
It is an extremely useful thing to have knowledge of the true origins of memorable discoveries . . . It
is not so much that thereby history may attribute to each man his own discoveries and that others
should be encouraged to earn like commendation, as that the art of making discoveries should be
extended by considering noteworthy examples of it.

Leibniz (from the Historia et Origo Calculi Differentialis, translated by J. M. Child)
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In the late 1960’s, Robert Langlands introduced a number of ideas to the theory of automorphic
forms and formulated a number of conjectures which gave the theory a new focus. I was a col-
league of his at this time, and a good deal of my professional energy since then has been directed
to problems posed by him. Thus it was not entirely inappropriate that when I was invited to
this conference, Miyake suggested that I say something about those long gone years. I was rather
reluctant to do this, and for several reasons. The most important one is that, unlike other math-
ematicians who have contributed to class field theory and whose work has been discussed at this
conference—such as Weber, Takagi, Hasse, or Artin—Langlands himself is still very much alive,
and can very well speak for himself. Indeed, in recent years he has shown himself quite willing
to discuss his work on automorphic forms in an historical context. A second reason for hesita-
tion on my part was that although my own professional life has practically coincided with that
of Langlands’ principal conjectures about automorphic forms, and although I have been both a
professional and a personal friend of his for that period, my own contributions to the subject have
been perhaps of too technical a nature to be of sufficiently general interest to talk about at this
conference. A third reason was that if I really were to tell you something new and of historical
interest, I would most of all want to be able to refer to correspondence of Langlands during the
late 1960’s, which has up to now been available only to a few specialists, and details of which I
could hardly include in a talk of my own.

However, last summer Langlands and I began a project which caused to me think again about
Miyake’s suggestion. With the assistance of many other people, we have begun to collaborate
in publishing Langlands’ collected works on the Internet. This is in many ways an ideal form
of publication for something like this. For one thing, much of Langlands’ work was first if not
exclusively presented in unpublished correspondence and monographs hitherto not easily accessible.
My original idea was simply to scan this material electronically for presentation in crude digital
format. But Langlands was more ambitious. Currently several of the staff at the Institute for
Advanced Study are retyping in TEX not only the unpublished stuff, but in addition many of the
published papers and books, for free distribution in electronic format. What we have done so far
is now available at the Internet site
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http://sunsite.ubc.ca/DigitalMathArchive/Langlands

The site itself is one of several Internet sites partially sponsored by Sun Microsystems. The original
idea for these sites was to make software easily and freely available to the public, but the proposal
UBC made to Sun extends the concept of software to include a wide range of mathematical material.

At the moment I write this (July, 1998), what is on line includes

• A letter to André Weil from January 1967
• A letter to Roger Godement from May, 1967
• A letter to J-P. Serre from December, 1967
• Euler products, originally published as a booklet by Yale University Press
• ‘Problems in the theory of automorphic forms’, contained in volume #170 of the Lecture Notes

in Mathematics
• ‘A bit of number theory’, notes from a lecture given in the early 1970’s at the University of

Toronto

Before the end of this summer of 1998, we will probably have also, among smaller items, the book
Automorphic forms on GL(2) by Jacquet and Langlands, originally volume #114 of the Lecture
Notes in Mathematics; the booklet Les débuts de la formule de trace stable, originally published
by the University of Paris; and the preprint distributed by Yale University on Artin L-functions
and local L-factors, which has seen only extremely limited distribution.

One of the potential problems we expected to cause us some trouble was that of copyright owner-
ship. But I am pleased to say that so far none of the original publishers has offered any obstacle at
all to our project. Considering current controversies over these matters, I would like to say that in
my opinion the only copyright policy regarding research publication which makes any sense from
the overall perspective of the research community is one under which control automatically reverts
to an author after, say, at most three or four years.

The ultimate format of the collection has probably not yet been found, but at the moment each
item is accompanied by a few editorial remarks as well as comments by Langlands himself. The
papers themselves can be retrieved in any of several electronic formats produced from TEX files.
Nor is it entirely clear—at least to me—what the final fate of the collection will be, but the
advantage of the way in which the project is being carried out is that things will be made available
as soon as possible, even if the first versions might be somewhat different from the final ones.
My own contribution is essentially editorial, although I and one of my colleagues at UBC are also
responsible for technical matters. I would like to point out that this manner of publication is the
ideal one in many situations, and that if anyone would like to know exactly what sort of technical
effort it involves, I will be happy to try to answer questions.

In the rest of this paper I will recall in modern terms the principal concepts introduced by Langlands
in 1967 and shortly thereafter, and recount to some extent their origins. The crucial part of the
story took place in January of 1967, when Langlands composed a letter to Weil in which the
essential part of his program first saw light. Up to then, Langlands’ own work on automorphic
forms had certainly been impressive, but that single letter, which cost Langlands a great deal of
effort, amounted to a definite turning point. What I have to say in the rest of this paper might be
considered a kind of guide to reading both that letter and slightly later material. I will also include
some informal remarks of an historical nature, and at the end a somewhat unorthodox collection
of unsolved related problems. There are, of course, a number of surveys of this material, notably
a few expositions by Langlands himself and that of Borel at the Corvallis conference, but it seems
to me that there is still much room left for more of the same.
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Incidentally, the letter to Weil was the first document posted on the UBC site.

Roughly speaking, there were two notable features to the letter. The first was that it incorporated
in the theory of automorphic forms a radical use of adèle groups and, implicitly, the representation
theory of local reductive groups. The second was that it introduced what is now called the L-group.
It was the first which attracted a lot of attention—and even perhaps controversy and resentment—
at the beginning, but in the long run this was an inevitable step. Furthermore, the incorporation
of adèle groups did not originate with Langlands, although in his hands they were to be more
important than they had been. But it is the second feature which was really the more significant.
In the intervening years, the L-group has come to play a central role in much of the theory of
automorphic forms and related fields.

1. Automorphic forms and adèle groups

Classically, the automorphic forms considered in number theory are functions on the Poincaré upper
half plane H satisfying certain transformation properties with respect to a congruence group Γ in
SL2(Z), some partial differential equation involving SL2(R)-invariant differential operators on H,
and some growth conditions near cusps. They include, for example, the ‘non-analytic’ automorphic
forms defined first by Maass, which are simply functions on Γ\H and eigenfunctions for the non-
Euclidean Laplacian.

Tamagawa tells me it might have been Taniyama who first noticed that one could translate classical
automorphic forms to certain functions on adèle quotients. More precisely, let Γ be the principal
congruence subgroup of level N in SL2(Z). Choose a compact open subgroupKN of

∏
p|N GL2(Zp)

with these two properties: (1) Γ is the inverse image of KN with respect to the natural embedding
of SL2(Z) into

∏
p|N GL2(Zp); (2) det(KN) =

∏
p|N Z×

p . A common choice is

KN =

{
k

∣∣∣∣ k ≡
[

1 0
0 ∗

]
modulo N

}
.

For p /|N , let Kp = GL2(Zp). The product Kf = KN

∏
p /|N Kp is a compact open subgroup of

GL2(Af ) and Γ is the inverse image of Kf in SL2(Q). Since Z is a principal ideal domain, strong
approximation tells us that the natural embedding

Γ\H →֒ GL2(Q)\GL2(A)/KRKf

is a bijection. Here KR = SO(2), the elements of GLpos
2 (R) fixing i in the usual action on H.

Maass’ functions on Γ\H may therefore be identified with certain functions on the adèle quotient
GL2(Q)\GL2(A) fixed by KRKf , and holomorphic modular forms of weight other than 0 may be
identified with functions transforming in a certain way under KR.

If g is any element of G(Af) then we can express the double coset Kf g Kf as a disjoint union of
right cosets giKf , and define the action of a kind of Hecke operator on the space of all functions
on GL2(Q)\GL2(A)/KRKf according to the formula

Tgf(x) =
∑

f(xgi) .

It is not difficult to see that the Hecke operators Tp and Tp,p on Γ\H correspond to right convolution
by certain functions on p-adic groups GL2(Qp). More precisely, after a little fussing with weights to
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deal with the problem that classical Hecke operators involve a left action and the adèlic operators
a right one, we can make the classical operators Tp and Tp,p for p /|N correspond to the double
cosets

Kp

[
1 0
0 p

]
Kp, Kp

[
p 0
0 p

]
Kp .

