Essays on the arithmetic of quadratic fields

Bill Casselman University of British Columbia cass@math.ubc.ca

Integer square roots

In this note I'll explain how to calculate $\lfloor \sqrt{N} \rfloor$ for *N* a positive integer. The final algorithm can be found easily in many places, but justification is more difficult to locate..

Contents

1. Newton's method	1
2. The integer version	2

1. Newton's method [intsqrt.tex]

I start by recalling Newton's method for finding square roots of real numbers. Define

$$f\colon x\longmapsto x-\frac{x^2-N}{2x}=\frac{x+N/x}{2}\,.$$

Start with any initial value $x_0 > 0$, then calculate successively

$$x_{n+1} = x_n - \frac{x_n^2 - N}{2x_n} = \frac{x_n + N/x_n}{2} = f(x_n).$$

[newton] **1.1.** Proposition. Suppose n > 0, y = f(x). Then

(a) if x > √N then √N < y < x;
(b) if x² = N then y = x;
(c) if x < √N then y > √N > x.

Proof. The derivative of f is (x + N/x)/2, which is $(1/2)(1 - N/x^2)$. This is negative if $x < \sqrt{N}$ and positive if $x > \sqrt{N}$, so that $x = \sqrt{N}$ is a minimum.

It is instructive to look at some graphs. On the left you can see the basic data. On the right you see a trajectory of the iteration $x_{n+1} = \varphi(x_n)$, starting with $x_0 < \sqrt{N}$.

Replace x by y = f(x) successively. If we start any value of x other then \sqrt{N} , the next will be larger than \sqrt{N} , and that will remain true from then on. Now

$$y^{2} - N = \frac{(x^{2} - N)^{2}}{4x^{2}}$$
$$\frac{y^{2} - N}{x^{2} - N} = \left(\frac{1}{4}\right) \left(1 - \frac{N}{x^{2}}\right)$$
$$\leq \frac{1}{4}.$$

So that at each stage the error $x^2 - N$ is cut down by a factor of at least 1/4. But also

$$y^2 - N \le \frac{(x^2 - N)^2}{4x^2} \le \frac{(x^2 - N)^2}{4N},$$

so that from some point on the convergence of x^2 to N is quadratic.

Furthermore

$$x - \sqrt{N} = \frac{x^2 - N}{x + \sqrt{N}} \le \frac{x^2 - N}{2\sqrt{N}}$$

so that the same is true of the convergence of x.

2. The integer version [intsqrt.tex]

Let

$$F: n \mapsto \left\lfloor \frac{n + \lfloor N/n \rfloor}{2} \right\rfloor$$

[fn-sqrt] **2.1.** Proposition. Suppose $n > \sqrt{N}$. Then

(a) F(n) < n;(b) $F(n) \le F(n+1);$ (c) if $n = \lfloor \sqrt{N} \rfloor + 1$ then $F(n) = \lfloor \sqrt{N} \rfloor.$

Hence if we start with n = N, we get a decreasing sequence until $n^2 < N$. Suppose n_\circ to have been the previous value of n, which was larger than \sqrt{N} . Therefore $n_\circ \ge \lfloor \sqrt{N} \rfloor + 1$, and hence $F(n_\circ) \ge F(\lfloor N \rfloor + 1)$. Thus n is now $\lfloor \sqrt{N} \rfloor$. If N + 1 is a perfect square $(n + 1)^2$, then from that point on F will cycle between n and n + 1. Otherwise F(n) = n.

Proof. I recall first some simple properties of the function $\lfloor x \rfloor$.

- (i) If $x \leq y$ then $|x| \leq |y|$;
- (ii) |x-1| = |x| 1.
- Together, these imply that
- (iii) if $y \le x \le y + 1$ then $\lfloor x \rfloor 1 \le y \le \lfloor x \rfloor$.

Proof of (a). Since $\lfloor N/n \rfloor \leq N/n$,

$$n + \lfloor N/n \rfloor \le n + N/n, \quad \left\lfloor \frac{n + \lfloor N/n \rfloor}{2} \right\rfloor \le \left\lfloor \frac{n + N/n}{2} \right\rfloor.$$

But since N/n < n,

$$\frac{n+N/n}{2} < n, \quad \left\lfloor \frac{n+N/n}{2} \right\rfloor < n.$$

Combining:

$$\left\lfloor \frac{n + \lfloor N/n \rfloor}{2} \right\rfloor \le \left\lfloor \frac{n + N/n}{2} \right\rfloor < n$$

Proof of (b). Start with

$$\frac{N}{n} - \frac{N}{n+1} = \frac{N}{n(n+1)} < \frac{N}{n^2} < 1,$$
$$\frac{N}{n+1} < \frac{N}{n} < \frac{N}{n+1} + 1.$$

This implies by (iii) that

$$(n+1) + \lfloor N/(n+1) \rfloor \ge n + \lfloor N/n \rfloor$$

and finally

or

$$\left\lfloor \frac{n+1+\lfloor N/(n+1)\rfloor}{2} \right\rfloor \le \left\lfloor \frac{n+\lfloor N/n\rfloor}{2} \right\rfloor$$

Proof of (c). If $n = \lfloor \sqrt{N} \rfloor$, then

$$n^2 \le N < (n+1)^2$$
, $\frac{n^2}{n+1} \le \frac{N}{n+1} < n+1$.

But

so

$$n-1 < \frac{n^2}{n+1}$$

But then

$$n \le F(n+1) = n+1 + \left|\frac{N}{n+1}\right| < n+1$$

 $n-1 \le \frac{N}{n+1} < n+1$.

which implies that F(n+1) = n.

Here is the final algorithm (where // signifies integer division):

def intsqrt(N): n = N m = (1 + N)/2 while n > m: p = m + N//m n = m m = p//2 # now n <= m return n