) in MF’ then the
Bruhat decomposition for the GL/({2) group over the finite field ,g’//% shows that":

(255) M, = B %,wB.

Hence (254) can be written as

-1 -1
T 0 1 n, 0.5 .
(256) Wikl I+ S Wi w01 =awe.
nw’/,% n
It is of course enough to compute the numbers WI1 = W(g} 1). We then get at once

_ -1 . _ -1 n
(257)  AW_=W__ +w (@) Z TF(ﬂmrr)Wn+1 =W e @OwW_ ZTF(T]ZD ).

n-1
nefo“/,? : ) nm’/,j/

It should first of all be observed that if we denote as usual by ?“d the

largest ideal on which T is trivial, then

1,
3

These results, which are trivial for GL(2), can be extended to general reductive
groups; see N. Iwahori and H. Matsumoto (I. H. E. S, ,No., 25, 1965), or R. Steinberg's
notes on Chevalley Groups (Yale, Dept. of Math., 1968), or forthcoming papers by

F. Bruhat and J. Tits.
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(258) W )=o=>u:rne?' ie., n>-d;
0 -
in fact, if n e, we have

n n
et Ol mg_ord By Oy o

(259) w_o=wl@ DG Pl=wle NG PlETe@ v,

because of the right invariance of W under MF and the behavior under left trans-

lations by matrices (]E) T). If n> -d, then (257) reduces to

=1 B
(260) @ @ OW,_ ) - AW+ W =0

where g = N(%) = Card (,0’//%). The formal series

+c0 n
(261) W(X) = anxn = Z w@ (1’)xn
=

thus satisfies

(262) (% - X+ qu_(T W) qu(@'l)w_dx“d,

whence d

-1 -

n qld w X

(263) STw@ G x"- n? — .
L qu(,%)“ SAX + X

s,
The factor A is computed at once in terms of the characters u_l(x) = lx] Yt we

apply (256) to the function (250) for x = e; we get

8
/2,71 2
(264) A=q g ta )
while
s. +s.,+1
-1 1 2
(265) qw () =9
w
Hence
s +s_+1
2 -d . 1
q W_ X oo ~1i(s +E) e jis +—~:) .
d ~d 1 % g 2 2 XJ

o0 .
<n_ - -
(266) § WE T sl+1/z s,1/2 W_a® E 1
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from which we conclude that
1 1
n -d -i(s t=)-j{s, t=)
(267) w (@ L2 e 2

P02 /2, 0 O i j
T O g Y)Y Pw@ D) > w @, @),

i+j=n+d

(268} W

This formula leads at once to the proof of Theorem 11, including (242 bis).

17. Unitary representations: results

Let w be an admissible representation of GF on a complex vector

space v We shall say that ¢ is pre-unitary if there exists on c\f’ an invariant

positive-definite hermitian form (£,n). It is then clear that the op erators ri{g)
can be extended to unitary operators on the Hilbert space obtained from be
completion. We get in this way a unitary representation of GF in the classical

sense; we call it the comEIetion of 1.

Lemma 10: Let ¢ be a pre-unitary admissible representation of GF on a vector

space V Then the completion of ¢ is topologically irreducible (no invariant closed

subspace) if and only if is algebraically irreducible.

~ ~

Denote the completion of 01/) by V and the extension of (g} to V by

-.-/l\-(g). For every irreducible representation /(5/ of MF, let \f(/ﬁ) vaﬁ) be the sub-

A

space of vectors £ e v which, under ;(MF), transform according to 4.9’ The sub-

A
~
spacesVQ{% are mutually orthogonal; but V is the Hilbert direct sum of the
various V(ﬁ) since these subspaces are finite-dimensional, mutually orthogonal,
and generate v We conclude that
Fay
(269) Vi =V
4]
in other words V is the set of all MF-finite vectors in V Since MF—finite vectors
Fal

are dense in every closed invariant subspace of D\f {for trivial reasons: MF is
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compact) we thus see that such a subspace is the closure of its intersection with j/
}Mence the algebraical irreducibility of m implies the topological irreducibility of
N
N
7. On the other hand, letV/"" be an invariant subspace ofv; since Vz EBV(A.?’)
LAY
and since /' = @/ ) where /! v =V m(\f(ﬁ’) we see that the closure /' of
A
'\f‘ , which is invariant and given by "\/" = éV’ (/[95, is nontrivial if V’ is. This
concludes the proof of the Lemma.

We shall now state the main result:

Theorem 12: The pre-unitary irreducible admissible representations of GF are the

following ones:

(1) the supercuspidal representations w such that ]w (x)| = 1;
™

{2) the representations L of the principal series for which u
1’72

1

and B, are unitary;

(3) the representations LI of the principal series for which

1’72
—-1 o

pob) = ) and uix) = x|, 0<o <

!

{(4) the special representations m for which lo &) = 1.
™

In these four cases, the invariant scalar product is furthermore given, on the Kirilloy

modelg{ T, _Iﬂ

270) € = [ teimbaa x.
The theorem will be proved in several steps.

18, Unitary representations: the supercuspidal case

Let 7 be a supercuspidal representation, and assume lw (x)l = 1. Let
W

‘:\f'be the space of 7 and denote by <, > the canonical duality between V and
. .

the space v of the contragredient representation 4. Choose once and for all
v
a nonzero vector ?;0 € V and consider, for any two £,m € V, the function

gr—><r(@E , L<wlen., L5 s



.59

it is invariant mod ZF and, by Theorem 3, its support is compact mod ZF' We

thus get an invariant scalar product on D\f by defining

A

(271) €= ) <r@t, tp<rlin, Ly dg

GF/ ZF

It is positive definite, because (£,£) = 0 implies that £ is orthogonal to all
vectors %(g)go, hence vanishes since 1 is irreducible. Hence 1 is pre-unitary,
and this proves part (1) of Theorem 12.
It should be observed that if ¢ is given as a Kirillov representation,
so that o\.f =K(1T) = J(F*), then the scalar product on J(F}k) has to be invariant under
the irreducible family of operators
@72) > £ 69} > {x —> 7 ) (@)}
this leaves no choice, and we get, up to a constant factor,
(273) | &) = [ bmGad %,

as asserted in Theorem 8.

19. Unitary representations in the principal series

Let 7 be a pre-unitary irreducible admissible representation on a
vector space V. We can then define a semi-linear mapping J of V' into its dual,
and actually into (1;7, by
(274) (E,m) =<, TIn>;
the invariance of the scalar product means that J ° n(g) = :,-(g) o J. If we consider
the conjugate T of 7 [defined by replacing the complex structure of Y by the
conjugate one] it is clear that J will now define an isomorphism between T and

7. Conversely such an isomorphism defines on V an invariant nondegenerate

hermitian form

(275) J(E,n) =<g, I
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which, however, may not be positive definite.

Now suppose that 7 = ¢ . We know that ¥ = ¢ . It is
:uls rufz "“1’ "Juz
clear, on the other hand, that 1 = WLT s [consider the mapping ¢ P—)@ from
| A
;j? to (35— ~]. For = to be quasi-unitary, we must thus have
T M Hoo M
"7z '~ 2
(276) oy~ o
I A
i.e., (Theorem 7), either (-ul,—uz) = (El,ifz) or {-py.-k,) = (EZ,;TI).
The first case means that ,ul and ,uz are unitary. In this case there

is obviously a positive definite invariant scalar product on the space@ 4 defined in'(102),
namely, . R ar
G = | oeT@ag = | pemifmiam since G- P M, ;
PG M
F °F F
since this scalar product is invariant under right translations, we may replace g by

-1
gw in the above formula; on the other hand, we know that GF is, up to a null set,

the product of PF and the transform under w of the subgroup UF of matrices

(2 ;t);we thus get
G = | gl Bew g - fot™ G e Bl v an
P_\G
F'OF
hence

-11 x.— -11 = e
e e = [ole TG DTG e = | £ 60F Bax

by Plancherel' s formula [use (113) and (120)]. This proves the case (2) of
Theorem 12,
Suppose now that My = 'E-Z. TN 'E-l , i.e., that
(278) b, () = 1,
If we assume we are not in the case already studied then we have
@79) N T s PN R P
with a real exponent ¢ % 0, since otherwise Hy and Hy would be unitary. Since.

™ ~ we may even assume O 2> 0, and since the special representations
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are excluded for the time being we have o f 1. This will allow us to construct an

""intertwining operator"

(280) A:B —> & =B _ _
“ll.uz Juziiul ‘)urlt ".ua
given by
(281) AP = [Plw(, Mglax
0 1
This integral converges since we have
1 = -1 -1 “g-1
(282) plwiy Pel=u talx| ™ = x|
for le large, by (119); the fact that A defines a mapping of @# u in
1’72
compatible with ¢ and p can be seen easily as well as the
Nza HI IJls 2 “2' Hl

fact that A % 0 [use formula (285) below],
It is now clear that if there is a positive definite invariant scalar
product on the space CB of 7 [we exclude the special representations for

the time being] it is given by

(@, §,) = c <A<,01@2 = CP ij AP )P, (e)de

(283) FOF
cfapg B Bl e
with a constant c. Butfor Qe @ put
”1"”2
-11 x -1l x
(284) $&) =plw “(, Pl ¢ &) = Aglw o Pk

we have, by the definition of A,
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8160 = [olwly Dy = (910 D lay

%0 1
1 | -1, 14 .
(285) =[qo (, f+xy)dy =ju vl é(-fl)dy by (117)
=f§ Gety i (y')d*y where d*y = |y| -Idy.
Hence if we put
(286) P lw ™ty 01 =3, 60 (=12

we get

3 _ e ———— o S

(287) (@) ¢,) = cf@i Ge) , B) dx = cffélfxﬂr)@z(x) [y axd y.

We thus see that wu 4 is unitary if and only if there is a constant clo) )‘é 0 such that
1’ 2 r A

(288) clo)] [@ (cty)d &) | y| axa y> 0

for all functions ¢ corresponding by (284) to functions @ e@ i.e., as we

Hos i’
. 172
have seen in No. 9--see (118) and (119)--for all $ in the space ’5(;.1) of locally con-
stant functions on F which, at infinity, are proportional to u (x)ullxl -1. Since

Er'((,u) obviously contains J(F), the above condition requires that the measure

B
c(a)|y|0d y be positive definite. If, conversely, this condition is satisfied, and

b
if we consider, for any § B'r(p), the positive-~definite function( )
(289) Tly) :j§(X+Y)§5 (x)dx,

e
then c(o)¥fy)|y| ®a Yy is a positive-definite measure with finite total mass, from which

()

it follows that fc (o) T(y)] YI cd*V > 0.

We thus see that the representation under consideration is
- e “1’ u 2
unitary if and only if |y| d y is proportional to a positive-definite measure, i.e.

]

s ok . -
if the Fourier transform distribution of |y| d y is proportional to a positive measure,

13

But it is clear that this Fourier transform induces on F  a distribution proportional

("‘)’I‘he convergence of (289) is clear since ¢ (x} X |x| -1-o at infinity, with o > 0,

A ofa
(:,\ £

On a locally compact commutative group, the total integral of a positive-definite
measure with finite mass is always positive. More generally the Fourier transform
of such a measure is an everywhere positive function.
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to |xll—0-d"‘x. This cannot extend to a measure on F unless o< 1.
If conversely we have 0< o<1 then by (167} there is a constant vy (o)
such that
290) [8191°6" = 7 [ g6l =10
= Y (o)
for all ¢ e of (F), which means that |y|o-d"‘y is the Fourier transform of the measure
L lxl 1-0‘d"cx. We then get an invariant scalar product on 65 by putting
v (o) My H o
. o e
@y Py) = v(c)ffél(xw)@z(X) |yl axd y

{291)

N -1 1 by, -11 =x c, *

= v(c)ffcpl[w (o 1 N@,Lw (5 Pllyl axdy
i.e.,

_ 11 = -11 vy o-1

This concludes the proof of assertion (3) of Theorem 12.

We still have to prove that (CP]_’ CPZ) is given by formula (270) in terms

of the images § and £

Py ?,

But if we write (290) for the function yt—> §1(x+Y), we get

(CPI’ (pz} = J‘gz ()dx - v (U)f§1(x+y)l yl gdal:y

of (Pl and CPZ in the Kirillov model of Trlu]_’ “2‘

(292)
= ff$1(Z)TF (xz)gz )| Z\I-dedmz

A
since the Fourier transform of y §l(x+y) is evidently z bk—> §1(z)TF (xz). Hence

(293) @y @) =f§6‘1(z>@z(z)lz|1"’d"‘z,
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and since we have in a general way

1/2

-1 -
(294) éCP(z) =u, @)z plw (t Phrgtrz)ay

by (134)--there is here no convergence problem since o > 0--we get

- - -2 -1 log %
(295) @, P,) -fg%(zwcpézﬂuz(z)l 2] fzl a2
-2
which, since |,u2(z)| = [z]cr in this case, eventually leads to the formula of
Theorem 12, namely,
(296) @p 9, = |6, E BIax.
C101 CPZ . CPI P©,
The convergence is clear from the table on p. 1. 36,
20. Unitary representations: the special case
Let 1 be a special representation; we may assume that pu{x) = Ix] .