For classical automorphic forms, where one already has good tools at hand and where terminology
is not bad, it might not be entirely clear why this translation to an adèle quotient is a good
idea, but in other situations it makes life much simpler immediately. In particular, just as it
does elsewhere in number theory, it allows one to separate global questions from local ones. Of
course this always makes things clearer, but in this case especially so, and in fact just as with
Tate’s thesis it raises questions in local analysis which might never have otherwise appeared. For
example, already even for classical forms one has to tailor the definition of Hecke operators to the
level of the forms involved. In the adèlic scheme, this fiddling takes place in the choice of KN , and
the Hecke operators themselves become entirely local operators (depending only on the prime p).

As one has known since Iwasawa and Tate showed us how to look at ζ-functions, although adèles
are a luxury for Q they are a virtual necessity for other number fields, where problems involving
units and class groups, for example, otherwise confuse local and global questions enormously. For
the moment, let A be the adèle ring of F . The exercise above for GL2(Q) thus suggests the
following definition: An automorphic form for a reductive group G defined over a number field F
is a function on the adèlic quotient G(F )\G(A) with these properties:

• It satisfies a condition of moderate growth on the adèlic analogue of Siegel sets;
• it is smooth at the real primes, and contained in a finite-dimensional space invariant under
Z(g), the centre of the universal enveloping algebra of GR, as well as KR, a maximal compact
subgroup of G(R);

• it is fixed with respect to the right action of some open subgroup Kf of the finite adèle group
G(Af).

Hecke operators are determined through convolution by functions on Kf\G(Af)/Kf .

The conditions on GR determine an ideal I of finite codimension in Z(g)Z(k), that of differential
operators annihiliating the form. One of the fundamental theorems in the subject is that for a
fixed I, Kf , and KR the dimension of automorphic forms annihilated by I is finite.

The group G will be unramified outside a finite set of primes DG, that is to say arises by base
extension from a smooth reductive group over oF [1/N ] for some positive integer N . For primes
p not dividing N , the group G/Fp will therefore arise by base extension from a smooth reductive
group scheme over op. One can express compact open subgroups Kf as a product KS

∏
p/∈S Kp,

where S is a set of primes including DG and for p /∈ S we have Kp = G(op). The Hecke operators
for Kf will include those defined by double cosets Kp\G(Fp)/Kp for p not in S.

In one of the next sections I will recall why the algebra generated by the characteristic func-
tions of these cosets is a commutative ring, the local Hecke algebra Hp, whose structure one
understands well. In this section I point out only that because of commutativity together with
finite-dimensionality, it makes sense—and does no harm here—to impose on an automorphic form
the condition that it be an eigenfunction for all but a finite number of Hecke algebras Hp.

From now on, let A
(
G(Q)\G(A)

)
be the space of automorphic forms on G(Q)\G(A).
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2. The constant term of Maass’ Eisenstein series

I will illustrate the convenience of adèle groups by calculating in two ways the constant term
of Maass’ Eisenstein series. In addition to illustrating adèlic techniques, the calculation will be
required later on.

Let Γ = SL2(Z). For any complex number s with REAL(s) > 1/2 and any z = x+ iy in H define

Es(z) =
∑

c≥0
gcd(c,d)=1

ys+1/2

|cz + d|2s+1
.

The point of this series is that for

g =

[
a b
c d

]

we have

IMAG(g(z)) = IMAG

(
az + b

cz + d

)
=

(ad− bc)

|cz + d|2 IMAG(z)

so that we actually looking at ∑

ΓP \Γ

IMAG(γ(z))s+1/2

where ΓP is the stabilizer of i∞ in Γ. It is generated by integral translations and the scalar
matrices ±I, so the function IMAG(()z) is ΓP -invariant. The series converges and defines a real
analytic function on Γ\H invariant under Γ such that

∆Es = (s2 − 1/4)Es ,

where ∆ is the non-Euclidean Laplacian. Simple spectral analysis will show that for REAL(s) > 1/2
the function Es is the unique eigenfunction of ∆ on Γ\H asymptotic to ys+1/2 at ∞ in the weak
sense that the difference is square-integrable. A little more work will then show that it continues
meromorphically in s and is asymptotic to a function of the form

y1/2+s + c(s)y1/2−s

as y → ∞ for generic s, in the strong sense that the difference between Es and this asymptotic
term is rapidly decreasing in y. (My current favourite explanation of the general theory is the lucid
article by Jacquet at the Edinburgh conference, but of course in the particular case at hand one can
follow the more elementary technique of Maass.) Of course the coefficient c(s) is a meromorphic
function of s. It is easy to deduce that Es must therefore also satisfy the functional equation

Es = c(s)E−s ,

which implies that c(s) satisfies its own functional equation

c(s)c(1− s) = 1 .

It turns out also that y1/2+s + c(s)y1/2−s is the constant term in the Fourier series of Es at ∞,
which is to say that

y1/2+s + c(s)y1/2−s =

∫ 1

0

Es(x+ iy) dx .

In this section we will calculate c(s) explicitly in both classical and adèlic terms, to get a feel for
the way things go in each case.
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• The classical calculation

The constant term of Es is

∫ 1

0

Es(x+ iy) dx = ys+1/2 + ys+1/2
∑

c>0
gcd(c,d)=1

∫ 1

0

dx

|cx+ icy + d|2s+1

= ys+1/2 + ys+1/2
∑

c>0
gcd(c,d)=1

∫ 1

0

dx

|(cx+ d)2 + c2y2|s+1/2

= ys+1/2 + ys+1/2
∑

c>0
gcd(c,d)=1

1

c2s+1

∫ 1

0

dx

|(x+ d/c)2 + y2|s+1/2

= ys+1/2 + ys+1/2

(∫ ∞

−∞

dw

|w2 + y2|s+1/2

) ∑

c>0

ϕ(c)

c2s+1
(w = x+ c/d)

= ys+1/2 + y1/2−s

(∫ ∞

−∞

dw

|w2 + 1|s+1/2

)∑

c>0

ϕ(c)

c2s+1

= ys+1/2 + y1/2−s Γ(1/2)Γ(s)

Γ(s+ 1/2)

∑

c>0

ϕ(c)

c2s+1

= ys+1/2 + y1/2−s ζR(2s)

ζR(2s+ 1)

∑

c>0

ϕ(c)

c2s+1

where
ζR(s) = π−s/2Γ(s/2) .

Here ϕ(c) is the number of integers mod c relatively prime to c. The terms in the sum are
‘multiplicative’ in the arithmetic sense, so the sum is also equal to

∏

p

∑

n≥0

ϕ(pn)

pn(2s+1)
=
∏

p

(

1 +
∑

n>0

(pn − pn−1)

pn(2s+1)

)

=
∏

p

(
1 + (1 − 1/p)

∑

n>0

1

p2ns

)

=
∏

p



1 + p−2s(1 − 1/p)
∑

n≥0

1

p2ns





=
∏

p

(
1 + p−2s(1 − 1/p)

1

1 − p−2s

)

=
∏

p

(
1 − p−2s + p−2s − p−2s−1

1 − p−2s

)

=
∏

p

(
1 − p−2s−1

1 − p−2s

)
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so that

c(s) =
ξ(2s)

ξ(2s+ 1)

where

ξ(s) = ζR(s)
∏

p

1

1 − p−s
.

• The adèlic calculation

Let G = SL2, and continue to let Γ = SL2(Z). For each finite prime p let Kp = G(Zp), and let
Kf =

∏
Kp.

By strong approximation the natural inclusion of G(R) into G(A) induces a bijection

Γ\H →֒ G(Q)\G(A)/KRKf

or in other words G(A) = G(Q)G(R)Kf .

To a function f(g) on Γ\G(R) therefore corresponds a unique function F on G(Q)\G(A) defined
by the formula

F (g0 gR gf ) = f(gR)

if g0 lies in G(Q), gR in G(R), gf in Kf . Let Es be the function on the adèle quotient corresponding
to Es.

We can in fact define Es directly, by imitating the series construction of Eisenstein series on the
adèle group.

