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§1. Definition of a convex body.

Apoint set will be called a convex body when (1) its intersectionwith an arbitrary line is either a bounded

segment, a single point, or empty; (2) it is not contained in any single plane.

If K is a convex body, then it must contain four points not all in one plane, therefore the tetrahedron they

span. It therefore contains an interior point. By translating, we may assume it to contain in its interior
any given point.

§3. . . .

. . .Property (1) of a convex set may be broken down into three parts:

(1a) Along with every two points the set contains all points on the segment between them;
(1b) The set is bounded;

(1c) The set is closed.

§4. Polyhedra. Supporting half-spaces.

If p is a point with coordinates x, y, z and s a constant, the point whose coordinates are sx, sy, sz will be
written as sp. If p′(x′, y′, z′) and p′′(x′′, y′′, z′′) are two points, then p′ + gothp′′ will be the point with

coordinates x′ + x′′, y′ + y′′, z′ + z′′. If K is a set of points and s a constant, sK will be the set of points

sp with p in K.

If p1, p2, . . . , pn is a finite set of points, the set of those points which can be expressed in the form

t1p1 + · · · + tnpn (5)

where
t1 ≥ 0, t2 ≥ 0, . . . , tn ≥ 0, t1 + t2 + · · · + tn = 1 (6)

forms a set with the three properties (1a), (1b), (1c) of a convex body, which we call the convex hull of
the pi. This set contains the points pi and is completely contained in any convex set containing them.

If a point, say pn, possesses a representation of the form (5) besides the obvious one with all tj = 0 for

j 6= i and ti = 1, in which case we must have all ti < 1, then it already lies in the convex hull of p1,
. . . , pn−1. The two convex hulls are the same. Continuing in this way, renumbering if necessary, we

find points p1, . . . , pm with m ≤ n, such that their convex hull is the same as that of p1, . . . , pn, and the
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number of points with that property cannot be reduced. Thus every point t1p1 + · · ·+ tnpm has exactly
one expression of this form (5). The points in this possibly smaller set are called the extremal points of
the convex hull. On any line through an extremal point ph no two pi can lie on either side of ph.

If the points p1, . . . , pn do not all lie in one plane, their convex hull is a convex body, and is called a
(convex) polyhedron. In these circumstances, every point p that can be written in the form (6) with all

ti > 0 is in the interior of this body. Because if e is any point in the hull other than p then all (1 + t)p− te

also lies in the hull for small t, whereas if p lies on the border of the hull then there will exist such points

outside it.

If the points p1, . . . , pn do all lie in one plane, but not on a single line, their convex hull is a (convex)

polygon. Points of the form (6) with all ti > 0 lie in the interior of that polygon.

If the points p1, . . . , pn do all lie in one line, their hull is a segment, unless it is just a single point.

If

αx + βy + γz = d (7)

with α2 + β2 + γ2 = 1, is the equation of a plane, the st of points x, y, z iwth

αx + βy + γz > d

is called the side (α, β, γ) of the plane.

Suppose K to be a closed point set. If we find in (7) a plane which contains a point of K, but has no point

of K lies on the side (α, β, γ), so that for all points x, y, z of K

αx + βy + γz ≤ d (8)

we shall call this plane a supporting halfplane of K, with normal (α, β, γ) and condition (8). Every point

of K on this plane lies in the boundary of K.

We are now going to prove the following Theorem:

Given any polyhedron P, one can always find a find a finite number of supporting halfplanes
whose intersection is exactly P.

Let P be a polyhedron with extremal vertices p1, . . . , pm, and let e be an interior point of P. We conside

for each pair of distinct points pi, pj the line through them and, whenever e does not lie on this line, the
plane through pi, pj , and e. Let now p be a point of the boundary of P not in this plane and also not on

any of the segments pkpℓ. The point p can be expressed as

p = tipi + · · · + tℓpℓ (9)

with all these tk > 0 and their sum equal to 1. The number of pk in this expression must be at least 3,
since p has been chosen not to lie on a line through any pair of vertices. On the other hand, they must all

lie on a plane, because otherwise p would be in the interior of their convex hull, hence in the interior of

P. So the convex hull of these pk is a polygon with p in its interior.

The plane of this polygon must be the boundary of a supporting halfplane of P. Because it doesn’t

contain e, there must exist among the pk at least one, say pg lying on the same side of this plane as e. If
there exists a point ph on the opposite side, then the pyramids pg, pi, . . . , pℓ and ph, pi, . . . , pℓ would be

separated by this plane, and p would be an interior point of their union, hence also of P, a contradiction.

We now come to the following result:

If we consider all the planes through nonplanar triples of the vertices, among this finite collection are

those which form supporting halfplanes of the convex hull. Let these halfplanes be

αix + βiy + γiz ≤ di
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for i = 1, . . . , ν. These planes pass through every point of the boundary of P that does not lie in some
epipj . Since the number of planes epipj is finite, we can choose a direction α∗, β∗, γ∗ equal to one of their

normals, which is a limit of α, β, γ not among their normals. If p∗ is on the boundary, it is a limit of p not

on any epipj . . . .The planes (9) must therefore contain every point of the boundary of P.

The inequalities (9) are valid for every point of P. If q is a point outside P, the segment eq will contain

a point p of the boundary. One of the planes (9) will therefore separate e from q. Therefore any point
satisfying all the inequalities (9) must lie in P.