If v is pre-unitary, then 7 ~ 7, which, as we have seen for the principal series,

implies that either My and M, are unitary, which is clearly impossible here, or

ul(x)gz (x) =1, We thus see that if 7 is to be unitary then we must have

1/ 2 -1/ 2
(297) o) o= [=]" “x &), M, x) = | x| X )
with a unitary character Y.
: 0
The space of & = ¢ is the hyperplane @ of @ defined
H ] u u !u IJ ? u
=2 "7 2 | R
by the (invariant) condition
-11 x _
(298) Jot ax - o,
and the space of T is the quotient of @ by the one-dimensional
Moy - Mo, U
1 2 1 2
| 0o - | U L I
subspace orthogonal to @ . One should observe that since @ i is invariant

Hir ks, My Mo
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under p we have
72 -11 =x
{299) fCP [w (0 1)g]dx =0

for all CP e@ i and g e GF’ which means that the intertwining operator
2
A @) -—>@) here vanishes on (B ; we cannot use it to define a
Mol ) M Moo M
| ) 1 '"2
nonzero invariant scalar product on @3 . However, since we have here o =1
Hirko
in the notation of the previous n , it would be natural to define the scalar product by

a limiting process, i,e.,

11 — -11 -1
(CP].’ CPZ) B lllrnOY ffcpl X]CPZ[W (0 YI)HX-YIG dxdy

o

(300)
= lim f@ (Z)E (z)lzll-cd*z,
1 2
c=1-0
since the condition for a CP € to be in means that the corresponding
His M o M
1’72 172
function
_ -11 x

(301) &) =Qlw “(; ]

A
satisfies ¢ (0} = 0, we see that the limit under consideration does exist, and that

(302) @, P, fiﬁ @ d X f&cp (X)é (X)d X.

To conclude the proof, we need only to check that the above scalar product is invariant

under 'n-‘u u. The invariance under triangular matrices being clear, we only need
'"2
0
to check invariance under w. To do that we first compute, for a given CP € @# u
1’72

the number

(303) Iim v (c)f§ () | x-y| 0l = limy (c)/éﬁ tety) | x| Od x.

o—>1
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It can be seen at once [use (240} and (241})] that

1- -0 d(lz-c)

(304) yio) = —2——¢ where q = N(?.
o-1 !

l-q

Assuming v = 0 we thus have to compute
(o] *
(305) f_fﬁ(x)ledx =1imf§(x)(|x| -|x|)d x
o-1
1-q° l-q
since [¢(x)dx = 0 for all § ¢ doap Taking derivatives with respectto o
1’72

(L! Hospital' s rule) and observing that

(306) = %] = |%|%log| x| = -v )| x| ®log q

we eventually see that

-d/ 2, 1
(307) lim f@ x—i—y)!xl d x = (1—-*-*)[§ x4y v x)dx,
o—>1- 0 0 4
provided of course that CP E@# u ; the derivation under the f sign is justified
1’"2

because of the fact that the integral fﬁ(xﬂr)v(x)dx is absolutely convergent.

We now get

CPI CPZ) = limy (o ff§ )§ ., ()| x- y| dxdy
(308)

=q 1-"‘)ff§ 6c)d , (y)v be-y)dxdy.

We can now prove the invariance under ={w). We have [we neglect the constant

-d/ 2'(1-5) in the following computation]
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w)cpl,-rr ) ‘ff@ 0 'sx.r]cpz[w-}'(1 ywlv (x-y)dxdy
_ ‘ 0— 1 0
- [Jo .l V8oL, v beylasdy
-]_ - -
(309 <8651, ey D 5| P beeyiaxay
- f f 8,693, ty)v, b -y ) axay

= f]@l(x)gz (Y)[Vl(X-Y) - v(xy)]dxdy,

so that it remains to check that

(310) ffg? x)§ (y)vxy)dsdy = 0.

But this is clear since we assume that f@ dx = f@z(y)dy = 0;

f[§1 x)§ v (xy)dxdy
:ffél(x)gz (y)v{x)dxdy +/f §1(x);:2 (y}v{y)dxdy

= fél(X)V(X)dXIfz (y}dy +f§1(X)dx §Z(V)V(Y)dY = 0.

by

(117)
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§2. The archimedean case

In this section we assume the ground field F tobe R or €, and we
intend to show how the results of §l1 can be "extended' to this case (a not too
surprising fact, since the archimedean case was studied twenty years before
thea’(t -adic one...}. We still put GF = GL{Z,F) and let MF denote the
obvious (i.e., orthogonal or unitary) maximal compact subgroup of GF.

We shall not here give full proofs of the results because of two reasons.
First of all we see no way of substantially improving Jacquet and Langlands'
account of these results (§§5 and 6 of their monster). Secondly, the theory of
unitary representations of SL{2,R) and SL(2,@) has been well known to
many people for quite some time now, and extending the results to {non-

necessarily unitary) representations of GL(2,R) or GL(2,C) is a com-~

paratively routine matter.

1. Admissible representations

B

Let 7 be a representation of G_ on a reasonable topological vector

¥
space}'t[; for each x ¢ GF we have a continuous automorphism 7(x) of
}\f, and the mapping x> 7(x)£ is continuous for every £ e }'{ We can
then define an operator #{f) on h‘ for every continuous function (or even

measure) with compact support, by means of formula

(1) 7{f)§ =f7r(X)§-f(X)dx,

and the mapping f+> r(f) transforms convolution products into products
of operators. For closed subspaces of }1‘, invariance under w(GF) is
equivalent to invariance under =(f) for '"sufficiently many" functions f.

Let /(}' be an irreducible finite-dimensional representation of MF;

define

(2) (m) = dim (J) - Tr[Jm)]

X

*
We shall assume that # is locally convex and that the closed convex envelope
of a compact subset of ¥ is still compact. This makes it possible to integrate
continuous functions with values in ¥ and compact support,



for all me M_, so that e = . Considerin as a measure o
F Xo " X9 Xgy & Xg "

GF (with support MF)’ we get on # a projection operator

(3) Ey) = w(g%) = /w(m)-xﬁ(m)dm

on a closed subspace }\((ﬁ) of d—\[, namely, the space of vectors £ ¢ BDF which, under

7(M_), transform according to a finite multiple 0f A7,

F
The algebraic direct sum

(4) =8 )

is dense in Pf; it is the set of all MF—finite vectors in }‘1" [vectors the transforms
of which under w(MF) generate a finite dimensional subspace of = ]. Though

}; this is the

}{0 is stable under ?T(MF), it is generally not stable under ‘JT(GF

main technical difference between the archimedean and the ?-adic cases.

However, EH[ is stable under many operators n(f),e.g., those for which the

0
function or measure f is left MF-finite (i.e., such that the left translates

f{mx) generate a finite dimensional wvector space), or is such that the transforms

f(mxm_l) of f under the elements of M_ stay in a finite-dimensional space, etc.

¥
We shall be interested mainly in those representations for which j’-\f(ﬁj

is finite-dimensional; this is true (under mild assumptions of a topological

s

*
nature ) if 7 is irreducible (no invariant closed subspace) - in this case we

Ale by
Ergd

- 2
always have dim?{(ﬁ) Sdim (/33 and even

o,

FThese assumptions are automatically satisfied if 7 is unitary, or finite-
dimensional. See R. Godement, A Theory of Spherical Functions I (Trans.
Am, Math. Soc., 73(1953)), or Harish-Chandra's papers of the same period.

'.%F‘ormula {5) can be proved without looking at the classification of irreducible
representations by first checking it is satisfied for finite-dimensional rep-
resentations [which, if F = @, rests upon the Clebsch-Gordan formula for
decomposing the tensor product of two representations of SU(Z, C}], and
then making use of the general principle explained in the paper quoted in foot-
note {¢), where a complete and direct proof of (5) will be found.



(5) dim () < dima/,

which means that every irreducible representation of MF occurs at most once

in every (reasonable, e.g., unitary) irreducible representation of GF. In any

case, as soon as a representation 7 satisfies
(6) dim ¥ () < + »

for all/l?z, the vectors £ '53:"0 are "analytic', which means among other
things that the 'coefficient'" <z({x)£,n> is an ordinary analytic function on the
real Lie group GF for every continuous linear form n on ¥ ; and for every

In T4

£« }*0 and every distribution g with compact support on GF there is in ¥ a

vector w(u)t such that
(7) <), = [<nbot, au b .

for all . ,
There are two obvious cases where we have w(u)f ¢ 33('0 for all £ ¢ };‘(LO;
if u is a Dirac measure at a point m of MF--then 7(u) = 7(m), evidently--

or if the transforms du (rnxmal) of i under the elements of MF generate a
finite-dimensional vector space, e.g., if u EZCQ?), the algebra (under con-
volution product) of distributions with support reduced at {e}; it is well known
that ?L((a)f) is canonically isomorphic to the enveloping algebra of the complex

Lie algebra /g of the real Lie group GF; and its elements can be identified

with left invariant differential operators on G_,, the operator definedby a pu ¢ Zé(.?)

Y v -1 F
being fr—> fx u, where pux) = pufx ).

P

We can now define a '""Hecke algebra' HIF as follows . We choose

(8) HF =mg) if F=GC

because, since G is connected, there is a good chance that the map

()

(representations of G_}) —> (representations of/g/ ) will be injective, If F = R

F
we cannot entertain such hopes, and something must be added to uU (6’() in

>&Jacquet and Langlands choose a much bigger one. Note also that Hecke himself
never developed a taste for Lie algebras...



order to take care of the two connected components of GR' We add to (g/)
0

the Dirac measure ¢ at the point ((-) 11

] of GR' In other words we define

(9) WF = M(xg() & Zafg) e if F=R,

the algebra {under convolution product) of distributions whose support is con-

0
tained in the subgroup (:51 1) of GF.

If 7# is a representation of GF on a topological vector space 33( and is
such that dim %(«9) < + oo for all A9', then we get in a natural way a representa-
tion (still denoted by =} of ’HF on the subspace }FO; and if we associate with
every closed subspace af of Hf, invariant under W(GF), the subspace
"fo = ;frﬂﬁ‘o of NO’ we get in this way a bijection o —> ,Ifo on the set of
subspaces of BDFO invariant under W(HF). For unitary representations on

Hilbert spaces the correspondence between representations of GF and

%)

representations of 7'{F is furthermore injective o,

These well-known facts explain the following definition of admissible
representations. I.et 7 be a representation of the algebra -HF on a complex
vector space V. We shall say that 7 is admissible if the following conditions
are satisfied:

(i) the restriction of 7 to the Lie algebra of MF decomposes into
finite -dimensional irreducible representations, with finite
multiplicities;

(ii) for every £ ¢ V and every 1 ¢ \\//' (see below) there exists on

C‘rF a function, which we denote by <r{x)&, >, such that

{(10) <w(u)g,w = [ <zx)E, pdu (x)

for all ue HF

What we denote by \Vf is of course the set of all linear forms on V which,
under the transposed of the operators 7(u), transform according to a finite
dimensional representation of the Lie algebra of MF. If we denote, for a given
irreducible representation A?Df MF’ by V() the set of all £ ¢ V which

transform under a multiple of T {we consider /\} as a representation of the

(a‘)Assuming of course that dim 3"((,\9') < + o for allnﬂ'.



obvious subalgebra of HF as well), then conditions (i) and (ii} insure that
v % e
(11) V=0 V), v=ovih) Cv,

and their purpose is of course to avoid considering representations of 'HF which

do not correspond to representations of G (note that G_, is not simply con-

F ¥

nected, even if F = ©, and still less if ¥ = R),

For an admissible representation 7 of H on a vector space V,

irreducibility will mean the usual and purely algebrai‘: concept--no invariant
subspace whatsoever. Condition {ii) implies that 7 can then (in many different
ways) be realized on a space of functions on GF' More accurately there is always
an isomorphism £ +—> CP& of V on a space of functions on GF with the
following properties: .

(a} the functions (pg are analytic and right MF-finite;

(b} for every £e V and u e ’HF we have

(12) Prpure = Pe “.

Such an isomorphism can be obtained for instance by putting

(13) CPg(X) =<zx)E,

v
with a given non-zero 1 € V; in this case the functions CPE, are also left

MF-finite. But as we shall see there are other ways of constructing irreducible
admissible representations by letting .HF operate through right convolutions

on function spaces,

2. The representations p

Hp#Ha ,
Let ,ul and My be two characters of ¥ , As in §l we shall denote
by @“1’”2 the space of functions Cp(g) satisfying
19 PIE  Tel =y, e /o0 1Y o)
and which are right MF-finite. It is clear that @”1’ 'ué d HFC @“1’ i, , so that

" we get a representation p of H on @ given by
Hpr s F Hisk s
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v
(15} P (X) = % X

for any X e ’HF This representation is clearly admissible: the functions CP

are determined by their restrictions to M_,, which are " trigonometric

F

polynomials" on M The first fundamental result is

oy

Theorem l. Every irreducible admissible representation of ,HF is contained

in a representation p

#1’ #2‘ s
This is in fact an already old result of Harish-Chandra's , valid with
minor modifications for all reductive real Lie groups. It means that the super-
cuspidal representations of §1 do not exist here--there are not many analytic
functions with compact support mod ZF, either ..,
To get an elementary proof of Theorem 1, one first needs to select a

basis of (B adapted to the action of M_,; we shall explain it in the case

:Uluuz
where F =R, the other case being similar,

EF

We can write

5. m,
(16) w ) = [t] Csgn(t)
with m, =0 or 1; the character u = ,u}.—,u2 then is given by
s m _ _
(L7) ) = |t| sgn(t) s = sl-sz, m = lml-mzl.
For every integer n = m (mod 2) there is in @ - a function P such
“1’ HZ
that
cos 8 sin ® nif
(18) )=e 7,

n-s8in® cos 8

s Eid

and only one since GF = PFMF where PF is the subgroup (D w)- The set

of functions (p_ is a basis of @ " Now the complex Lie algebra/g =
1’72
M2 {€C) of GL{2,R) has a basis whose elements are the matrices

aha
i

Harish-Chandra' s theorem actually states that every irreducible admissible

representation of U {g} can be realized on @' /B" where B' and @"

are two invariant subsSpaces of a suitable @u P with (B! C@' . But for
1’72

GL(2) it turns out that we can always choose B = 0.
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U:(-—l 0)’ Z:(O 1):

(19)
P | _ -1

Viesho)e Vorl ab
and it is easy to see that
(20) P (UKPn - in(Pn ’ P (Z)an - (Sl+82)cpn ’

PV G = stln)g . PV )P = (stl-n)@
where we write p instead of p. p Furthermore, the Dirac measure ¢
(_1 } operate be
0 11 per £ as

™

(21) P )P = (1)

Since it is clear in advance that every irreducible admissible representation
of HF has a basis whose elements are eigenvectors of U, it is easy, by
making use of the classical computations of Bargman for the unitary repre-

sentations of SL(2,R), to see that every such representation can be imbedded

in some p .
le M 2

3. Irreducible components of p {case F = RR)
Assume F = R. The relations above show that

t

(22} p (V+)p(Pn {s+14n) ... (s+2p-1+n)q)n+2p

(23) p(‘V-)p(Pn {s+l-n) ... (5+2p-1-n)q)n_2p .