Before I do this, let me explain simple generalizations of the classical Eisenstein series and constant
term. Let P be the subgroup of G = SL2 of upper triangular matrices, N its unipotent radical. Let
ϕ be a function on ΓPN(R)\G(R) which is a finite sum of eigenfunctions with respect to SO(2).
Suppose also that ϕ satisfies the equation

ϕ(pg) = δ
s+1/2
P (p)ϕ(g)

where

δP :

[
a x
0 a−1

]
7→ |a|2

is the modulus character of the group P . Then the series

∑

ΓP \Γ

ϕ(γg)

will converge to an automorphic form on Γ\G(R) if REAL(s) > 1/2, and continue meromorphically
in s. If ϕ is invariant on the right by SO(2) it will be, up to a scalar multiple, the Eisenstein series
Es.

If Φ is an automorphic form on Γ\G(R), define its constant term to be the function

∫

N(Z)\N(R)

Φ(ng) dn

on ΓPN(R)\G(R), where N(Z)\N(R) is assigned measure 1.
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Thus if we apply the constant term to an Eisenstein series we get a map from certain functions
on ΓPN(R)\G(R) to other functions on the same space. Rather than analyze this in detail, I will
now explain what happens for adèle groups.

Because Q has class number one

A× = Q×R×
∏

p

Z×
p .

Also because G = PK locally we have

G(A) = P (A)Kf

and hence
G(A) = P (Q)N(A)A(R)Kf

where A is the group of diagonal matrices in G, or equivalently

P (Q)N(A)\G(A)/Kf
∼= ΓPN(R)\G(R) .

Let δP be the modulus character of P (A), taking h to the product of all the local factors δP (hp).

Let ϕs be the unique function on P (Q)N(A)\G(A)/KRKf such that ϕs(pg) = δ
s+1/2
P (p)ϕs(g) and

ϕ(1) = 1.

• The function Es is the meromorphic continuation of the series

∑

P (Q)\G(Q)

ϕs(γg) .

If Φ is an automorphic form on G(Q)\G(A), its constant term is defined to be the function

∫

N(Q)\N(A)

Φ(ng) dn

on P (Q)N(A)\G(A). This is compatible with the classical one in that this diagram is commutative
(A denotes automorphic forms):

f 7→
∫

N(Z)\N(R)

f(n) dn

A(Γ\G(R)) −→ A(ΓPNP (R)\G)

y y

F 7→
∫

N(Q)\N(A)

F (n) dn

A(G(Q)\G(A)) −→ A(P (Q)NP (A)\G(A))

Therefore we calculate the constant term of Es to be the function

∫

N(Q)\N(A)

Es(ng) dn =

∫

N(Q)\N(A)

∑

P (Q)\G(Q)

ϕs(γng) dn .
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The point now is that we can apply the Bruhat decomposition

G(Q) = P (Q) ∪ P (Q)w−1N(Q), P (Q)\G(Q) = {1} ∪ w−1N(Q)

where

w =

[
0 −1
1 0

]
.

We can therefore express the constant term as

ϕs(g) +

∫

N(A)

ϕs(w
−1ng) dn .

The integral over N(A) is just the product of integrals over all the local groups N(Qp). We must
therefore calculate the integrals ∫

N(Qp)

ϕs,p(w
−1n) dn

with ϕs,p(hk) = δ
s+1/2
P (h) (h ∈ P (Qp)).

In both real and p-adic cases we start with

w−1n =

[
0 1

−1 0

] [
1 x
0 1

]
=

[
0 1

−1 −x

]
.

We now must factor this as hk. In all cases we rely on the transitivity of the action of K on
P1(Qp). The group P is the stabilizer of the image in P1 of the image of the row vector [ 0 1 ], so
in order to factor w−1n = pk we must find k in Kp taking [ 0 1 ] to [−1 −x ].

• The p-adic case

Let K = G(Zp). If x lies in Zp then w−1n lies also in K, and there is nothing to be done. Else
|x| = p−n with n > 0 and 1/x lies in Zp. The row vector [−1 −x ] is projectively equivalent to
[x−1 1 ] so we may let

k =

[
1 0
x−1 1

]
.

which gives us

h =

[
0 1

−1 −x

] [
1 0

−x−1 1

]
=

[
−x−1 1

0 −x

]
.

For every integer n let

Nn =

{[
1 x
0 1

] ∣∣∣∣ x ≡ 0 (mod pn)

}
.

Calculate ∫

N

f(w−1n) dn =

∫

N0

f(w−1n) dn+
∑

n<0

∫

Nn−Nn+1

f(w−1n) dn

= 1 + (p− 1)p−(2s+1) + (p2 − p)p−2(2s+1) + · · ·

=
1 − p−1−2s

1 − p−2s
.

• The real group
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Here we normalize [−1 −x ] to [ (x2 + 1)−1/2 x(x2 + 1)−1/2 ] and let

k =

[
c −s
s c

]

where
c =

x√
x2 + 1

s =
1√

x2 + 1
.

Then

h =

[
0 1

−1 −x

] [
c s

−s c

]
=

[
−(x2 + 1)−1/2 x(x2 + 1)−1/2

0 −(x2 + 1)1/2

]

The integral is therefore ∫ ∞

−∞

(x2 + 1)−s−1/2 dx =
Γ(1/2) Γ(s)

Γ(s+ 1/2)
.

These local calculations lead to exactly the same formula for c(s) as before, of course, but it seems
fair to claim that we understand better why it has an Euler product.

3. The Satake isomorphism

In this section and the next two I shall explain how the L-group is constructed. Suppose briefly
that F is an algebraic number field, A its adèle ring. Recall that if ϕ is an automorphic form
on G(F )\G(A) then ϕ is fixed by almost all the local compact groups G(Fp). We know also
from Hecke’s analysis of classical automorphic forms that it’s important to understand how certain
p-adic Hecke operators act on ϕ.

For almost all primes p, the local group G(Fp) is unramified in the sense that G splits over an
unramified extension of Fp, which also means that G can be obtained by base extension from
a smooth reductive group scheme over o = op, the ring of integers of F . The Hecke algebra

H = H(G(Fp), G(o)) is defined to be the algebra of measures of compact support on G both
right- and left-invariant under the maximal compact subgroup K = G(o), with convolution as
multiplication. It is of course generated by the measures constant on single double cosets with
respect to K. Note that we can identify such measures with right K-invariant functions if we are
given a Haar measure on G.

From now on in this section, let F be a p-adic field.

We are interested in homomorphisms of the Hecke algebra H(G(F ), G(o)) into C, and more gener-
ally in the structure of this algebra.

There is one simple way to obtain such homomorphisms. Let B be a Borel subgroup obtained by
base extension from a Borel subgroup of G(o). Let δ = δB be the modulus character of B, taking
b to |detb(b)|. We have an Iwasawa decomposition G = BK. Therefore, if χ is a character of B
trivial on B∩K = B(o) (which is to say an unramified character of B), there is a unique function
ϕ = ϕχ on G such that

ϕχ(bk) = χ(b)δ1/2(b)
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for all b in B, k in K. Up to a scalar multiple, it is unique with the property

ϕ(bgk) = χ(b)δ1/2(b)ϕ(g) .

Right convolution by elements of the Hecke algebra H preserves this property, hence elements of
H act simply as multiplication by scalars, and therefore from each χ we obtain a homomorphism
Φχ from H to C.

The normalizing factor δ1/2 is there for several reasons, but among others to make notation easier
in the result I am about to mention.

Suppose T to be a maximal torus in B, and w to be an element of K in the associated Weyl group
W , and N the unipotent radical of B. If χ satisfies some simple inequalities then the integral

τwϕχ(g) =

∫

wNw−1∩N\N

ϕχ(w−1ng) dn

will converge and satisfy the condition

τwϕχ(bk) = wχ(b)δ
1/2
B (b)τwϕχ(1) .

The operator ϕχ 7→ τwϕχ also commutes with the Hecke algebra. The function τwϕχ will therefore
be a (generically non-zero) multiple of ϕwχ. As a consequence, the homomorphisms Φχ and Φwχ

are the same.

This means that the map χ 7→ Φχ induces one from the W -orbits of unramified characters of T to
a set of homomorphisms from the Hecke algebra H to C.