It follows that p is irreducible if there is no integer n = m mod 2 such that

= nt]l mod 2; in other words p is irreducible unless

(24) s = m+l mod 2,

which means that

+1+2
m q,

(25) wit) = |t gn(t)” = t"sgnit)

for some integer p [writing u(t) = |fi ssgn(t)m we then have s = p and

m = p+l mod 2].



If p(t) = tpsgn(t) for some integer p, so that s = p and
m = p+l mod 2, we must distinguish two cases depending on the sign of p.

In all cases we have, since s = p =z m+l mod 2,

(26) ::(V_)cppJrl = p(V+)cP-p“1 = 0,
and P(V_)CPn/é 0 for n ]é ptl, as well as p(V+)CJan 0 for n)é -p-1. We
find at once the non-trivial subspaces of @.)) invariant by Z{(tg); there are

T2
three of them, namely, the two subspaces bellow:

@7) b Popesr Qs Prparh

{Cpp-i"l' CP13-!-3’ CPp+5’ b
and either their intersection (if p < 0} or their sum {if p > 0}). If we take into
account the operator p(e ), which maps Cpn on i(P 0’ then we see that
@# u contains only one non-trivial subspace invariant under p (HF) if
1! 2 N .
pf- 0, and none if p = 0. We eventually get the following result:

Theorem 2. The representation p u of )—/m is irreducible except if

#1’ 2
(28) w(t) = tPsgn(t)
for some integer pf 0.
If p> 0 then @# i contains exactly one invariant subspace
1’2
s
(29) B n, P Pop Pt B )
. f @ 8 e pes : .
and the quotient @ = /B is finite dimensional.
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%
If p< 0 then the only invariant subspace of @“ y is
2

f _ .
(30) @‘“1”2 = {QOPH, Ppzre - ,cp_p_3,q9_p_1}.

it is finite -dimensional, and the quotient

(31) @S = 3 /6

'ul”uZ ”1’”2 HI’HZ

is finite dimensional.

We shall denote by 7 the representation p if it is irreducible,
s M Mo H
| R 1" 2
or, in case it is not, the obvious representation on the finite dimensional space

£
C‘B) . The representation on the infinite dimensional subspace or guotient
Bk, ——
S will be denoted by o ; it is defined only if u(t) = tpsgn (t) with a
My Mo H
| R | A
non-zero integer p. With these notations we get a complete classification of
the representations: |

(a) every irreducible admissible representation of HR is a ﬂ-,u u or a
| A

o :
“1’ uz

(b} we have the following equivalences between these representations:

(32) T ~ T
(33) a ~ ~ (T ~ g
+
Hys by Boo by pytms dotm s, pytn
where mn(t} = sgn(t);
{c) there are no other relations between the irreducible representations

than the ones listed above.

The infinite dimensional W,u u make up the principal series; the set of repre-
1’72

sentations o will be called the discrete series.

I-lls MZ

It should be observed that if u(t) = P

sgn(t) with an integer p< 0, then

.the subspace
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i
34‘ = y oo+ ey
G4) @MI: Mo, {(Pp+1 q)-p--l}
of 6# u can be described guite simply. In fact we have ulu él(t) = tpsgﬁ(t),
1’72
hence every (e 2] satisfies
pul’uz
tl ¢ _ 1/ 2
Pl el = w u, @ e /e g “oe)
{35) = 'ul(t' t”)‘t” -psgn(t”)it' /t“ l;{'ch(g)
= 'ui(t' £ )| AR AL I; Ztu 'P'lcp(g).
Hence [B containg all functions
» M
1""2
a b, _ 1/ 2
(36) (P(C d) = ,ul(det g)| det g|R fic, d)

where { ig any homogeneous polynomial of degree -p-1> 0. The set of these

functions is clearly @f .
#1! HZ
The equivalences (32) and (33) are easily explained. If we consider

the (not always irreducible} representation P,u u which is described by
1’72
formulas (20) and (21), then p‘u u is obtained from these formulas by replacing
PAGES|
s by -8 and m1 by m,. If we denote by ((Pn) and (qD'n) the canonical basis for
@ and (B » and if we assume first that u(t) is not tpagn {t}, then we
get an isomorphism T of & on @ , compatible with the action of
Moy M Ho
N 1'""2 2'71
R °Y
P(—s+§+n)
(37) TP = P! .
‘ n s+1l4+n
rER)
[Observe that if either s+;+n or _:g%-l—_ri is a negative integer then s = m+l

mod 2, which is impossible if we are not in the discrete series; hence T is
- defined and bijective];(32) follows from this construction.

To prove (33), and first of all that o ~ g , We may, since



2. 11

My and pu., play symmetric roles, assume that s = p = m+l (mod 2) with a

2
negative integer p. The number

I,(-s-i-l-i-n) (-2 + n+1-B)
.. 2 ) 2
(38) By T lm e S lim e
8=p I'¢ '2 } z=0 T (z +"-TR)
is then defined for every n = m (mod 2} and the mapping T : @ — B
#1; #2 #2: I-‘I
given by TCPn = anqo' n still commutes with the actions of HR It is easily seen that
Ker (T} is the invariant subspace @f i of Theorem 2, and tﬁat' T induces an
12
isomorphism from @ﬂ = @ /@f onto the subspace @S of
.Uluuz )uls.ua Ulnﬂz #20#1
@ , from which ¢ ~0 follows,
Finally, to prove that o ~0 ‘ we may assume that
4 P [Ty Hotn, f,in v
1772 1 2
ut) = tpsgn(t) with p> 0. The representation (:r’J u restricted to the subalgebra
1’72

Uon  of Hm then decomposes into a direct sum of two invariant subspaces, namely,
{(Pp+1' Cpp+3, ...yt and {..., CP-p-3’ (P-p-l} and we have a similar decomposition
1 r 1 1 t
into {CP P+1,(p pt3 .} and {...,Q _P_3,CP -p-l} for UHI*‘TI».UZ“E'
We then get at once an intertwining operator T by requiring that
o) 0 if n> 0
T =

(39) CPn {-CP' if n< 0,

n
4. Irreducible components of 1:10‘u u {(case F =€), If F = @€ the situation is

1’72

similar to what we have just seen except that there is no discrete series. The

fundamental result then is

Theorem 3. The representation p‘u u of 7—{@ is irreducible except if
1’7z
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(40) u () = o with p,q € Z and pg> O.
If ult) = tpT:_q with p,q< 0 then @ contains one invariant subspace @_))f

ul’ Iu 2 ‘ul, .u- 2’
it is finite-dimensional and spanned by the functions

a b, _ -1/ 2 ==
(41) PE D= n et g)det g’ “F . AF, (e, ),
where @1 and @2 are homogeneous polynomials of degree -p-1 and -gq-1
respectively, If u(t) = tpt_q with p,q 2> 0 then @I—l y containsg one invariant
1’72
] f
subspace , namely, the orthogonal supplement to @ .
@ull #2 Y g pp — -ulr -”2’

If we denote by pn the © -rational irreducible representation of

GL(2,C) [or H(CI] on the space of homogeneous polynomials of degree n-1 in two

variables, then for ul(t) = tp?q with p,q < 0 we see that the restriction of
£ . . .
P to @ yields a representation equivalent to
Mo M My M Mo M
1’72 1’72 "™ 2
42) utaetg)laetgl % @ eF @)
1 C -p -q

which is the most general irreducible finite-dimensional representation of the real

Lie group G In other words Pl—l u failg to be irreducible if and only if either

(] >
"2
p or its contragredient p contains an irreducible finite-dimensional
.ul!)uz - "Juls '|u2 -

representation of G(C; this result is actually valid for all fields F.

%
For every couple of characters u ’“2 of ©€ we shall now define an

1
irreducible representation 7 as follows. We shall take
Hpte
{(43) T =p if it is irreducible;
and if it is not then ‘n'u u will denote the finite-dimensional representation
'"2

contained (as a subspace or as a quotient space, depending on the situation) in

o] L IE o) = tpf'q one can also define a representation o on the



2.13

infinite-dimensional subspace @s if pgq > 0, or quotient space @ s =
'ul’ :UZ Jul: #2
f .
B /B if pq< 0. However, it can be proved that

(44) o T
By, %)Y,

where vl and vZ are defined by

(45) T N NG

if ouf(t) = £t 9, Jacquet and Langlands' proof of (44) [bottom of p. 231 of their
paper] rests upon a general theorem of Harish-Chandra for semi-simple groups,
and it is not very illuminating. Somebody ought to improve it by explicitly con-

structing an isomorphism between the representation spaces of U,u g and T, p -
12 12

We {inally observe that the only nontrivial equivalences hetween

irreducible representations of G@ are obtained from

(46) T ~ .
My by Kook

5. Kirillov model for an irreducible representation

We again let F denote R or €, and we define

[H

i
C.

27ix .
(47) Tl = ¢ i F

e21r1 (x+x) i T

Theorem 4. Let 7 be an irreducible infinite-dimensional admissible representation

of HF on a vector space V. Then there exists an isomorphism §F—> Wg of V

on a space W(ﬂ') of functions on GF with the following properties:

(i) we have

1 x _
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for all xe F,geGF and £ ¢ V;

(ii) each W_ is c® and

— g —_— pndeintos)
v
{49} W =W, %« X'

for all £¢ V and XGHF;

(iii) for each £ ¢ V there is an integer N such that

0

(50) W, ( 1)=O(|th) as |t| —>+ .

t
£0

The space W(?T) is unique, and the mapping £ |—>wg is unigue up to a constant factor

The method of construction of W(vr) which we are going to explain uses
heavily the classical " integral formulas' for Whittaker functions; we could have used
it for the principal series over a/?,-adic field as well (as Jacquet and Langlands

actually do}.

We may assume that 7 is contained in a representation P‘u g
T2

Since p ~p we may assume that |u W = lt|cr with o> 0.
Mo M Moy M ) F -
1’72 2’71
. 2 4 2 - .
We now consider on the plane F the space O(F ) of all M- finite functions ¢

in the Schwartz space J (FZ), and for such a § we consider the function
_ 1/ 2 -1t _
(51) Ple) = 1, (et g)| det g °/ Flg ™ ()] w t)at;

the integral converges always at infinity, and it converges around t = 0 as soon as

2
> -1. It is more or less cbvious that §5 > @ maps _JO(F } onto @H u
1’72

In fact, the map is surjective even if we replace JO(FZ) by the much smaller

(*)

space of functions of the form

(=F)In the following argument x,y,t,a,b should be assumed to be real if F = R.
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(52) (}; xx * YY)P(x y,x,;r—)

where P is any polynomial in x, y,;c- and ; To prove this, it is enough to compute
the corresponding function (52) on SO(2,R) or SU(2,L), and to show one gets
in this way all polynomial functions on these compact subgroups. But clearly

if az +bb =1 then
(53) cp( ) f§ ) (t)dt =fe"” ‘P@t, bt, at, btiu(t)at
-b a

and the result follows at once.

The representation P'u i is thus a quotient of the obvious representation
' 2
2
of GF (or rather HF) on JO(F } or the subspace of it we have just described.

To construct W(W), we put

(54) fqo[ -l 1 el todx

for every QD @#1 ”2' Smce we have, instead of relation (119) of §I, the less
precise but equally useful estimate

(55} CP[W-lt ?)]{uwl(x)lxl; for ]xlF large

(same proof as in §1) the convergence of the above integral is clear at any rate if

o > 0. Assuming for the time being o > 0 and making use of (52} we get

-1/ 2 -11 - to—
(56) W (8) = u,(det g}| det glF/ ffﬂg (o lx)w(o)]'rF(x)u (t)dxdt,
from which it follows by standard computations that
Lo b
2
(57) W @) = s g)laet g 217 2 ”t wldpa=w' e,
where

(58) 3, 6‘) f§[ 7 txz)dz
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2
belongs, for every g e GF’ to the space wg (F ), so that the integral for W, (g)

¢

makes sense for all values of u since the function t—> @g(lltt) is rapidy de-

creasing at 0 and at .

2, Hp#s
If o> -1 then we can, for every 5 € \;(i7 (FF7), define Wq.E and
i H
the function ({51); we shall see that although W§1 may not be given by (54),

which makes sense only if ¢> 0, we can, however, compute CP in terms of

Mo, M
W§1 2 by means of a Fourier transformation. In fact, we have, if g> -1,
(59) Dlw) = f?ﬁ[w M (t)at = f@( u (t)dt
f?ﬁ@(x dxdt‘_/"}@(x/t t)lt] dxdt
where
(60) FEQ = [EQmpbemidz =5 ().
But
— 0 — u, _ u
(61) g=l ) =8 () ==l FE
so that
Mot )
"2 - 0 +1f 2 -xft -1
W (o o) =, (x| x| 1 f&’lﬁ(’f’t )] ] at
(62)

1/ 2 -1
il (507 ]l

Comparing with (59) we thus get

,u
¥z .x 0 W1 -1/ 2
Pow) = [Wg' CCT gDy ) |l 2/ Pax
Hi#e 0, 1/ 2,
- wﬂ(-l)jW§ (’g ) )|x|



if we replace ¢ by its transform under W-Ig we get more generally

T
(64) Cp(g) = wﬂ_(—l)fwél 2[(§ f)w—lg],u él(x)|x|£,1/ de;
this formula is valid for o> -1. It still leads at once to
-1 HH . X2
(65) olw"' Vel =fw§1 U el 6o =l 2 % eylax,

a result that would be equivalent to (52} if we could make use of Fourier's inversion

formula - but we cannot if -1< ¢ < 0.