There is another way to set this up. Let T be a maximal torus in B and A a maximal split torus
in T . The injection of A into T induces an isomorphism of free groups A = A(F )/A(o) with
T (F )/T (o). Restriction from B to A therefore induces an isomorphism of the group of unramified
characters of B (or T ) with those of A. Let R be the group ring C[A] of A. Because G = BK,

the R-module of all K-invariant functions on G with values in R such that f(ntg) = t δ
1/2
B (t)f(g)

is free of rank one over R. Convolution by elements of the Hecke algebra are R-homomorphisms
of this module, and therefore we have a ring homomorphism Φ from H to R. Any unramified
character χ of T gives rise to a ring homomorphism from R to C, and the composition of this
with Φ will be the same as Φχ. The W -invariance we saw before now implies that the image of Φ
lies in RW . The following result is due in special cases to different people, but put in essentially
definitive form by Satake:

Theorem. The canonical map constructed above from the Hecke algebra H to C[A]W is a ring
isomorphism.

In other words, all homomorphisms from H to C are of the form Φχ for some χ. The point of
Satake’s proof is injectivity.

For example, let G be GL2(Qp), A the group of diagonal matrices in G. Suppose the character χ
takes the matrix ̟1 with diagonal (p, 1) to α1 and the matrix ̟2 with diagonal (1, p) to α2. The
ring C[A]W is generated by the images of ̟1 +̟2 and (̟1̟2)

±1. The Hecke operator Tp acts on
ϕχ through multiplication by p1/2(α1 + α2), and Tp,p by α1α2.
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4. The dual group I. The split case

Suppose we are given a classical automorphic form of weight k for the congruence group Γ, say
an eigenform for the Hecke operator Tp with eigenvalue cp. Then by Deligne’s version of the Weil
conjectures c = (ap + bp) with |ap| = |bp| = p(k−1)/2, and also apbp = pk−1. The diagonal matrix

[
αp 0
0 βp

]

where αp = ap/p
(k−1)/2, βp = bp/p

(k−1)/2, is therefore unitary. Of course the pair (αp, βp) is
determined only up to a permutation. It was remarked by Sato and Tate in a slightly different
context that the statistical distribution of the numbers cp as p varied seemed to be according to the
SU(2)-invariant measure on the conjugacy classes determined by the pairs (αp, βp). This suggests
that, more generally, an eigenfunction with respect to Hecke operators ought to be thought of as
determining a conjugacy class in a complex group.

The simplest version of Langlands’ construction of his dual group does exactly this. But there is
a slight twist in the story.

Let G be any split reductive group defined over a p-adic field F . As before, let T ⊆ B be a
maximal split torus contained in the Borel subgroup B, and let W be the Weyl group of this pair
(G,T ). An eigenfunction with respect to the Hecke algebra of G(F ) with respect to the maximal
compact subgroup G(o), according to Satake’s theorem, determines an element in the W -orbit of
Hom(T (F )/T (o),C×). Following the suggestion of Sato-Tate, we want to interpret this first as a
W -orbit in a complex torus, then as a conjugacy class in some reductive group containing that
torus.

Let T̂ be the torus we are looking for. We first pose an identification

T̂ (C) = Hom(T (F )/T (o),C×) .

which means that points on the torus T̂ are the same as unramified characters of T (F ). Second,
we fix a map

λ: T (F )/T (o) −→ X∗(T ) = Hom(X∗(T ),Z)

which identifies T (F )/T (o) with the lattice X∗(T ) of coweights of T . This map is characterized by
the formula

|χ(t)| = q
〈χ,λ(t)〉
F

for all t in T , χ in X∗(T ). Equivalently, if µ is a coweight of T then it is the image of µ(̟−1) if
̟ is a generator of p. This allows to make the identification

T̂ (C) = Hom(X∗(T ),C×) .

Now if S is any complex torus then we have a canonical identification

S(C) = Hom(X∗(S),C×)

since the coupling
S(C) ×X∗(S) −→ C×
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is certainly nondegenerate. If we set S = T̂ we get an identification

T̂ (C) = Hom(X∗(T̂ ),C×)

which leads us also to pose
X∗(T̂ ) = X∗(T ) .

In other words, in some sense the tori T and T̂ must be dual to each another. In any event, this is
a natural way to construct tori, since from almost any standpoint a torus is completely determined
by its lattice of characters.

In summary:

• Points on the torus T̂ (C) may be identified with unramified complex characters of T (F ).

• Elements of T (F )/T (o) may be identified with rational characters of T̂ .

This kind of duality can be extended to one of reductive groups. Let Σ ⊆ X∗(T ) be the set of
roots of g with respect to T , and let Σ∨ be the associated set of coroots in X∗(T ). The quadruple
(X∗(T ),Σ,X∗(T ),Σ∨) all together make up the root data of the pair (G,T ). If, conversely, one is
given a quadruple (L∗, S∗, L∗, S∗) where L∗ is a free abelian group of finite rank, L∗ is the dual of
L∗, S

∗ is a root system in L∗ and S∗ a compatible coroot system in L∗ then we can find a reductive
group defined and split over any field with these as associated root data. It is unique up to inner
automorphism.

In our case, given the root data (X∗(T ),Σ,X∗(T ),Σ∨) we get another set of root data by duality,
namely the quadruple

(X∗(T ),Σ∨,X∗(T ),Σ) = (X∗(T̂ ),Σ∨,X∗(T̂ ),Σ) .

Let Ĝ be the reductive group defined over C associated to these data. For example, if G is simply
connected and of type Cn then Ĝ is adjoint and of type Bn. It is this involution of types that is
at first a bit puzzling.

If we are given a system of positive roots in G, then the corresponding coroots determine also a
positive system of roots in Ĝ, or in other words a Borel subgroup.

Here is Langlands’ version of the Satake isomorphism in these circumstances:

Theorem. For a split group G over a p-adic field there is a natural bijection between ring ho-
momorphisms from the Hecke algebra to C and W -orbits in T̂ (C) or equivalently semi-simple

Ĝ(C)-conjugacy classes in T̂ (C).

Or in yet another form:

Theorem. For a split group G over a p-adic field there is a natural ring isomorphism of the Hecke
algebra H with the representation ring Rep(Ĝ).

Example. For G = GLn this is all straightforward. An unramified character of the torus of
diagonal elements is of the form





x1 0 0
0 x2 0

. . .
0 xn



 7→ |x1|s1 . . . |xn|sn = qm1s1+···mnsn = tm1

1 . . . tmn
n
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if |xi| = qmi and ti = qsi . In fact the character is determined by the array of complex numbers
t = (t1, . . . , tn). Permuted arrays will give rise to the same Hecke algebra homomorphism. But
this means precisely that what really matters is the conjugacy class of the matrix

diag(ti) =





t1 0 0
0 t2 0

. . .
0 tn





in GLn(C). This is compatible with what we have said just above, because the dual group of GLn

is again just GLn.

Example. For SLn the dual group is PGLn(C). The torus T̂ is the quotient of the diagonal
matrices by the scalars. This can be identified with the group of complex characters of the group
of diagonal matrices in SLn simply by restriction of the corresponding identification for GLn. In
particular, for n = 2 the diagonal matrix

[
t1 0
0 t2

]

corresponds to the character [
̟−1 0
0 ̟

]
7→ t1/t2 .

Let me explain briefly what the dual group means for automorphic forms. Suppose now that G is a
split reductive group defined over a number field F . Let ϕ be an automorphic form on G(F )\G(A)
which is an eigenfunction for the Hecke algebras Hp for p not in a finite set of primes S. This
means that for every f in a local Hecke algebra Hp there exists a constant cf such that Rfϕ = cfϕ.

Then for each p not in S there exists a unique conjugacy class Φp in Ĝ with the property that

traceπ(Φp) = cf

whenever f is an element of the Hecke algebra Hp and π = πf is the corresponding virtual repre-

sentation of Ĝ.

The connection between homomorphisms of the local Hecke algebra and conjugacy classes in Ĝ
is rather straightforward. It may have been noticed by several mathematicians before Langlands
called attention to it, but I can find no record of the observation. It is quite likely that, if it had
been observed, it simply wasn’t felt to be of great enough importance to be worth making explicit.
In Langlands’ hands, however, the dual group was to serve as an uncanny guide to understanding
an enormously wide range of phenomena involving automorphic forms.

5. The dual group II. The unramified case

The first strong hint that the dual group had nearly magical properties arose in Langlands’ con-
struction of the analogue of the dual group for arbitrary unramified p-adic groups. This, too, can
be found in the original letter to Weil.

Now suppose only that G is an unramified reductive group defined over the p-adic field F . I recall
that this means it is determined by base extension from a smooth reductive group scheme over op.
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Let B be a Borel subgroup and T a maximal torus in B, containing a maximal split torus A. Let
W be the restricted Weyl group. Satake’s theorem asserts that homomorphisms from the Hecke
algebra Hp to C correspond naturally to W -orbits in Â(C) = Hom(A(F )/A(o),C×). The injection
A →֒ T gives us also an injection X∗(A) →֒ X∗(T ), hence a dual surjection

T̂ (C) −→ Â(C) .

In these circumstances, when A 6= T it is not at all obvious how conjugacy classes in the dual
group relate to W -orbits in Â. It has always seemed to me that explaining this, although simple
enough once seen, was one of Langlands’ least obvious and most brilliant ideas. The trick is to
incorporate the Galois group in the definition of the dual group.

The group G will split over an unramified extension E/F . Let G be the Galois group of E/F , Frob

the Frobenius automorphism. Because G contains a Borel subgroup defined over F , the Galois
group permutes the positive roots of G over E, and this gives rise to a homomorphism from G to
the automorphism group of Ĝ. Langlands defined the full L-group LGE/F to be the semi-direct

product Ĝ⋊G. Here is his remarkable observation:

Langlands’ Lemma. Semi-simple Ĝ(C)-conjugacy classes in Ĝ(C) × Frob correspond naturally to

W -orbits in Â.

If g lies in Ĝ then
g(g0,Frob)g−1 = (gg0g

−Frob,Frob)

so that Ĝ-conjugacy in Ĝ× Frob is the same as twisted conjugacy. On the other hand: (1)

gFrob
0 = g−1

0 g0g
Frob

and (2) if σ = Frobn then

Frob(g0,Frob)Frob−1 = (Frobg0Frob−1,Frob) = (gFrob
0 ,Frob) .

Therefore Ĝ-conjugacy in Ĝ× Frob is the same as LG-conjugacy.

I outline here explicitly how the correspondence goes. First of all, every semi-simple Ĝ(C)-

conjugacy class in Ĝ(C)×Frob contains elements of the form t×Frob with t in T̂ (C). Second, the

W -orbit of image of t in Â(C) depends only on the original conjugacy class. This at least gives us

a map from these conjugacy classes to W -orbits in Â(C). Finally, this map is a bijection.

The simplest published proof of this Lemma can be found in Borel’s Corvallis lecture. Like Lang-
lands’ original proof, it relies upon an old paper of Gantmacher’s for a crucial point, but Kottwitz
has pointed out to me that this point follows easily from a well known result of Steinberg’s. This
is explained briefly in a paper by Kottwitz and Shelstad, and I will sketch here without details a
proof which combines the arguments of Borel and Kottwitz-Shelstad.

• The restricted Weyl group is defined to be the image in Aut(A) of subgroup of the full Weyl group
of the pair (G,T ) which takes A into itself. In §6.1 of Borel’s lecture it is shown that in the dual

group Ĝ the elements of W can be characterized as those elements of N
Ĝ

(T̂ )/T̂ commuting with
the Frobenius. • Furthermore, §6.2 of Borel shows that every element of W can be represented
by an element of N

Ĝ
(T̂ ) commuting with the Frobenius. • For s in T̂ (C), conjugation of t× Frob

by s is equal to t(s/sFrob) × Frob. The kernel of the projection from T̂ to Â is that spanned
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by elements s/sFrob. From this it is easy to see (§6.4 of Borel) that the projection from T̂ to Â

induces a bijection of (T̂ (C) × Frob)/N
Ĝ
(T̂ ) with Â(C)/W . • Every semi-simple conjugacy class

in Ĝ(C)×Frob contains an element t×Frob with t in T̂ . This is where Borel and Langlands quote
Gantmacher, but I present here the argument of Kottwitz and Shelstad.

Let B̂ be a Borel subgroup fixed by Frob containing T̂ . Given a semi-simple element x × Frob in
Ĝ(C), we want to find g in Ĝ(C) such that

g(x× Frob)g−1 = gxg−Frob × Frob = t× Frob

with t in T̂ (C). Equivalently, we want to find g with the property that if we set

t = gxg−Frob

then
tB̂t−1 = B̂, tT̂ t−1 = T̂ .

Let H = B̂ or T̂ . Then tHt−1 = H means that

gxg−FrobHgFrobx−1g−1 = H

or equivalently
x(g−1Hg)Frobx−1 = (x× Frob)g−1Hg(x× Frob)−1

= g−1Hg

since HFrob = H. In other words, since all Borel subgroups and tori are conjugate in Ĝ(C) we are
looking for a group H∗ fixed under conjugation by x× Frob. But a well known result of Steinberg
guarantees that we can find some pair (B∗, T∗) fixed by conjugation under x × Frob, so we are
finished.

• The map induced by inclusion from (T̂ (C) × Frob)/N
Ĝ
(T̂ ) into the Ĝ-classes in Ĝ× Frob is an

injection. This is proven in §6.5 of Borel (but note that there are quite a few simple typographical
errors there).

This Lemma has as immediate consequence:

Theorem. There is a natural bijection between homomorphisms from the Hecke algebra H into C

and semi-simple Ĝ(C) or LG(C)-conjugacy classes in Ĝ(C) × Frob.

Example. The unramified special unitary group SU3

Let F• be an unramified quadratic extension of F . Let

w =




0 0 1
0 −1 0
1 0 0



 ,

and let G be the unitary group of 3 × 3 matrices X with coefficients in F• corresponding to the
Hermitian matrix w. This is an algebraic group over F—if R is any ring containing F then G(R)
is made up of the matrices with coefficients in F• ⊗F R such that

Xw tX = w, w tX−1w−1 = X
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where x 7→ x̄ comes from conjugation in F•.

The group G(F ) contains the torus T of diagonal matrices




y 0 0
0 y/y 0
0 0 1/y





with y in F×
• .

Over F• this group becomes isomorphic to SL3, so Ĝ is PGL3(C). Let G = {1, σ} be the Galois

group of F•/F . The torus T̂ dual to T is the quotient of the group of complex matrices

diag(ti) =




t1 0 0
0 t2 0
0 0 t3





by the scalar matrices. The element σ acts on Ĝ through the automorphism

X 7→ w tX−1w−1 .

and, more explicitly, it acts on T̂ by taking




t1 0 0
0 t2 0
0 0 t3



 7→




t−1
3 0 0

0 t−1
2 0

0 0 t−1
1



 .

The map
T̂ −→ Hom(T (E•)/T (oE•

),C×)

takes the element diag(ti) to the character




̟−1 0 0
0 ̟ 0
0 0 1



 7→ t1/t2




1 0 0
0 ̟−1 0
0 0 ̟



 7→ t2/t3 .

The group A is generated by the element




̟−1 0 0
0 1 0
0 0 ̟





and the map from T̂ to Â takes diag(ti) to the character




̟−1 0 0
0 1 0
0 0 ̟



 7→ t1/t3 .
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If χ is any unramified character of T , or equivalently of A, the element t̂χ can thus be chosen as

any element of T̂ such that t1/t3 = χ(α∨(̟−1)).

We shall need to know a bit more about the action of the Galois group on Ĝ. Let xi,j for i < j be
the matrix with a single non-zero entry 1 in location (i, j). These form a basis for the Lie algebra
n̂. Then σ interchanges x1,2 and x2,3 and takes x1,3 to −x1,3. This concludes my discussion of
SU3.

Globally, an automorphic form is unramified at all but a finite number of of primes. At an
unramified prime p it gives rise to a homomorphism from the Hecke algebra Hp into C. It therefore

also corresponds to a semi-simple Ĝ(C)-conjugacy class Φp in Ĝ(C)× Frobp for all but a finite set
of p. It is tempting to call this class the Frobenius class of the form at p, and I shall not resist
the temptation.

This construction depends very weakly on the choice of splitting extension E/F , and one has a
local L-group for every possible choice. In some ways the canonical choice is to let E be the
maximal unramified extension of F .