Bk,

The above formula shows at any rate that qo = 0 implies W@- = 0.
We may thus define WCP by (65); in other words, we now denote by qu the

function on GF such that

11 oy, 4 0 -1 -1/ 2
(66) Plw ", el "IWCP [G 181k, 60 x| 7 T ey )ax
for all g and y. We shall denote by “‘:/V the set of functions W_, for all
His Moy ¢
©e @ , and by VV(?T) the subset of W__ for those elements P of B
HyH, ¢ Hir ks

which belong to the space of 7.

The space W('fr) satisfies the conditions of Theorem 4. In fact, if we

replace g by (E 1r;)g we get y+b instead of y in the left-hand side of (66),
hence
(67) bW, [ Vgl

F C!U 0 1

instead of WCP[(?; j?)g], from which condition (48) follows {choose x = 1),

Condition (49) can be verified at once by differentiating with respect to g.

As to the growth condition (50), it is enough to verify it for the function

-1
-1
(68) Wi 1= w, b=l #Fa e wldl L
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where @(};) = e-'ir(xx ¥ YY)P(x,y,;,;'—) with a polynomial P. Then '3'11§ is given by

a similar formula, so that (68) is a sum of functions of the form

69) £ie) = N (x)f* STt xx/ tt)?\zft)d*t
F

where )\1 and )\2 are characters of F , i.e., of functions

2 - 2 .
(70) Y (x)f ol b xx/ )@
0
e 2
But if we set xx = r with r > 0 then we have to estimate

2 2,.2 0 2 %
© -rft Fr ft)a* _ -27r -rlt-r/ t) t%a"t
e tdt=e e
0 0

o0 2
.2 ; . %
(1) -2/ %, ’”f AL R
0

J2 c2me] Cene1/ 0w ¥
ira " mfe*fr(t— t) &
0

t if r>1,
from which we get for each W ¢ W(:rr) a majoration at infinity of the following kind:

-1/ 2
(72) (W | < elx e BRI

H

this is much better than (50)!

The above computation proves the existence of a space of functions
W(w) satisfying the conditions of Theorem 4. We still have to prove W(?T) is unique;
we shall explain it for F = R, the complex case being similarly treated. Let

Wbe a space of functions on Gm satisfying the conditions of Theorem 4. We

then have a basis Wn of W satisfying conditions (20) and (2l); more accurately,

if 7= ﬂ,u u fprincipal series) with MMy given by (16) then the index n runs

1’72

over the set of all integers n = m (mod 2), while if = U,u u (discrete series)
1’72

with uyft) = tPsgn(t) and p> 0 then
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(73) ne {,...,-p-3,-p-1,p+l,p+3,... }.
In all cases, formulas (20) can be written as

v v

W #U=1inW , W %Z = (s +s5_)W ,

n n n 1 2" 'n

(74}
(s+l-n)W

n-Z;

W x*V = (s+l+n)Wn

v
W 3
n + n v -

+2°

we identify the elements of the Lie algebra of GE. to distributions at e. Now the

o
trick is to express Wn # U, etc.... in terms of the functions
/2
t|™ “sgn@t) 0 -1/ 2 t 0
75 F @) =W I = ;
(75) NOER NRRTERLS el ™ 5w @ )

by expressing U, V+ and V  in terms of the elements

I 0 o L. 0 0O

(76) W26 o ¢ o

of the Lie algebra, it is easily found that the F_ must satisfy the following
n

(%)

relations:

(s+14+n)F
hel

{t) ZtFLI(t) - (4xt-n)F {t},

+2 n

{77)

(s+l-n}F (t) = 2tF' (t) + (47xt-n)F (t},
n n n

-2

from which one gets

)

The formulas on p. 188 of Jacquet-Langlands are wrong; the factor u in these

2 2t
7rL1t%ue m. Here we

d
formulas should be replaced by 2#u, because E-t—e

choose u =1.
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(78) Fr o+ 63 + 22 nF () = o;
e 2 t n
4t
‘this second order equation evidently corresponds to the action of the Casimir
operator D —-]-'-V A iy U—Z of G
P 2 -+ 2 ’

We already know that these equations have a set of solutions F  which,
n

as |t| —>+ w0, tend to 0 exponentially. Let Gn be a set of solutions which, at

infinity, grow at most as a power of lt‘ . Because of (78} the functions
Fn (t)C:-l'rl {t) - F;l(t)Gn(t) are constant for t >0 and for t< 0; but they must evidently
tend to 0 as [tl —=> o because (77} shows that the behaviour at infinity of F1l-1
and GI'1 is the same as that of Fn and Gn' Hence the Gn are proportional to
the Fn, and this concludes the proof of Theorem 4.

One cannot explicitly compute the Fn (they are classical Whittaker
functions) except in the case of the discrete series; and we shall need the result a

little later. Then n belongs to the set (73), and if n = p+l then (77) shows that

' - {4 . e - 0-
(79 ZtFp+1(t) {(4mt - p l)FpH(t) 0;
since F +1 must not blow up at infinity we get
P
1
2 om if t> 0
(80) F 0= © .
p+l 0 if t< 0,

Using (77) we conclude at once that for every positive integer k we have

1
5 (p+l1)
£2 P (te 2wt if >0

(8L) Fonea® = 0 if t<0

with a certain polynomial P. of degree k. Finally formula (21) shows that

k
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(82) F_(t) = +F (-t),
irom which the other half of the picture follows. Taking care of (75) we thus see

that for

(83) T = , u() =1tPsgn{t) , p>o0,

o
Hl, iJZ

0
the functions W(B 1) where ‘W ¢ W(vr) are given by formula

1 1
i 5 _(p+1)
t 0 w (|t|2)|t|2 P+(t)e‘2ﬂt| if t>0
(84) wi o o=¢ 7 1 1
ot z —é-(pﬂ) -27|t]
Lo, (1t ]| P_(tle if t< 0

with arbitrary polynomials P+ and P ,

6. The functions LW (2:%,8).

We can now proceed as in the Aj-adic case and prove a result similar
. ) H
to Theorem 8 of §l. Let }/lf(vr) be the Whittaker space of an irreducible infinite-

e
dimensional representation 7 of }’LF’ and let y be a character of F . For any

W e W(ﬂ'r) define

0 -1, ,2s5-1 *
(85) Lo (ex,s) = [ W el =7 |x|“*7a ,
W 0 1
at first formally. We may assume 7 is contained in a representation p,u 1
|
with |u )| = lt]; and 0 > 0 as in the previous section, so that
0. , _ -1/ 2 1/ 2 [ty
(86) WG el = u,det g)] det glp Tw,b0lx| g éFg(x_t)mt)r

for some ¢ ¢ )JO(FZ); this follows at once from (57).

If we define as in §I
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87) E6) = WG 1) Mghe,s) = Ly (eix o)

we then get formally
88) M, 080 = | | T80 By ealx] S wmaxa e
g’ | S 4 P
gt -1 1 . '
with d x = 1x|Fdx and s' = 2s - 3 Defining

8 s

1 2 % W

8 L R‘ 3 H H =

89) 50 ephgsy) b/fé(’;nl(x)ixthz(y)!vlF d xdy
2 o

for every § @ J(F ) and any two characters ?\.1 and ?\2 of F , the change of

variable xbk—>1tx in (88) leads at once to

_ -1
(90) Mg x.8) = HiX (-1)L3,1§ (,uz-x , 5! s By =X s s' ).

Now it is clear that (89) converges as soon as Rel(s and Re (SZ) are large

.
enough (> 0 if ?\1 and ?\.2 are unitary); hence (88) is absolutely convergent for
Re(s) large, and Lebesgue-Fubini's theory then shows the same is true of (85).
And since we may assume §, hence also lj’lﬁ, is given by (52) it is clear that

{89), hence (85}, is a meromorphic function; we shall look more closely at its

poles a little later.

Now the functional equation! We want to prove there exists a mero-

morphic function vy ﬂ_(x »8) such that

(91) L (wg;ww-x y1-8) = vﬂ(x ) S)Lw(g;x ,8)

and W ¢ W(ﬂ'); we shall even prove it for all W e W . As in §1

for all ge G
#1’ ”2

F

it will be enough to prove that

(92) M 1es) S Y L SIM, i 8)



where £ (x) = W(}g f) and w(w)§ (%) = W[()é f)w].
First of all let us define
(93) L) =/Cp(x)h(x)|x|;d*x

for every (e sj (F). We obviously have a functional equation

94) Lo(-\,1-8) = y(X,s)Lr{\,s

( ) v (A s) qo( )

with a very simple meromorphic factor y(\,s) that can easily be computed.
Similarly the "double' Mellin transforms (89) can be analytically continued [this

ig especially clear for functions (52)], with two functional equations

L@ (")Lls 1-51: 7\2: 52) =Y (?\15 Sl)L’ﬁl_é ()\1: Sls )\-23 52)

(95)

hence
(96) Lé- ("'}\-1’ 1'51: "?\2: 1'52) =Y 0\-1’ SI)Y (}‘-Zs SZ)L‘@ (?\1: SI: hzs SZ)

Now we start from (90); this of course leads to

-1
(97) Mg (ww-x y1-8) = HoX (-1)L?1§ {x -k l-s',x “H,il-st);

we need to write (97) for w(w)f instead of £; but #ilw)f is given by

(98) ) = WIE Dwl=w )

and since W corresponds to § by (86) the function W' corresponds to
-1 -y

99 ') = glw =§(7).

(99) ¢ () =@lw (] =8

To compute

-1 1 1
{(100) Mﬂw)g(ww-x,l-S) = H5X (~1)L,}I§, (x -ul,l-s sX H 5, 1-8 )



we thus need to compute

‘ — -
CFg Q) - s (7 be2)dz = [ ()T tea)dz

(101) _ |
- T 2)as | FF () - T aylaw = TG0
Jrpk2)dz [HEL) - g lay)de = S8 ()

where

102) & (’;) :“/“, $ (3) ?F (ux+vy)dudy .

(This is not quite the same definition as used by Jacquet and Langlands.) Comparing
with (100) we evidently get
-1 h
103 M w -y ,l-s) = VLo Ty - -g' - Y
(103) W(w)g( X bmsh =y ) qué\x posl-s' x-py,1-8").
Comparing with (90) and using the general relation (96) with :}?Iﬁ instead of ¢

we get at once

{104} M?T(W)g(ww~x,1-5) = YW(X’S)ME,(X’S)
with
(105} vw{x,s)=v(u1—x,s')v(u2-x,s‘)

as in Theorem 9 of §I.
7. Factors Lﬁ(x ,8)

If Pe J(F), the poles of
(106) LCF(K,S) = fqo(x)?\(XHﬂ;d;:‘x
depend only on the Taylor expansion (sic) of fjp around 0 - in fact, if A is unitary
then (106) is holomorphic in Re(s)> -n as soon as QO(X) = O(Ixi;) at the origin.
The poles of (l06) are always simple, and are at most those of the g.c.d. L(\, s)
of these functions. It is easy to compute it. The results are as follows.

If F =R write Ax) = lxl;sgn(x)m with m =0 or 1. Then



- (strim) st+r+m [ tz tr+m ¥
107) L{\,s) =1 Mi=5—=)=/ e Lo sTEmGT
Y0

The functional equation of Mellin transforms can then be written as

(108} LC,O(—)\.,].—S) L@ (x, s)
PSS I TV
with
(109) e(,s) =i
If F =€, write A(x) = |x|;‘xm;c_n where m and n are integers such
that inf{m,n) = 0. Then we may choose
(110) Ly s) = 2@m) ST In G )
and we have (108) with
ai1) e, s) =i

observe that in all cases there is a @ suchthat L ,(\, s} = L(\,s) for all s,

¢

We shall now define, for each irreducible representation 7 of G

F

and each character y of F'l‘, a g.c.d. L (x,s) for the functions Lw(g;x ,8)

W(
lge G, we Wim.

1l

Assume first that 7 belongs to the principal series; hence

v
MI»HZ
T =P ‘and the space of 7 is @),u

, so that W(r) is the space q\/z‘;- of
HI: M 2 )

M2 1'H2
all functions (57). In other words the functions £ are all the functions

1
112) 6C ) =u, 60| f‘m‘lé ! e,

if (86), and by (90) we get all functions

(113) La’{é(uz'xyslsul'x:s')

L



2
with all § € JO(F ) - or, which is clearly the same, with all functions ¢ of
the form (52). It is then rather clear that we can choose

(114) L_(x.s) = Lifu,-x 8" ) Lfu,-x,s")

ﬂ,(
as a g.c.d. for the functions Lw(g;x , 8).
If 7 belongs to the discrete series (F = R) then W(?r) is strictly

contained in @,u u ; this may, and does, result in a different formula for the
1’72

g.c.d. The simplest thing to do is to observe that in this case we know explicitly
the space W(yr): it is the set of all functions (84), Hence the functions I\/Ig x ,s)

are nothing but the Mellin transforms

1
+eo = (ptl)
-2 2 2 -1s'- e
{115) Mg X ,s) =j e WtP {t)t ww(tl/ x () 11:s 1 zd t
0
with an arbitrary polynomial P{t). It is then clear that
+co
-2 2 - b
{116} L {x,s) =f e 7rttp/ W (tll 2))( l(t)tS dt
T 0 i
is a g.c.d. for the set of functions (115}, If
(117) =0 with u(t) = |t|Psgntt) , p> 0,
Mys M
’"2
and if
m
(118) x ) = t|Tsgnt),
we thus have 1
+eo = (pts,+s,) + s’ -1
L &.e) =j -2t 2 1752 &
T
0
1
119) r-s' -5 (p+sl+sz) 1
- L. —
(2 T[s' -r+ 5 (p+sl+sz)]
r-5' -5

= (2m) lr(s' +sl-r)



since s,-s, = p.