One can also define an L-group attached to a global field F to be a semi-direct product

LG = Ĝ⋊G(F/F )

and then one has also various embeddings of the local groups into this corresponding to local
embeddings of Galois groups. Other variants of the L-group are also possible, with the Galois
groups replaced by Weil groups or a Weil-Deligne group. It was at any rate the introduction of
Galois groups into the L-group which turned out to be incredibly fruitful. Incidentally, note that
the definition of the extended L-group given in this section is compatible with that in the previous
one, since when G is split the Galois group acts trivially on Ĝ.

Langlands himself has told me that the subtle point in his definition of the L-group was not the
introduction of the Galois group, which he claims was more or less obviously necessary. Instead,
he says, the point about which he worried was that the L-group should be a semi-direct product
of G and Ĝ rather than some non-trivial extension. I suppose he had the Weil group—a highly
non-trivial extension—on the periphery of his mind. By now there is no doubt that his definition
is correct, but it would be an interesting exercise to put together a simple argument to this effect.

6. The dual group III. Why is the L-group important?

There were two questions which were answered, at least conjecturally, as soon as the L-group was
defined.

• How do we attach L-functions to automorphic forms?

In 1967 there had been already a long history of how to associate L-functions to automorphic forms
in very special circumstances, but there was no systematic way to do this. In some cases it was
not at all clear which was best among several choices. In terms of the L-group there was a natural
guess. Suppose that ϕ is an automorphic form for a reductive group G defined over a number field
F . Let Φp be a representative of the corresponding Frobenius class of the L-group for p outside



The L-group 19

some finite set S of primes. Then for each irreducible finite-dimensional representation ρ of the
L-group we define

L(s, ρ, ϕ) =
∏

p/∈S

det

(
I − ρ(Φp)

Nps

)−1

.

Of course there are a finite number of factors missing for primes in S, but these will not affect
analytic properties seriously. Of course one conjectures this L-function to have all sorts of nice
analytic properties—meromorphic continuation, functional equation, etc. The new feature here
is the parameter ρ, and implicit in the construction of these functions was that ρ should play
a role here analogous to that played by representations of the Galois group in the context of
Artin’s conjecture. This conjecture was made somewhat more reasonable, at least in Langlands’
own mind and in lectures he gave very shortly after he wrote the letter to Weil, when he showed
that the theory of Eisenstein series provided some weak evidence for it. It turned out that the
constant term of series associated to cusp forms on maximal parabolic subgroups determined a new
class of L-functions of Langlands’ form for which one could at least prove analytic continuation.
This was explained in Langlands’ Yale notes in Euler products, and I shall say something about it
further on. Later and more striking evidence that the L-functions suggested by Langlands were the
natural ones was provided by several investigations which showed that the Hasse-Weil ζ functions
of Shimura varieties were of Langlands’ type. A result of this kind had been shown first by Eichler
for classical modular varieties and later on by Shimura for more sophisticated modular varieties,
but of course the relationship with the L-group was disguised there. What was really striking
was that Deligne’s formulation of Shimura’s results on modular varieties and their canonical fields
of definition fitted naturally with Langlands’ L-group. This was first pointed out in Langlands’
informal paper on Shimura varieties in the Canadian Journal of Mathematics, recently reprinted.

• How are automorphic forms on different groups related?

There were many classical results, culminating in work of Eichler and Shimizu, that exhibited
a strong relationship between automorphic forms for quaternion division algebras over Q and
ones on GL2(Q). To Langlands this appeared as a special case of a remarkable principle he
called functoriality. The functoraliity principle conjectured that if G1 and G2 were two rational
reductive groups, then whenever one had a group homomorphism from LG1 to LG2 compatible with
projections onto the Galois group, one could expect a strong relationship between automorphic
forms for the two groups.

The underlying idea here is perhaps even more remarkable. We know that an automorphic form
gives rise to Frobenius classes in local L-groups for all but a finite number of primes. We know
that L-functions can be attached to automorphic forms in terms of these classes. The functoriality

principle asserts that the automorphic form is in some sense very strongly determined by those
classes, in that the form has incarnations on various groups determined by maps among these
classes induced by L-group homomorphisms. Evidence for this idea was the theorem of Jacquet-
Langlands in their book on GL2 which extended the work of Eichler-Shimizu to arbitrary global
fields. This theorem was the first of many to come suggested by the functoriality principle, and its
proof was the first and simplest of many in which the trace formula was combined with difficult
local analysis.

The functoriality principle was especially interesting when the group G was trivial! In this case
the L-group is just its Galois group component, and the functoriality principle asserts that finite
dimensional representations of the Galois group should give rise to automorphic forms. This is
because an n-dimensional representation of the Galois group amounts to a homomorphism from
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the trivial L-group into that for GLn. Even more remarkable was the eventual proof by Langlands
of certain non-trivial cases of Artin’s conjecture, applying techniques from representation theory
and automorphic forms. This was also strong evidence of the validity of the functoriality principle.

7. How much of this was in the letter to Weil?

Essentially all of it! At least the results. The proofs were crude or barely sketched, but better was
perhaps not possible in view of incomplete technology. For example, even the work of Bruhat-Tits
on the structure of local p-adic groups was not yet in definitive form. I have always found it
astonishing that Langlands introduced the L-group full-grown right from the start. The scope and
audacity of the conjectures in his letter to Weil were nearly incredible, especially because at that
time the details of various technical things he needed hadn’t been quite nailed down yet.

The first reasonably complete account appeared in Langlands’ lecture in 1970 at a conference in
Washington, the written version in the conference proceedings in the Springer Lecture Notes #170.
It is instructive for the timid among us to compare this account with the original letter, and with
Godement’s account in the Séminaire Bourbaki.

8. Where does representation theory enter?

So far I haven’t made any explicit reference to the representation theory of local reductive groups.
I haven’t needed it to formulate results, but without it the whole subject is practically incoherent.
It already appears at least implicitly in the classical theory of automorphic forms, where one
always knew that different automorphic forms were only trivially different from others. In current
terminology this is because they occurred in the same local representation spaces. One place
where local representation theory explains what is really going on is in the treatment of unramified
automorphic forms above, where homomorphisms of Hecke algebras were attached to unramified
characters χ. Many things look rather bizarre unless we realize that we are looking there at
the subspace of G(op)-fixed vectors in the representation of G(Fp) induced by χ from the Borel
subgroup. In fact, we are really defining a class of local L-functions L(s, ρ, π) where now π is an
unramified representation of a p-adic group. Satake’s isomorphism asserts that there is a natural
bijection between certain Ĝ(C)-conjugacy classes in local L-groups LG and irreducible unramified
representations of the local group G(F ). We can reformulate this result by saying that, given on G
the structure of a smooth reductive group over oF there is a natural bijection between irreducible
unramified representations and splittings of a sequence

1 → Ĝ(C) → LG→ 〈Frob〉 → 1 .

(using a suitable variant of LG).

This is a special case of a local functoriality principle, which conjectures a strong relationship
between homomorphisms from a local Galois group into LG and irreducible representations of the
local group G. We know that at least for unramified representations π of G we have a whole family
of L-functions L(s, ρ, π) which vary with the finite dimensional representation ρ of Ĝ. This leads
us to ask more generally how we might associate L functions to representations other than the
unramified ones. We know from Tate’s thesis in the case of Gm = GL1 that we should expect
not only an L-function but in addition a local root number ǫ(s, π, ρ, ψ) as well which depends on
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a choice of local additive character ψ of the field. This idea was worked out in detail by Jacquet
and Langlands for the case of GL2 through the theory of Whittaker models, and a bit later by
Godement and Jacquet for all groups GLn, following Tate and Weil for division algebras. There
are in fact several ways to attach both L-functions and root numbers to representations of a group
G defined over a local field Fp, but the most natural and intriguing idea is this, which extends
local class field theory in a remarkable way:

• To each representation of a local reductive group G we should be able to associate a homomor-
phism from the Galois group or some variant (such as the Weil-Deligne group) into LG which
is compatible with the canonical projection from LG onto the Galois group. If ρ is a finite-
dimensional representation of LG we can then expect the corresponding L-function and root
number to be that obtained by Artin, Hasse, Dwork, and Langlands from the representation of
the Galois group we get by composition.