These computations show that for every 7 and every x there is a

w e Wir) such that Lyfeix,s) = L_(x.s) for all s.
8. Factors Eﬂ(x,s)
We can now, as we did in the ?-adic case, write the functional equation

(91) in the form

L (wgiw -y ,l-s) L Y, 8
120) ﬁ(f "”’fs) = ¢ (x,s)————————‘ﬁ’(fxs))
p g X W P

with new factors
Lfr(x,S)

(12‘1) E?T(X,S) - Y?T(X’S)L (w —X,]."S) *
T

If »-= ru u belongs to the principal series, then formulas {105), (108) and (121)

1’72

lead at once to

122) (x,SJ=8(u1-x,8')€(u2-x,5')

£
T
as in the non-archimedean case.

If F=R and 7 = U,u p belongs to the discrete series, then by
1’72

our choice (119) of the g.c.d. we have

r--s'-s1
27 I'(s' —r+sl)
= - ] - 1
EW(X:S) Y (I-tl X:S )Y (HZ X8 ) sl+s -r-l4s! _Sl
- r - -
(123) (271'_) Pl-s'+r sl SZ+SI)

2r-2s' -s -sz-!-l I (s! -r+sl)

={27) v(,ul-x,s' I ,-x .8t

F(l-s’+r-sz)

If we write that



. . 1 s.-T n.
(124) x 6) = [x[Tsgne0)™ L ux 60 = |x] ' osgnfx)
with

(125) ni = (m}._m} (1 = ]-s 2):

we get by (107}, (108} and (109):

I—‘(X"uixl"s')
Y(ui-x,S') = E:(;ui-x,s’) T

- !
,uix,s)

L (l-s'+r-s.4n.} l-s'+r-s. +n,
2 i i i

ni T ¢ 5 1)
(126) =i “(sic) i
-=(s'+4s.-rtn.} s'+s.-r+n.
T 2 i i T i i )
2
‘ l-s.'i-r-si-ni
T _ __l_‘l
__1ni s J:-+s,l { 5 )
T 5! +si-r+n_
r i
—S—)
Hence
25! =g - L -
2r-2s Sl 82,+1 .n1+n2 2s 21'+,E'.1-1—s2 1
sw(x,s) = (27) i 7 x
lI-g'+r-s,+n l1-s'+r-s_+n
I ¢ 1 1)]f‘(’ 2 2)f‘(s'-r+s)
127) v 2 2 1
s' +sl-r+n1 s' +sz-r+n2
I [ el -
1-x1+n1 l-x_+4n
-2g! =g - T I ——— T r
) .n1+n2 221' 2s Sl sz+].>< (xl) ¢ 5 ) . (xz) ¢
-1 x1+n1 x2+n
r T
) —

with




128 = g! - =1l_g!t -
(128) X, =8 r+sl ;o %, l-g'+4r S,

By using classical formulas, namely,

(t29) I"(x)l"(x+13) = 7r1/ ZZI-ZXI‘ (2x) , TEID(I-x) = 7/ sin 7 x

and the fact that ni =0 or 1, it is easy ;‘.0 see that

l-xw+n
I‘ e
I =) _1/2.x-1, . ., %xtl-n
(130) o =7 727 "/ sin(r > )
r &=
A
if n=0 or 1. We thus get
n, +n 2r-2s' -5 -g_+1
e (X,8) =i °2 P2 x
T
i__ - ! -
‘ 1/225 r+s11 1/2254-1‘ s2
{131) x I R
s!=r+s_+1-n r-s! ~s_+n_+2
sin (7 1 1) sin (7 2 2 )
2 2
'— -
o sin(re2 2
) ‘nl n, sin(7 3
-t ' -r+s_+l-n
sin (7 ! 1)
2
Making use of the fact that
(132) sl-s2 =p nl—-n2 = pt+l {mod 2) ,
we get at once
1—(p-l—l n,-n.) n +n
2 TR T
{133) EW(X’S) = (-1} i .

This result is not to be found in Jacquet-Langlands, where they compute & (x,s)
T
from the Weil construction of the discrete series. It is to be expected that

their formula (top of p. 195) agrees with (133).
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§3 - The global theory

1. Parabolic forms.

In this section we denote by k an arithmetic field {i.e., a number
field, or a field of algebraic functions of one variable over a finite field),
and by A the ring of adeles of k; we have a natural locally compact
topology on A, and k is imbeddedin A as a discrete subgroup with
compact quotient, If rj is a (finite or archimedean) place of k we denote
by k/( the correspond;ng completion of k, by lxl the absolute value on

{

k_, and by,{j:, the ring of integers of k_ if z?’r is non-archimedean.

¥ 7 7

In Weil' s Basic Number Theory and in Jacquet and Langlands they write

v instead of /ﬁ, We prefer our ,g/' s; they remind us of the Great Dynasty--
Gauss, Jacobi, Dirichlet, Riemann, Dedekind, Kronecker, Hilbert, Minkowski,
Hecke, Artin, Hasse, etc. ...--Salvation through Zahlentheorie.

We shall write
1) Gk = GL{2,k) , GA = GL(2, A)

so that Gk is a discrete subgroup of GA' For every place ,(,é, let Mﬁ,

be the obvious maximal compact subgroup of Gﬁ, = GL(Z,k’g,); then GA.

N

contains the compact subgroup
(2) M = ];{l' M a
ATA

and we have GA - U H M, where U is the subgroup of matrices

1

(0 1) and H the diagonal subgroup; we denote by UA’ HA’ Uk' Hk the



t! 0 b 1
0 t”)s tli t”EA,(

xe A, | 0

?,nek

subgroups of matrices (%) };),

0
g'!),

of GA we can construct a fundamental open set for Gk in GA’ i.e,, an

open set @C GA such that GA = G-k@ and that vy @ intersects @ for a finite

t s
and ((g) €', £€" ¢ k . With the help of this ' Iwasawa decomposition"

number of vy ¢ Gk only; to do that we canchoose @ = QU- QH- Hno (c)- M, where

QU and QI—I are suitably chosen open relatively compact subsets of UA and

HA, and where Hoo (c} is, inthe number-field case, the set of matrices

tt 0

(0 tn) € HA such that t’:q =t!! =1 for all non-archimedean primes and
{

(3) [tr /] > ¢

for a given ¢ > 0; in the function field case one should choose once and for
all a place and require that t' =1t =1 for all ,ﬁ, f/f .
7 55 o
The absoclute value in (3) 1is of course the global absolute value
of an idele of k.
L.et dx be an invariant measure on GA. The group GA operates,

2
through right translations, on the Hilbert space L (Gk\ GA) of measurable

functions CP such that

(4) Plve) = O&) f | ()] “ag < + o
G

1 Ca

3

"\This section is written with the number field case in mind. The reader
will have to use it with care in the function field case,
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Let ZA (resp. Zk) be the center of GA. (resp. Gk), i.e., the group of

t 0 - *
matrices (0 t) with te€ A (resp. te k ). The translations by elements
of ZA commute with the obvious representation of GA. We can thus,

by means of a Fourier transformon 2 / Z

2
Al % decompose L (Gk\GA)

into the "continuous sum' of the spaces LZ(Gk\ GA,L:J), where, for

' E e
any unitary character © of ZA/ Zk (i.e., of A /k ), we denote by

.L2 (Gk\ GA,w) the space of functions such that
2
(5) " Plygz) = Plelua) f lpE)] "dg < + w .
Gk\ GA/ ZA

Of course Gk\ GA/ ZA = ZAGk\ GA' We still have a unitary representation
g T g of G, on LYG\G,,u).

For every CP € L‘2 (Gk\ GA,w), a Lebesgue-Fubini type of argument
shows that for almost every g e GA’ the function xp—> CP[(B };)g] on A, which
is periodic, i.e,, invariant under k, is square integrable on A/ k. If we denote
by T a non-trivial character of A/k chosen once and for zll, we thus have,

at least formally, a Fourier series expansion

©) Pl Pel =5 g eir e
Eek
with
I = —
(7) ) = f [( Yglr Ex)dx for almost every geG .
CPg A/kcp 01 A

We assume of course f dx = 1. By making use of the invariance of QD
' Al k

under gl (g f)g and of dx under x> £x if E/é 0, it is seen at once

that if £ # 0 we have



0 —
® @, =ch[‘% Vel where W, (@) :(’Dl(g)=JkCP[d’ Delrbeax .

Hence

(©) Pl = Qo) + > WL el

EFO
We say that CP is parabolic if

{10) CPo(g) = -/CP[(t) };}g]dx = 0 almost everywhere,
Alk

It is easily seen that the set of parabolic 90 is a closed invariant sub-

2 2 : . e :
space LO(Gk\ GA.’ w) of L (Gk\ GA’ w), If f is a continuous function with

compact support on G then the continuous operator

A!
(11) Tw(f) = (_[Tw (x)f (x)dx,
A
more explicitly given by
(12} T EPe) = f@(xy)f(y)dy =CP=:=¥(X),
GA

. . : . 2
maps into itgelf every closed invariant subspace of L (Gk\ GA' w), for
trivial reasons (an integral is a limit of finite sums...). The first main

result is

Theorem 1. For every continuous function f with compact support on GA’

. 2
the operator Tw(f) is compact on LO(Gk\ GA’ w).

Proofs of this very simple but clever result are to be found almost

#*
everywhere , at any rate for SL(2), but the extension to GL(2) is easy.

e
See for instance References 3, 11 and 13 in Jacquet and Langlands.



The authors of Jacquet and l.anglands' paper are not interested in L
theory, and they replace Theorem 1 by '""purely algebraic' results
{(Prop. 10.5, p. 334, for instance) which are more closely related to the
classical point of view.

The proof consists in writing (12) on Lg(Gk\ GA’ w) as

(13) T, O@k) = / Py} (. y)dy

Uk\ GA

1
where Uk is the subgroup (0 1), £ € k, and where

(14) K. (¢, ) =Zf(x'1ny> - f £ uy)du;
Uk u

if £ is good enough this can be estimated by means of Poisson's summation
- 2
formula, and it is found that, for x = uh m e @ and CP e LG \G,,w),
x 0k A

we have estimates

-N
15) | T, 606 < e lpm)] 1|,
for every N, with B(h) =t'/t" if h= (g t”); a similar result {without
the | [QD | , term, and with a constant cN(CP) instead of CN) would be

2
obtained if the parabolic function CP , instead of being assumed to be L,
was assumed to be slowly increasing, i.e., dominated in G by some

power of lﬁ(hx)l .

A corollary of Theorem 1 is that the unitary representation of GA

on Lé (Gk\ GA,w) is a (Hilbert) discrete direct sum of topologically irreduc-

ible representations, each occurring with a;_finite multiplicity, i.e.,

we can write
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2 A
(16) LyG\ G, 0) = DH

n
where each :H‘n is a minimal closed invariant subspace of LS(Gk\ GA’ w),
and with only finitely many p such that the representations on 3>{fp and
%n are equivalent. This corollary follows from a general and elementary
lemma in the theory of representations*. It will be proved (Theorem 3)
that here the multiplicities are one; and that furthermore those irreducible

2
unitary representations of G which do occur in LO(Gk\ GA’ w) can be

A
characterized by conditions concerning an infinite eulerian product {Theorem 5).
These are--among many others to be found in Jacquet and Langlands' work--
the two results we shall prove in this section,
We shall need later another consequence of Theorem 1. Suppose a
. 2 !
function C_P € LO(Gk\ GA’ ) belongs to }»{'n(,&) for some n--we use (16)--and

some irreducible representation 27 of M. Since dim%n(,&) <+ o itis

immediately seen there are continuous functions f with compact support on

Let b= T(x) be a unitary representation of a locally compact group G
ont a Hilbert space 7 , and assume the operator

T() = [ T o) fx)dx
is compact and not zero for a given integrable function f, We may assume
T{f) = T{E)*, so that there is a A # 0 such that the subspace V of vectors a
such that T{f)a = Aa 1s nonzero and finite dimensional. It is clear that V
is invariant under every operator commuting to the representation T. It
follows at once from this property that if we consider the closed invariant
subspace }‘f' of }ﬂ‘ generated by the orbitof a ae V, then}’\t " }—->a>{” Mv
is an injective mapping of the set of closed invariant subspaces " C}{'
into the set of subspaces of V. Since V is finite dimensional, the
existence of minimal closed invariant subspaces follows.



GA such that T (f (p we may even assume f as nice as we want (e.g.,

v
c® with respect to the archimedean components), But then CP = Tw(f)cp = CP % f
is itself very nice: its right translates under M remain in a finite-dimensional

space, and CP is C° with respect to the archimedean components of GA'

Furthermore (15) shows that C‘D is rapidly decreasing in g, i.e., satisfies

for every N an inequality

-N )
17) [Pl < cgl@) B )] in(.
The same properties apply to the functions in the dense subspace
(18) ® ¥ _(J)
n,

2 .
of LO(Gk\ GA’ w}); they will here be called cusE-forms.

2, Local decomposition of an irreducible representation of GA.

For every ,f let 97, be an irreducible unitary representation of
G . on a Hilbert space }%/ ; we shall assume* that every 77'6/ is admissible,
i.e., that the multiplicity of any irreducible representation of M , in
p,{ is finite; for such a representation ,c%'}( we denote by}\L (49:?,) the
cérrresponding isotypical component of p |M . Finally we assume that

}:{' (id) /4 0 for almost all ?/; we have then dim}%/(id) = 1; we choose

once and for all a unit vector in /? (id); we denote by S0 a finite

s

This "assumption'' is actually a theorem (the case of an archimedean has been
known for a long time, and the< -adic case has been settled by Jacquet
and Langlands in an as yet unpublished work),

e
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set of places containing all places at infinity as well as those ,j/ where

0
gﬁ/ is not defined.

U
For all finite sets S DSO define

19) o= ® X

ges?

this is a pre-Hilbert space, with the scalar product

) £, ., = , .
(20) %é?s 2 %éa%’) ?El's (g? n/j/)

For S(CS' we have an isometric injection }FS — namely,

> S

(21) pa— ®®g° .