There are a few mild but important modifications of this idea necessary, for example, to deal
with certain poorly behaved ℓ-adic Galois representations, but although evidence for it is still
somewhat indirect it seems very likely to be true. In particular if G = GLn we should expect
irreducible cuspidal representations of G to correspond bijectively and naturally to irreducible
n-dimensional representations of the Galois group. In my opinion the strongest evidence for the
conjecture here comes from work of Deligne, Langlands, and Carayol on the reduction of classical
modular varieties in bad characteristic. Here G = GL2. Other convincing evidence comes from
the remarkable results of Kazhdan and Lusztig dealing with the best of the poorly behaved cases,
covered by the Deligne-Langlands conjecture.

9. Weil’s reaction

Weil’s first reaction to the letter Langlands had written to him was perhaps not quite what Lang-
lands had hoped for. Langlands had written the letter by hand, and Weil apparently decided that
the handwriting was unreadable! You can form your own opinion on this question, because at the
UBC Sun SITE we have posted a copy of the hand-written letter in digital format (Weil’s very
own copy of the original was scanned by Mark Goresky in Princeton). At any rate, Langlands then
sent to Weil a typed version. Copies of this were distributed to several mathematicians over the
next few years, and this is how Langlands’ ideas became well known.

I do not believe that Weil ever made a written reply, but after all he worked only across Princeton
from Langlands. Nonetheless, I think it is reasonable to guess that his first serious reaction was
confusion. In spite of the fact that Weil had been one of the founders of the theory of algebraic
groups, he may not have been familiar with the general theory of root systems, and this alone may
have caused him technical difficulty. It also seems that although he had had a hand in introducing
representations into the theory of automorphic forms through his papers on Siegel’s formulas, he
was unfamiliar with the representation theory of Gelfand and Harish-Chandra, which was a major
part of Langlands’ own background. He says himself of his reaction to Langlands’ letter (Collected
Papers III, page 45)

. . . pendant longtemps je n’y compris rien . . .

At the time he received the letter, he was concerned with extending his ‘converse theorem’, which
asserted that if an L-function of a certain type, if it and sufficiently many twists satisfied a certain
type of functional equation, arose from a classical cusp form. He wanted to generalise this to
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automorphic forms for the groups GL2 associated to number fields other than Q, and troubles he
was having with complex archimedean primes were almost immediately cleared up by Langlands’
ideas about the relation between representation theory and Galois representations. Also, after a
while he worked out the case of GLn in some detail and gave a talk on it at Oberwolfach. In
this case, as we have seen, the L-group is just GLn again, and many technical difficulties vanish.
Finally, he wrote a short paper related to the local conjecture for GL2 over a p-adic field with
residue characteristic two.

Weil also felt strongly, as he repeated often, that conjectures were to be evaluated according to the
evidence behind them. There is much to be said for this attitude, since ideas often come cheaply
and without support. Since Langlands’ conjectures included Artin’s conjecture about L-functions
as a special case, and since it took a lot of work to verify even simple cases, or at least a lot
of imagination to see how fruitful the conjectures would be in breaking up large problems into
smaller ones, it could have been predicted that Weil would be skeptical. What he himself says is
this (Collected Papers III, page 457):

. . . je fus incapable de partager l’optimisme de Langlands à ce sujet; la suite a prouvé que
j’avais tort. Je lui dis cependant, comme j’ai coutume de le faire en pareil cas: “Theorems
are proved by those who believe in them.”

Presumably a necessary, not a sufficient, condition.

10. L-functions associated to the constant term of Eisenstein series

Implicit in Langlands’ conjectures is the idea that the L-functions he defines are precisely those of
arithmetic interest. Not quite a conjecture, this should be taken rather as a working hypothesis. At
the time he made the principal conjectures, the main evidence that he had for this idea came from
the theory of Eisenstein series. In this section I will explain this evidence, and even a mild extension
of what was known definitely to Langlands in 1967. Other explanations of this material can be
found in Langlands’ notes on Euler products and Godement’s Bourbaki talk on the same topic.
For technical reasons, both restricted themselves to the case of automorphic forms unramified at
all primes of a split group. Developments in local representation theory that took place a few
years later made made it possible to extend the result somewhat beyond what can be found in the
literature.

The basic idea is simple, but unfortunately it requires some technical preparation to introduce it.
Let G be a semi-simple group defined over the number field F , P a rational parabolic subgroup
with unipotent radical N and reductive quotient M . For the moment, let A be the adèle ring of
F . We can identify the induced representation

Ind
(
A
(
M(F )\M(A)

) ∣∣ P (A), G(A)
)

with a space of functions on P (F )NP (A)\G(A), which we can call without trouble the space
A
(
P (F )NP (A)\G(A)

)
of automorphic forms on the parabolic quotient P (F )NP (A)\G(A). The

functions in this space can also be characterized directly.

Suppose that (π, V ) is an irreducible representation of G(A) occurring in the subspace of induced
cusp forms on P (F )NP (A)\G(A). Let Pi for i = 1, . . . , n be the maximal proper rational parabolic
subgroups containing P , for each i let δi be the modulus character of Pi, and for s in Cn let

δs
P =

∏
δsi

i .
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For ϕ in V and s in Cn the function
ϕs = ϕ δs

P

also lies in the space of induced cusp forms. For REAL(s) sufficiently large the Eisenstein series

E[ϕs](g) =
∑

P (F )\G(F )

ϕs(γg)

converges to an automorphic form on G(F )\G(A), and continues meromorphically in s to all of
Cn.

If Φ is an automorphic form on G(F )\G(A) and Q is a rational parabolic subgroup, then the
constant term of Φ associated to Q is the function

∫

NQ(F )\NQ(A)

Φ(ng) dn

on Q(F )NQ(A)\G(A).

Suppose now that P and Q are two rational parabolic subgroups. Start with ϕ in the space of cusp
forms in A

(
P (F )NP (A)\G(A)

)
, and take the constant term of E[ϕ] with respect to Q. In effect,

we are constructing a map from a subspace of

A
(
P (F )NP (A)\G(A)

)
−→ A

(
Q(F )NQ(A)\G(A)

)
.

Formally, this is simple to describe. We calculate

∫

NQ(F )\NQ(A)

E[ϕ](ng) dn =

∫

NQ(F )\NQ(A)

∑

P (F )\G(F )

ϕ(γng) dn .

Let T be a maximal split torus contained in both P and Q. The Bruhat decomposition tells us
that P (F )\G(F )/Q(F ) is a finite disjoint union P (F )wQ(F ) as w ranges over an easily described
subset of the Weyl group of T in G. We can choose representatives of the Weyl group in G(F ).
Hence we can write

G(F ) =
⋃

w

P (F )wQ(F ), P (F )\G(F ) =
⋃
w (w−1P (F )w ∩Q(F ))\Q(F ) .

The constant term of E[ϕ] is then the sum

∑

w

∫

NQ(F )\NQ(A)

∑

(w−1P (F )w∩Q(F ))\Q(F )

ϕ(wγng) dn .

How to manipulate this expression in the most general case is a bit complicated. There is only one
case that we are actually interested in, however—that when Q is an opposite P of P . In this case,
we may identify the reductive group M with the intersection P ∩ P . Furthermore, there is only



The L-group 24

one term in the sum that we are interested in, that with w = 1. The term we are interested in is
then

τϕ(g) = τP ,Pϕ(g)

=

∫

N(F )\N(A)

∑

P (F )∩P (F )\P (F )

ϕ(γn̄g) dn̄

=

∫

N(F )\N(A)

∑

N(F )

ϕ(γn̄g) dn̄

=

∫

N(A)

ϕ(n̄g) dn̄ .

We know that π may be expressed as a restricted tensor product π = ⊗̂πp and hence may assume
that ϕ also is a restricted tensor product ⊗̂ϕp. We may therefore express the adèlic integral as a
product ∫

N(A)

ϕ(n̄g) dn̄ =
∏

p

∫

N(Fp)

ϕp(n̄pgp) dn̄p

of local intertwining operators. We shall calculate some of these in a moment. But whether they
can be calculated explicitly or not it is known that all of them have a meromorphic continuation in
s. For the finite primes this follows from a simple algebraic argument about the Jacquet module,
while for the real primes it is somewhat more difficult. At any rate, this point now appears relatively
straightforward, but in 1967 it was not known, and appeared difficult.