?e St -8

This enables us to define the pre-Hilbert space

(22) lim 3,

and by completion a Hilbert space

(23) 3=$=é?4’=@\.
57 —°

Since we have a unitary representation p/j/ of G"j/ on ﬁ' for every /j/,
we get at once a unitary representation

~~
(24) P ='§9i P{d/
of GA on}\‘; if £=©¢ is a "decomposable' element of }1&, with

0 T

gﬁ/ = gﬁ/ for almost all /?, we have
(25) P(g)E =§ e? (g,ﬁ’)ﬁfr

for every g e G-A. Since such vectors generate topologically BDF, this is
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enough to define p.

¥ . . . . .
Let «/ be an irreducible representation of M. Since M is compact

~ -

G, . . . .
4 is {inite -dimensional, and since M = 1 IM/ we have .. =0
<

L

S\

4

n E

with irreducible representations ,175/ of the various M/, and ..,:-:: = id for
] -~

4
¥
L

[

almost all g . Evidently

L

(26) N =03 o),
< T Y

and since dim}/'/ (/)L/ y =1 if /,{-/ f S it is clear that ﬁé({?) is finite dimensional.

It is furthermore a routine business to prove that if the P? are
{topologically) irreducible, so is p. An irreducible unitary representation

p of G, will be said admissible if dim}é(ﬁt) < + o0 for all ?, and decomposable

A

if there are admissible irreducible unitary representations 94 of the G% such

¢

thatpz@P .
s

Theorem 2. Every admissible irreducible unitary representation p of

GA is decomposable, and its irreducible factors P, are uniquely defined.

We {first prove that for every E’( the restriction of p to G/g is a
direct sum of mutually equivalent irreducible representations, i.e., can be
written as the (Hilbert) tensor product of an admissible irreducible

unitary representation p/i’ of G’ﬁ/ and a multiple of the identity representation

of G,.

Consider the compact subgroup

(27) Mm% - T ™M _;
Tt T

if A} is an irreducible representation of M(dz}'), let & (/) be the corresponding
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subspace of}?L . Of course }14 = @%L(jj. and every }%(,1% is stable under
P(G, ). Every irreducible representation ,V%' of M, occurs in H(jj
i
with finite multiplicity, because we assume p is admissible. Hence }Hﬁ(m
is a Hilbert direct sum of minimal closed subspaces invariant under C/‘rfp
The same is therefore true for %’ . But on the other hand the restriction of
p to G/? is a "factor representation' of G, , i.e., every continuous
operator T on }F which commutes with p{(G,) and with everything that com-
mutes with p{(G,) is a scalar, because since G/% is a direct factor in GA’
then T commutes with p(GA), which we assume is irreducible. It follows
at once that the irreducible components of p (Gﬁ/) are mutually equivalent.
Let, then, p . be the admissible irreducible unitary representation of
v
G . that can be imbedded into}\L . Let }% be the space of p.; we then have
v

7

P ~§>1(j @}(' for some Hilbert space %-%‘/ This 53%‘/ can be canonically
defined as the space of all linear mappings u :§>1L —> % that are continuous
and compatible with the actions of G, ; the scalar product of two such
mappings u and v is the number (u,v} such that
(28) fag), vin)) = u, v}, m)
for any two £,n E}*\L ; and the isomorphism 9"{‘ gb%ﬁﬁ' —_— }‘L is the unique
isometry which, for any £ e %% and ue }{' , maps £ ® u onto uf(f).

Now it is clear that the continuous operators T on 9’16 which commute
with p{(G_.) are in one-to-one correspondence with the continuous operators

T!' on 95\5' , in such a way that T =1® T' if we identify 9’1‘ a.nda"{’ 6%%

In particular p defines a representation of G(7 ongf ' for everyﬁ ]{?{
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which is of course the Hilbert tensor product of and an identity repre-

i
sentation of G on a Hilbert space % ! . We thus see more generally that,

7 7

-~
for every finite set S of places, we can write %’\L =M’S ®§’1[E'5, where

(29) SHg= © ¥,
,j/ES ﬁ/
and N‘S ig the Hilbert space of continuous homomorphisms }{S —-—>% which

are compatible with the actions of

(30) G.= |] G,
S
,g/es /?/
S
where GS operates on %S through the representations p and on }}‘LIS in a

(S)

trivial way, and where the local direct product G

of all G?,,A}{ S, operates
trivially on %S’ and on }('S through the maps ubF—> plg) ° u.
To conclude the proof we first observe that p contains the identity

representation of M . for almost 3117,, because the restriction of p to

7

G _ already satisfies this condition for almost all ? [choose a representation

/%

,Vﬁ’ of M such that $f (/fﬁ f 0, and consider the set SO of those ,g/ for which

,(}' f id]. For every/j/f SO’ let us choose once and for all a unit vector g;/

ta .

in % invariant under M/g/; we can then define a representation ® p _ of

~
GA on ® ¥ , as we have seen at the beginning of this section. We want to

A -~
show that B is isomorphic to & }f?/and p to ®%},; this will conclude the

proof.

~
Since p and ® P,?/ are irreducible it will be enough to construct

N
a nonzero isometric linear map H , —> P compatible with the actions of

7

GA' To do that we observe that, if S DSO, there are in P+ and hence in

#f& nonzero vectors invariant by all the M ’?f' 5. Choose such a unit vector

° 7



3.12

o . . . . .
gs in %' ; this vector is uniquely defined up to a scalar factor, because the
0 0
representation of the local direct product

S) |
c =TT a

jzfso j/

on Mé is irreducible and because the convolution algebra of functions on
0

Sy)
0
G that are two-sided invariant under the compact group
S,
= [T ™
?,# S0 7
is commutative (the global case here follows at once from the corresponding local
result), so that we may apply the well-known argument due to Gelfand and that
goes back to twenty years ago. That being so, we may now choose in a canonical
way, for every finite set S :)S , a vector gg in 9*\5'8 invariant under M,g] for
everyﬂfﬂ S5--to do that we observe that ~
%s =My ® (2283% ’
T 0 I

0
and that the uniqueness, up to a constant factor, of the vector E’S show the
0

0
existence and uniqueness of a gs e%['s such that

0 0 0
bg =65® @ te,
0 ,?es-s o 4
it is then clear that the family of vectors gg S DS ; is coherent with the choice

of an invariant g for each place ?K SO’ in other words, that
S =85! U{zj,} implies E,S' = gs ® §

If we consider, for each S DSO, the linear mapping %LS -—-—-—>3’%=NS §}¥IS

given by EH—>£ @ gg, we get an isometry (because each gs is a unit vector)
compatible with the action of G for every ¢ 5, and furthermore, these
imbeddings satisfy the obvious compatibility conditions. Because of the universal
property of the infihite tensor product, this fa;\mily of isometries evidently

leads to an imbedding into ¥ of the produlct®}1‘ = ﬂr\n%"s, and this imbedding

is of course {e.g., because of Schur's lemma) an isomorphism between the
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FaN
tensor produCt@P/ and the given representation p, this concludes the proof

of Theorem 2.

Theorem 2 of course applies to the irreducible components of the

. 2
representation of GA on a space L0 (Gk\ GA’ w}.

3. The global Hecke algebra

~
Let p = ®p, be an admissible irreducible unitary representation
)
of GA on a Hilbert space ¥ = @3’1&5, where ¥ -, is the space of p_. For
each let V_ be the everywhere dense subspace of M_-finite vectors

in% ; then the subspace of M-finite vectors in §=\L is of course

7
(31) V=U®'\( ®®}+0,
5 255 ?}{ s 7
where we denote by H/g the (zero- or one-dimensional) subspace of vectors
fixed under M _.. 4

Denote by 33(:4 the Hecke algebra of ij/ for every /j/, as defined
in Sections 1 and 2. For every we then get a representation (which we
shall denote by p,;,,) of }\L/;V on V. --this ig clear if? is non~archimedean,
since for every F ¢ ¥ _ the operator p_ (F) = [p_ . x)F(x)dx is defined and
continuous on the whole of}\L , and maps V_- into itself because F is left
M -finite., If is archimedean, in which case 3, consists of distributions
with support {e} if?, is complex, and {(t ?) . (-01 (i)} at most if /? is
real, then we have to make use of the results quoted in §2, No. 1, which rest upon
the fact that, for every £ ¢ \% the map x+H—>p, x}f of G, into * ,is
real-analytic. gf’ ?/ /?

The representation Pf of‘}( on V, 1is of course admissible for
every,?,; it is furthermore irreducible, and its class determines the unitary
representation p of G, on }’{‘ up to unitary equivalence. The irreducibility
is due to the fact that if a subspace /M, of V. 1is invariant under % , then its
closure M in %"% is invariant under G, and we have J%=-Eﬂ V. because of
the decomposition’ of /M. into mutually orthogonal subspaces corresponding to
~ the various repreéentations- of M,. The fact that the representation of 33'(’
determines that of G’/(T/ is proved as follows. The given scalar product (£,n)

J
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on ¥, defines canonica].ly a semi-linear isomorphism m I——>H between the

G

. . . f
~representation p of H’j’ ? and the contragredient representation E?

) ﬁr

on Vﬁ/ (where 1 is defined in §1, No. 1, for finite primes, and at the end
of No. 2 of §2, for archimedean places). This already shows there is on ‘\%}/

only one positive definite scalar product compatible with the representation of

b <

number

Furthermore, if we know the action of 3‘1L on Vﬁ/ then we know the

{4

(32)

P, (F)E,n) -<P (FVE, P = / ®)E, PF x)dx = / (x}€, n)F (x)dx
a 4 % %

¢
for any two §,1 € V’%/ and every F e}é , from which it follows( ) that we know

all the " coefficients" xpb—> (%/(x)g,-r]) for all £&,n ¢ \%’; but it is well
known that if two irreducible ur;itary representations have a common coefficient,

then they are unitarily equivalent.

We thus conclude that an admissible irreducible unitary representation

B

) If is archimedean one has to use the fact that the coefficient ’ﬁ’ )£, n)
is an analytical function on for any two M_-finite vectors §£,1. ¢ See
our paper on spherical functlc;ir ?
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p of GA_ defines, for every ,j , an irreducible admissible representation P;

of %L in the sense of §§l and 2, and that p is determined by the knowledge
f f
of the P?. Observe that P? contains the unit representation of M, for
) Ly

almost all .

These remarks lead us to define a global Hecke algebra ;:‘FA as

follows. Choose a u, € ’? for each ,j,, with the condition that yﬁ/ is
the characteristic function of M? for almost every ,? Let G
{resp. Gf) be the subgroup of all x ¢ GA such that Xﬁ/_ 1 for all non-

X G.. We

archimedean ({resp. archimedean) places, so that GA OG £

can define on G. a measure {even a function)

f

(33) M =®uq:
,? non-arch,

and on G a distribution
o0

(34) Mo =®uﬁ/-
?arch.

If we have on GA = G00 X G. a function CP(x) =CP(x°o,x£) which, in every

f

sufficiently small open subset of GA’ is the product of a C® function of

% and a constant function of x then we can define the number

(35) fcp CIRETHCSY

Denoting by c® the set of functions CP just defined, we thus get a

A

linear form u on c® (GA); we write gy =@ u, , and we define #A as
the vector space generated in the dual of COO(GA) by these linear forms.
The structure of algebra of %*{’A is clear--if U =@ u and Vv = Q@ Bj/, we

7

define
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(36) MRV =@ u, %V,
A

where the # is the convolution product (i.e., the product in }{j/ for
every ,?).
Now if we are given, for every ,%, an irreducible admissible

representation 7 6 of §=1L on a vector space V,, which for almost every

7 ¥

? contains the identity representation of M/?, and if we choose for every

such a nonzero vector £, € V’?/ invariant under M , then we can

{

define a tensor product

(37) V=0V, =1limV

in the same way as we defined (22), and a representation 7 =® n, of

,\j/

}:{«A on V in the obvious way. It is easy to see that 7 is irreducible {no
invariant subspaces}, and that all operators #{u), u € HJA, have finite rank.
In particular, let us go back to the situation in No. 1, and consider
. . . 32% 2
a minimal closed invariant subspace of L0 (Gk\ GA,w). The representa-

on 3‘\[’ satisfies the conditions of Theorem 2. Hence p = @ p

,j’,

tion p of GA

-~ .
and }*{' =@ %ﬁ/ with irreducible unitary representations g% of the Gﬁ/ on

Hilbert spaces }16 . Define

38 [J v, = W
(38) %—%Mﬁ/(ﬁ%} }{,Z

for each ?, and let =7 be the corresponding representation of

1

i = Pé
. C s . 0 .

N on V_; it is irreducible and admissible. Denoting by £, the unit

v 7

vector in N‘ we have chosen for almost every ,(tr to define the isomorphism



A 0

between B:'F and ®9H%', we can also use the 54/
T=® W’?z ® %‘i of pp, on V =®v6/. It is then clear that

{i) the isomorphism ® 3’15 = }D‘L induces an isomorphism between V

4
; 4
and the space H :@}%(Aj) of M-finite vectors inH;

(ii) each function (_F € ch LS(Gk\ GA) belongs to the space Cw(G

to define the representation

A

and is rapidly decreasing in the Siegeldomain C,

fiii} the irreducible representation 7 of HA on V =Hf is given bs(r*)
(39) ?r(u)-;./f = .
The assertion (ii} has been proved at the end of No. 1 of this section.

We thus conclude that from a (topologically) irreducible component p

2
of the unitary representation of G on Lo(Gk\ GA' W), we can get an

A
(algebraically irreducible) representation 7 of BBFA on a space of c®

and M-finite functions (in fact, cusp-forms) on Gk\ GA' By making use

of the standard arguments of the theory of spherical functions it is seen

at once that every CP € H’f satisfies an elliptical differential equation on the Lie
group Goo’ hence that (?(g) is an analytical function of Goo' This conclusion

applies more generally to all cusp-forms since such a function belongs to

2
the sum of a finite set of irreducible subspaces of LO(Gk\ GA,w).

(zl)The convolution @ L for a function P e Cw(GA) and a ue ¥ is

defined as in the standard theory of distributions, i.e., by A

P * ﬁ (x) ='/ (sic) Q xyldu (y

).
This has a meaning for any linear form u on C% (GA)-
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4, Global Whittaker models

Suppose we are given for each ,j/ an admissible irreducible
representatmn % of ’j/ on a space V‘j/ in such a way that, for almost

every? there i in V, a vector E, ;40 invariant under M’ﬁ/ Let

Y 4

T=& % be the corresponding representation of P

A on V=®\%, the

o
tensor product being defined by means of the vectors §/j/
Consider for each ,j/ the Whittaker space W(ﬂ'j/) of 7."/5': its

3

elements are functions W’ﬁ/ on G’ﬁ/ satisfying

(40) I( ﬁ’) l=17 ),
gt 1 1T B I By

they are right M’%mflnfce, and C {even analytical) if ,@/ is archimedean;

the representation 77"% is equivalent to the representation on W(w given by

. 4
41) (WIW, = W, % u f -
{ ﬂ'ﬁ/,u ’f}’ 4&’ u for every ,ue%%/

and finally we have

x 0 0 for |x | large enough if 'j’ is non-archi-
(42) W (0 1) = N medean,
oflx, {™) for all N as |x | —> 1f ,ﬂ/ is archi-
ﬁ’ : medean,

as well of course as

43 [X g W, (g
(43) @( ﬁ,)/2( % ) ,ﬁf('ﬁ’
where w?!wﬂ,

For almost every ﬁ, there is in W(w } a function invariant under

Z

e
We denote by 7, the restriction to k,6 of the additive character 7 of A.

Y ¥
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M’j’ If the largest ideal on which 7 is trivial is ,0% , which will be the

case for almost all ,j/, it follows from Theorem 1l of Section 1 that

0
W(ﬁ'r/é/) contains a unique function Wﬁ/ such that
0 .
(44) W, (g) =1 if ge M[ .
o {0 0
If we use the spaces ( ) instead of V:?, and the W,d instead of £,
then the tensor product 7 = can be considered as a representation on

/ff/

the function space W— () generated (as a vector space) by the functions

(45) (g
G h W W( f h ﬁ/ /'q(d h w w2 for al
on , wWhere € i or eac and where = or almost
: 7 T 7Y

all ,? Evidently we have

1
(46) Wi, el =76wWig)
for all xe A, g« GA; the W e ’V{f(:rr) are right M-finite and C® or even

analytical with respect to the archimedean components of GA; we have
(47) Wiy gl =u_tdWie)
0 = T

for all x ¢ A" and g€ GA, with

(48) ww(}c) ? (x?),

and finally we have

(49) W(’g f) = O] x| -N, for all N

if xe A goes to infinity in & e, if | x| —> + »). These properties

characterize the space 'Mﬂ). In fact, let W' be a space of functions on

GA; assume its elements satisfy the above conditions from (46) on; assume

finally that'\A[' A %:(’A :Wr , and that the obvious representation #' of

#.A. on W' is equivalent to 7. We want to prove that W' = W('ir). We shall



of course use the uniqueness of Whittaker models in the local case--§l, No. 5
and §2, Theorem 4},
Denote by Wt—> W' an isomorphism of W(w) on W{/' compatible
with H . Choose a place ,j/ and, for every,d‘] %,?, a function de }é 0
0
in W(WA]), with 'a/ W7 almost everywhere. For every ’j/ € W ﬁ/
consider the function
(50) Wig) = 24
G g 1T
in W(w), and its image W' in W . If we give a fixed value to gd] for
each «7 }L{ /5/ then W' reduces to a function W', on G it is more or less
/ G
clear (rather more than less) that W/% p— W’rf( is a nonzeroc homomorphism
between two Whittaker models of #,. Hence W/Iﬁ/ is proportional to
W  --in other words, we have
(51) W'ig) = W’j/ (g/%)c(g)
where c(g) depends only on the choice of the Wdz and gq for 4:)7][,?

A similar argument [or induction on Card (S)] shows more generally

0
the following. I.et S be a finite set of places such that W/j/ is defined
for all ,?% S. For every
(52) Woe ® W(fr

4"

(53) Wig) =W (gs

consider in W(w) the function

ws "ty

(obvious definition for gS) and its image W' in 'Y\f . Then we have



54 f =
(54) W' g) = W lgg)egle)
where cc(g) depends only on the g ,'a]g s, If & =SU{0]’} with
,a]f S we must of coﬁrse have
0

{55) W lgglegg) = WS(gS)WA](g Jeg, (@)
for all WS € @'V\[(w ), hence

€S

Y

(56) T cs @) = w%(g Jeg, (@)

We conclude of course that

0
(57) egle) = c T Wy (g )
4])48 67 il
with a constant ¢ that depends only upon the isomorphism W —> W'. Hence
(58} W' (g) = cWig)
for all g and all We W(w), which concludes the proof of the uniqueness of W('ﬂ').

5. The multiplicity one theorem

The uniqueness of global Whittaker models will now enable us to prove

the following result:

Theorem 3. The multiplicity of an irreducible component of the representation

2 .
of GA. on LO(Gk\ GA,w) is one.
Let ¥ be a minimal closed invariant subspace of L(Z)(Gk\ GA’ w);
let Hf be the space of M-finite vectors in %, and consider the representation
f . . f .
T of HA on ?Pf defined at the end of No. 3. The functions CPe é# , being

parabolic and nice, have everywhere convergent Fourier series expansions

(59 Pl Del=S WplG el
| 7

with functions W(P which are M-finite, C® and even analytical with respect

to the archimedean variables, satisfy
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1 x

0
60 W = =
(60) ol T8l = Tk @), Wplly el = v W, (e),
and finally are rapidly decreasing at infinity--see (49)--because every
f
CP e}:ﬁ satisfies (17), If u < BDFA then
v v

Vel =y s @uop =W, = Wy kop

Hence the mapping CP —>W_ , transforms }Ff into a, i.e., into the,

¢

Whittaker space of 7, which means t‘hatﬁ“ﬁf is the space of all functions

61) cp(g)=Zw[(§ Del  where W eWin.
£

Since equivalent irreducible components of the unitary representation
Tm of GA on Lg (Gk\ GA,w) define equivalent irreducib.le representations
of HA’ it is clear that the proof of Theorem 3 is now complete.

Exercise.* Prove directly that if two continuous operators on
Lg (Gk\ GA’ ) commute with the representation of GA’ then they commute
with each other. One might even try to prove it for L'z (Gk\ GA’ w) as well,
since the remaining part of the spectrum (continuous spectrumn and the

obvious one-dimensional representation) is known to be simple.

6. Euler product attached to an irreducible representation of GA

Assume we are given for each ? an irreducible admissible repre-

2

identity representation of M’? for almost all ,? Let x be a character of

sentation 77’? of }%, with the usual condition that =« contains the

EG

A/ kq‘; denote by X its restriction to k , (which is unramified for almost

(¥)

We don't know how to solve it, of course!



all ,?). We set, at least formally,

(62) L_tx.s) =[]k, (x’?.S)

where the factors Lﬂ (x/g/, s} have been defined in §§1 and 2.
Let S0 be a finite set of places containing all archimedean primes

and such that, for every ,?){ SO’ the following conditions are satisfied: W{f

contains the identity representation of M/ﬁ/’ the largest ideal of k,? on
which Ty is trivial is.0) , and ¥y is unramified. By Theorem 1l of

T Y

§1 there are for every ,?f/ S two characters u , and V,{y of k’ﬁ/

with ,uﬁ, V% being neither x> |x| nor xp—> lxl » and such that
)

, a member of the principal series for G We thus have

T s b

[see page 1. 47]

L {x, .8) = Liu ;8" JL(v,-x , ,8'}

(63) " '? ,6&, /é/ /? ﬂ/
M- /??)Nu? {1-%%%;(@)1“(?’5

by Formula {187) of Sectmn 1, I we assume that every W’(X is pre-unitary then

we know by Theorem 12 of §1 that
o, /2 -0, /2
(x}| =lxl{ﬁ' = | x| .1 with 0< g, <1,

4 e

(64)

| v, )
;u,j‘ "2{

so that

-0 /
(65) 1%{_(4&“ =Ncﬁ) lv (?1 —N(JZ)

Hence the product (62) converges at 1east like

2

-s' to

(66) 1-x ?)N(%) 4!

) We recall that s' = 2s - 13 is the s parameter of Jacquet and Langlands.
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(k)

i.e., for Re(s) large enough.

(i)

We also observe that, under the above assumptions, we have

67 ,8) = - )
(67) aw?(x? s) =1  for all ,4!,{ S,

0 0
In fact, let W, be the Whittaker function of 7, such that W?(m} =1

v T

on M_. We know by Theorem 1l of §1, which we may use for every ,?,[ SO’

that
(68) L {x, .s)=L (e; ,8).
T 0
W
4 T A T
Hence
kW (wow, =% , »1-8)
2%
69) -

= x, »8)s
W, -x , »1-8) “r
"4 Yt Y U
t 0
where w, is given by 7, { ) =w, {t)l. Of course w -y is unramified.
T ¥ v 4 e

But (68) is valid for all unramified characters, hence for wﬂ/- ’j/ We also have

(70) L (wiw, - ,1l-8) = L, (e, - ,1-8)
Wow'ﬁ/xﬁ/ s Woe/%xﬁ( s

T s

0
because W/j/ is right invariant under M’ﬁ/; this of course proves (67).

We may thus define the finite product

€ X, »8)
4T

for every character y of ATk .

(71) x»s) =

£
T

7. The functional equation for LW(X° 8)

We now go back to the irreducible components of the unitary

)

The assumption that the 7, are unitary can of course be weakened. See
Jacquet-Langlands, Sectiort 1i.

('M‘)The factors E”(X ,s8) are defined in §1, No, 15.



representation Tw of GA on L G \G w), Let 7 be suchacomponent

so that 7 corresponds to a minimal closed invariant subspace J°1L ®}\{’?
of Lz(Gk\ G_A_’ w). For the sake of simplicity (and confusion) we shall now
denote by 1% the corresponding irreducible a.dmissibie representation of
%ﬁ, on /ﬁf( instead of the corresponding irreducible unitary representation of
G . Since the le‘ are obviously pre-unitary, the Euler product Lvr(x ,8) is

e b
defined for Re(s) large enough if y is any character of A /k .

Theorem 4. Let 7 be an irreducible component of the representation of

2 R
GA on LO (Gk\ GA’ w}. Then for every character ¥ 'o_f A /k the function

L?r(x ,8) is entire, bounded ﬂ every vertical strip, and satisfies

72 L . = ,8)L (w-y ,l-s) .
{72) i,T(x s} Eﬂ(x s) W( X, Ll=s)
The proof is simple enough., Choose in W(W’ﬁ/)’ for each «?, a
0 g
function W_, and assume ’ﬁ/ ‘y almost everywhere. The function

e e/

then belongs to the Whittaker space of the representation ® 71{2/ of the

(73)

global Hecke algebra ):(/A’ as we have seen in No. 4. Hence there is

in 35{/ an M-finite function QO such that

(74) Pe) =S WG el
££0

see (6l1). Consider the integral

(75) Leplgix, o) = / @[ fmhm)

k\A

-11 lZs-ld*x-

X
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0
Since we know that CID[()S 1)g] is rapidly decreasing as ]xl —> + o,

the part |x| > 1 of the integral converges for all values of s. But

-1

Qe Del

o) PLG el

n

(76)

w(X)-ICP [w-l(}g ?)wg] = w(X)-lCP[(:S f)wg]-
Hence CP{(’S f)g} is rapidly decreasing as |x| —> 0 as well. We conclude
that (75) is an entire function, bounded in every vertical strip for trivial
reasons.

From (74) we get

-li xl Zs-ld’-‘x,

0
(T7) LotEix. o) = [C"‘W[‘J‘; el &)

provided the right-hand side is convergent. We know that W[(’é f)g]

is rapidly decreasing as | x| —> + «©. On the other hand § , being a
cusp-form (see end of No. 1}, is bounded in g, hence on GA’ and since
W is a Fourier coefficient of ClO the same is true for W. It follows that

(77) is at any rate justified for Re(s) large enough. Writing that

(78) AsUTTx, x TTeor =Ya
Sj_eS ,?#S IX

we have

L_(g:;x,s)=lm/f, W[()(: ]{_))E]X (x)-1|x| Zs-ldakx _

q S

2 =’.<
(79) = ﬂ_f W’ﬁ/ )g,%]x% 1x| s 1
Ty %
f -1 2g-1 %
X W {(}5 %% I x| " 7d x

Uy e



if S is large enough we have

(80) w (¢ e 1=x, 6= 1xl, =1

¥ ¢

%
for all x €47, and ’?f{ S. Thus

+8)s

{81) L, (g:x »8) =lim.ﬂ_L g,;
’ 7 Y 1
where we use notation (151) of §l. But we know by (68) that, for a given g,
L (g : :S) (X ,S)
W
7% S S

for almost all /% Since the infinite product of the L_ {x  ,s} converges for

(82) =L

T

large Re(s), we conclude that ’j/
(83) L, @x,>s) = [[Ly (€ ix, .8
i T

if Re(s) is large enough. In particular we may choose the Wﬁ/ such that

LW {e:x E s) = Lﬂ_ (x , ,s} for 3}:}_,? by Theorems 10 and 1l of §1 and the

result at the end of No. 7 of §2; then Lq)(e;x ,8) = LW(X ,8} for Re(s) large,

'which already shows t‘ha.t Lvr(x ,s) is entire and bounded in every vertical strip.
In all cases we have

L@(g;x,S) r8)

L. (g, ;
B
L (X,S) L (X s 5

T ? Wﬁ”?

a finite product. Using the local functional equations we thus get

(84)

LCP(wg;w-X,l-s) LCP(g;X’S)

mew(x,s)—rﬂ(—x’—s—)" .

(85) L_forx 1-5)
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But since CP(wg) = CP(g) we have

ch(wg;w-x,l—s) = f *CTD[(};
k \A
[ -1 0 1-2s *
x = /Cp[()é 1)g]x &) | x| dx=L_(g;x,8),

¢

0 -1 1-2g %
1)wg]w x &) x| T%a %

(86)

f o1 Vel alxl 0

and this concludes the proof.

8., The converse o_f Theorem 4.

We now assume we are given, for every ,?, an irreducible unitary
e Y
-~

representation 7 , of G?, hence( ) a pre-unitary irreducible admissible
representation (we still denote it by 7, ) of ’ﬂ/ The problem is to state
sufficient conditions for

ey
87) T=® 7

v

2
to be contained in the representation Tw of GA on LO(Gk\ GA’ ). We assume

of course that

t O
(88) 'f%r(o t) = wﬁ/(t)l for alllg,
where w{X is the restriction of w to k:(tr, and that 'JT/? contains the
identity representation of M for almost all «j}--we could not even define
{87} otherwise.

Theorem 5. 7 is contained in L; (Gk\ GA’ w) if and only if the following

e b
conditions are satisfied for every character x of A [k :

(i) the Euler product Lvr(x ,8) extends to an entire function bounded

in every vertical strip;

(q‘)See the footnote on p. 3. 7.



(ii) it satisfies
8 L ) = ) - sl" ’
(89) o Oes) = Ol (0-x s)

We shall denote by 'V(,’/the Whittaker space of the representation
® 11'/ of %A’ which was defined in No. 4 and is spanned by the functions (45).

Step 1. We first prove that in the series

_ Z £ 0 ;
E£0

the summation over k can be replaced by a summation over an ideal of k.

(The convergence of (90) will be proved later.)

If we write the Iwasawa decomposition g = uhm of g, then

£ 0 _ E 0,1 u
wiE Dgl=wi§ D¢ Dam]
(91)
=T(§u)W[(§ f)hm]
and since |7(uw)| =1 we may as well assume that u=e. The right

translates of W under the elements of M evidently stay in a finite-
dimensional subspace of AW‘. Hence we may agsume m = e, i.e., g = h.
We may even assume that g = ()5 ;)) since the behavior of W under
the center of GA is known in advance.
Assume that W(g) = -ITW (g, )--we may of course restrict ourselves
T Y
to such functions. Denote by S a finite set of places such that, for every

0
,?f S, we have W/{y = ’é!( and the largest ideal on which T'(Y is trivial

is . . We know that for every non-archimedean ,(( the function

v



X 0
WKT(O’% ) vanishes outside an ideal ¢, of k,? (Section 1, Lemma. 2),

and tha.t,éz’ 'j’ if ,j,/{ S (§1, Thecrem 1ll}. If we denote by 4{ the

ideal of k Wlth 6’ adic completion ,a;j/ for every finite prime j/, and

g

by x 1,0'( (for xe¢ A ) the ideal of k such that (x ,0[

every such ,?, then it is clear that

{92) E.x )/40—>gex10[

We thus have, formally at least,

(93) Z W(éx f).

§ex 0(
EfO
SteE 2. To prove that (93) and hence {30} converges absoclutely,

0
we need an estimate for W(E.x 1).

2 ¢
belongs to the principal series, and that
(94) w0 = w2 u, v, ).
4o My 2
itj = v {x)

we know(§l, Theorem 11) that W’?

is unitary we have relations of the form (64), hence there is a

Since w/?

number o > 0 independent from ,? such that

os) W, & Dl<lxll? N >1+3’°= b)) x| L 20
| ,j,o 1 [X Z ‘{J 'j’ ’j’

i,720

i+j = v, {x)
7

0 -
with furthermore W ()é 1) =0 if xf:Ot . Since v, (x) +lilx‘/{; we get

T




-01

(96) \w, )I<|x|
b0t T

Ii on the other hand ,‘? is any non-archimedean place, then the

table, page 1,36, shows that

(97) lw, G )I<M lx1 2

1 ¥

for a suitable choice of M{gr and cky. If on the contrary ,ﬁy is archimedean,
the integral representation of Whittaker functions [formula (68) of §2] shows at
once we have an estimate (97) near x = 0; but we also know, by equation (72)

of §2, that

(98) W (JS )-{ exp[-ci%(x;:—)ll 2] as lx"% —> + 00,

g

Hence there are constants M/&, q%, c, » 0 such that

-a, -1
/2)

)<

{99) (x ‘xl éf expi{-c (xx)
g e rglele Temie,

for all x€ k,. By modifying o and the (finitely many) o 'ﬁ’ we may

7

assume that o, =0 for all ,((r Then we get

I
-c, (e, x )
100) Wit Ol emlx O T e ¥ 44

arch.

If we consider the real vector space (or algebra)

(101) =17 k/

,ﬁrar ch.

and denote by X (for an x ¢ A) the vector with coordinates xﬁ/ in km,

we thus get for W a majoration

o2) W@ f)l < M- |x|"“'1exp(_c||xw1|) for all x¢ A
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where || || is any Euclidean norm on the real vector space k =R ®@ k,
[» 4]
and where M,o,c¢ are constants, with ¢ > 0. Since W()S S) vanishes, as

we have seen, unless X’i( € IG?/% for all finite j’, we conclude fram (102) that

there is on A a Schwartz-Bruhat function f such that

0 -o-1
103) W@ <=7 e
for all x ¢ Az‘c. Since Ixﬁl = lx‘ , the absolute convergence of the series

CPW is now clear, and we even get

(104) g 60l < 1x|'°"IZ £(Ex);
Ec k::c
but if f ¢ J(A) it is clear that Zf(gx) is rapidly decreasing as
EF0

|xl —> + o0, and (use Poisson's summation formula) is dominated by a
power of |x| as lx\ —> 0. We thus get for CPW(x) estimates of the

following kind:
-N
(105) @y 0) =0o(x|™) forall N as |x| —>+,

(106) CPW(X) = O(lxl -q) for some q as lxi —> 0.

Step 3. We consider now, for every W ej/\f;, the Mellin transform

0 -1 2g-1 ®
L (gx.8) = f=hW[(x Jglx ) x| T e x
W ® 0 1

A

(L07) ;
! 0 ALy q28-l %
= L LOWIE Del &7 x| T x,
: : 01

k VA

where ¥ is a character of A /k . Both integrals converge and are

‘equal for Re(s) large because of the estimates (103), (105), and (106).
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We shall prove that L can be analytically continued to the whole plane

W
and that

(L08) L (wg;w-x,l-s):L {gix > 8).

W
In fact, if we assume, as we may do, that W is a product Wi(g) = -[T ’f{ ’ﬁ'
then the arguments we explained in the previous section show that we have
109) wEx8) TTLW €, %, +9)
T
for Re(s) large, with a convergent mfmﬂ:e product since the local representations

ﬁ% are unitary. But then

,s)

ﬂ-@/ﬂ”?
7 "y

with a finite product. Since Lw(x ,s) is assumed to be entire, and since the

(110) Lw(g;x,s) L (x s}

other factors of the product are entire by the results of §§1 and 2, the same is
trug for LW(g;x +S).

If we compare (110) with

L wg‘?, w/?-x?,l-s)

(111) ]’_,W(wg;w-x ,1e8) = Lw(w-x ,l-S).lT L ©, - /%,1_5)
“

and if we take care of the local functional equations and the global functional

equation for Lw(x ,s) which we assume is satisfied, then we get at once

(108) by a trivial computation.

Step 4. For a given W e W and a given g € GA’ consider the functions

(112) P ) = Q[ f)g] ;

‘ -1
3) i) = w s Dg) = wbicpy [l el
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on A /k . We have formally
, ’ -1 -1
{L14) L/ Fr(x)x (%) 1 | as- d x = W(g;x ,S)

..li XI anld*x = LW (Wg,w_.x s 1_5).

{(115) L/.F" ()x (x)
Hence the Mellin transforms of F' and F'" are identical--but for the fact
that the Mellin transform of F' is defined for Re (s) large positive,

while that of F" is defined for Re(s) large negative. However, we know

that the Mellin transforms of F' and F" extend to the same entire

function (Step 3 of the proof); we shall now prove that this entire function

is bounded in every vertical strip.

We start from (110) and observe that we already assumed that

Lﬂ(x »8} is bounded in vertical strips. For a finite zj,, the ratio
) A . . 2s A
L g.ix, .s)/ L_ (x ,s) is evidently a polynomial in q and g ,
W, &y e ,‘5(
‘3/ L ér 4

where g = N(ﬁ), hence is bounded in every vertical strip. If ﬁ/ is
archimedean, the situation is a little more complicated, but can be
handied by making use of the formulas of §2.

In fact, we know (§2, Theorem 1) there are characters M,

¥

and v, of k‘h such that =« is contained in [:>,u . We then have

[ (:Y ﬁ/ ?’ ﬁ" "((

cf, §2, e.g., {(90)]

(116) X ,s8) =+ L v, -x.s",u .-x,S’),
W A "y
@ B ., v “
where 1
(]%17) ) (];_ =/ gﬁ[g-l z ]’T (xz)dz
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for some function $e ;éf:)(k/j X 1\;%). Since @g € ,4,7(]&/j X k’%) it is clear

that L is bounded by a power of s in every vertical

&, x -8
W"y ,ﬁ, ,5,
¢
strip. On the other hand we know that L (X/c ,s) is, up to an exponential

ﬂ-’cd/ A_/

function, the product of at most two functions of the form TI'(as + b)

with a> 0 and complex b. OSince

T
(118) I (o+it) ~ (2?:)1/ 2|t]“‘1/ %e zlt\
in a<o<b as lt{ —> + 0, we see that
L (g, X, »8)
W 4 )
119) L{y ,3'( 4 2 ]Im(s)‘qec° ‘Im(S)l
r Xz ,8)

{

at infinity in every vertical strip. We thus get the same kind of estimate
for LW {g;x »s). Furthermore, we know that if that strip is far away on
the right or on the left, then LW (g;x ,s) is bounded in this strip because
of the integral representation (107} and the funciional equation (108).

An entire function satisfying these properties is bounded in every vertical

strip, by a well-known result of the Phragmen-Lindelc';f type. )

Step 5. We now prove that CPW ig left-invariant under Gk for every

W EW The invariance under the triangular group is more or less clear, so that

we still have to check the invariance under w, i.e., that F' =F" if we use

I,

notations (112) and (113). Consider on A any Schwartz-Bruhat function ¥ with

compact support, and consider the Mellin transforms of F % F' and F & F"

1,

. (convolution products on A’p).

(*) Assume that | L_, (g% » s)| is bounded (for given g and y ) for |Re (s)] > P, and
consider the function f(z) = L__ (g;x . 2iPz/w) in the strip | Tm (2) | <7/ 2; theré’flxl
is bgﬁ}fled on the boundary lines, and furthermore satisfies ‘f(z)H lxlqe
<ee for some a<l; hence f is bounded by Theorem 12. 9 in W. Rudin,
Real and Complex Analysis.




Denoting by

{120) _ /F\‘(x ,8) = fF Gedx (X)-llx\ sl

the Mellin transform of F, which for a given ¥ 1is entire and rapidly de-
creasing in every vertical strip, it is clear that the Mellin transforms of

-~ ) ~
FxF' and F £« F" are F(X,S)Lw(g;x ,8) and F{y, s)LW(wg;w-x,l—s); they are

entire and, by Step 4, rapidly decreasing in every vertical strip. The inversion

formulas
1 f ~ i-2s
121) F « F' (%) =27F'iz Ré/( ) :GF(X:S)LW(g;x,Sﬂxl ds
{x ) °
/f

1 - ~ 1-2s
(122) F o FY g = - Fx,s)L_ (wg;w-x ,1-s)lx1 ds

ZmZRe (8) = 1-0 w

are valid if o is large enough (the summaticn over x is over all unitary
characters, with x' and y'" considered as identical if y'_ x" 1is
of the form x-— lx[a). But since we integrate éntire functions which
decrease fast enough at infinity we can shift the integration to ¢ = 1/ 2.
We thus get F % F' =F % F'" forall F ¢ J(Aif) with compact support,
which proves that F' = F'",
, 2

Step 6. By (90}, (105) and Step 5 we have CPW € LO(Gk\ GA’ w)
for all W GW; furthermore it is more or less obvious that if W' = W ﬁj
‘ = Q. % b h is C* b
then CPW’ = CPW % u; note that CPW is ecause

for some U ¢ H’A

the series (90) which defines CPW remains convergent if we apply any
invariant differential operator to its terms; the standard argument using

elliptical operators then even shows that every CPW is actually analytic



with respect to G .
o

2
Now let # be the closure in LG\ G,,0) of the set V of all

of (‘PW with W e w» Then $f is invariant under the representation gk Tw(g)
GA on L{Z) (Gk\ GA’ w).

This can be proved in about the same way as similar properties
of irreducible representations of Lie groups; see reference (¥) on page 2.2,
The idea is always the same; to express that the closure of a subspace v
ig invariant under GA’ we must express that ifa ¢ e Li(Gk\ GA’ w} 1is
orthogonal to V then (Tw(g)cp,w) =0 for all QDE V and ge GA. But
since CP is analytical the same is true of the function gk (Tw(g)qj,;b),
which satisfies the same elliptical equations as CP ; thus it is enough to express
that the ""derivatives at the origin' of (Tw(g)CP,w) vanish, i.e., that
(P = ;:c,,t[}) =0 forall pu = H‘A; but this is clear since V #* 3={~A =V,

This argument shows more generally that the closed subspaces

of ¥ invariant under GA are the closures of the subspaces of V invariant

under }‘\[

A Since the mapping W —> qfw is compatible with the actions of

%A’ it is thus clear that the representation of GA on ¥ is irreducible. To

conclude the proof we should still prove that this representation is

LS
eguivalent to @ «¥

' which is more or less obvious since the representation

4
of ¥ on}#f=V is @7, .
A Y