The representations πp will be unramified at all but a finite number of primes, and as we shall see
in a moment in certain cases the constant term of the Eisenstein series can be written as a quotient
of Langlands’ L-functions for the inducing representation σ of M . The Eisenstein series satisfies a
functional equation

E[ϕ] = E[τϕ]

and from it we shall deduce that at least in favourable circumstances some of Langlands’ Euler
products possess a meromorphic continuation also. This argument does not allow us to deduce
a functional equation for them, although it is is compatible with one. Because of the technical
problems with local intertwining operators, Langlands restricted himself in his writings to globally
unramified automorphic forms. Presumably in order to simplify the argument for an untutored
audience, he also restricted himself to split groups.

The principal step in this discussion is to express the unramified terms in the product through the
L-group. I will do this in detail for unramified rank one groups. The general case will follow easily.

For the moment, let F be an arbitrary p-adic field.

It suffices to look only at simply connected groups of rank one. There are then two types of
unramified p-adic groups to be considered. The first is the restriction to F of a group SL2(E)
where E/F is an unramified extension. The second is the restriction of a unitary group in three
variables.
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• The group SL2(E)

Let qE be the size of the residue field oE/pE , and let n be the degree of the unramified extension
E/F . Let P be the group of upper triangular matrices in SL2(E), P that of lower triangular
matrices. Let

χ = χs:

[
x 0
0 x−1

]
7→ |x|sE

be an unramified character of P (E). Let τ be the G(E)-covariant map

Ind
(
χs | P (E), G(E)

)
−→ Ind

(
χs | P (E), G(E)

)

defined as the meromorphic continuation of

τϕ(g) =

∫

N(E)

ϕ(n̄g) dn̄ .

Let ϕs be the function in Ind
(
χs | P (E), G(E)

)
fixed by G(oE) with ϕs(1) = 1, ϕs the analogous

function in Ind
(
χs | P (E), G(E)

)
. We know that

τϕs = c(s)ϕs

for some scalar c(s). From the calculation we made before for SL2(Qp) we can deduce that

c(s) =
1 − q−1

E χ(α∨(̟))

1 − χ(α∨(̟))

=
1 − q−1−s

E

1 − q−s
E

.

=
n−1∏

0

(
1 − ωiq−1−s

F

1 − ωiq−s
F

)

where ω is a primitive n-th root of unity, since qE = qn
F .

On the other hand, the L-group associated to the restriction of SL2 from E to F is the semi-direct
product of the cyclic Galois group G with the direct product of n copies of PGL2(C), G acting by
cyclic permutation. Let n̂opp = n̂−α∨ root space of ĝ corresponding to the dual root −α∨, t̂χ the

element of T̂ corresponding to χs. We can write the formula for c(s) in the form

c(s) =
det
(
I − Adn̂opp(t̂χ)

)−1

det
(
I − q−1

F Adn̂opp(t̂χ)
)−1 .

• The group SU3

Continue to let E be an unramified extension of F and E• an unramified quadratic extension of
E. Let

w =




0 0 1
0 −1 0
1 0 0



 ,
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and let G be the unitary group associated to the Hermitian matrix w, already introduced earlier in
this paper. The upper triangular matrices in G form a Borel subgroup B, and its opposite can be
taken to be the lower triangular matrices. The radical N of its opposite is the group of elements




1 0 0
x 1 0
z y 1





where
x = y, z + z = xy .

The groups B and B intersect in the torus T of diagonal matrices




y 0 0
0 y/y 0
0 0 1/y





with y in E×
• .

We want to calculate the constant c(s) such that

τϕs = c(s)ϕs .

We have

c(s) = τϕs(1) =

∫

N(F )

ϕs(n̄) dn .

If

n̄ =




1 0 0
x 1 0
z y 1





then n̄ will be in G(o) if and only if z lies in oE•
. Otherwise we want to write it as hk with h ∈ P ,

k ∈ G(o). We have
[ 0 0 1 ] n̄ = [ z y 1 ] .

which if z /∈ o we can normalize to
[ 1 y/z 1/z ] .

We finally find

n̄ =




1/z̄ y/z 1
0 z̄/z 0
0 0 z








1 0 0
x/z 1 0
1/z y/z 0



w .

We filter N by subgroups Nn where z lies in pn
E•

. The quotient N0/N1 has size q3E, the quotient
N1/N2 has size qE. The groups Neven are all conjugate, as are the groups Nodd.

Let χ be the character 


y 0 0
0 y/y 0
0 0 1/y



 7→ |y|sE•
.



The L-group 27

By expressing the integral for τ over N as the sum of integrals over N0, N−1 − N0, etc. we find
that

τϕs = c(s)ϕ−s

with

c(s) =

(
1 − q−2

E χ(α∨(̟))
)(

1 + q−1
E χ(α∨(̟))

)

1 − χ(α∨(̟))2
.

For the calculation, let X = (χδ
1/2
P (α∨(̟)). Then the integral is

1 + (q − 1)X + (q4 − q)X2 + (q5 − q4)X3 + (q8 − q5)X4 + · · ·
= 1 +

(
(q − 1)X + (q4 − q)X2

)(
1 + q4X2 + q8X4 + · · ·

)

=
(1 − q4X2) + (qX −X) + (q4X2 − qX2)

1 − q4X2

=
(1 −X)(1 + qX)

1 − q4X2
.

Now let’s interpret this in terms of the L-group, which I have already partly described in an earlier
section. The L-group LGE•/E is the semi-direct product of PGL3(C) and {1, σ}, and the L-group

ĜE•/F is the product of several copies of this and an induced action of the cyclic Galois group of

E/F . Again let n̂opp be the negative root space in Ĝ. I now claim that

c(s) =
detn̂opp

(
I − (t̂χ × Frob)

)−1

detn̂opp

(
I − q−1

F (t̂χ × Frob)
)−1

.

To see this, we just have to calculate Adn̂opp(t̂χ × Frob). Here t̂ is chosen so

t1/t3 = χ(α∨(̟−1)), t3/t1 = χ(α∨(̟)) .

But we can calculate
Frob: x̄1,2 7→ x̄2,3

x̄2,3 7→ x̄1,2

x̄1,3 7→ −x̄1,3

t̂× Frob: x̄1,2 7→ (t3/t2)x̄2,3

x̄2,3 7→ (t2/t1)x̄1,2

x̄1,3 7→ −(t3/t1)x̄1,3

so that its matrix is 


0 t2/t1 0

t3/t2 0 0
0 0 −(t3/t1)





from which the claim can be verified.
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• Representations induced from a Borel subgroup

Let now G be an arbitrary unramified reductive group defined over F , let B be a Borel subgroup,
T a maximal torus in B, W the corresponding Weyl group. For each unramified character χ of T
and Borel subgroups P and Q containing T let

τ = τQ,P,χ: Ind
(
χ | P (F ), G(F )

)
−→ Ind

(
χ | Q(F ), G(F )

)

be the intertwining operator defined formally by

τϕ(g) =

∫

NQ(F )∩NP (F )\NQ(F )

ϕ(ng) dn .

If x, y are elements of W with ℓ(xy) = ℓ(x) + ℓ(y), then we have a kind of functional equation

τxyBy−1x−1,B = τxyBy−1x−1,xBx−1τxBx−1,B .

For any unramified character χ and Borel subgroup P containing T there exists a unique function
ϕχ,P in Ind

(
χ | P (F ), G(F )

)
fixed by K with ϕχ,P (1) = 1. From the functional equation just

above and the rank one calculations made earlier we can deduce easily that

τwBw−1,Bϕχ,B = c(χ)ϕχ,wBw−1

and

c(χ) =
detn̂opp

w

(
I − (t̂χ × Frob)

)−1

detn̂opp
w

(
I − q−1

F (t̂χ × Frob)
)−1

where
nw = n̂opp/wn̂oppw−1 ∩ n̂opp .

• Representations induced from opposite parabolic subgroups

Suppose now that P is a parabolic subgroup of G, P an opposite, M = P ∩ P . If (σ,U) is an
unramified representation of M(F ), then by the Satake isomorphism it corresponds to a conjugacy
class t̂σ × Frob in the L-group of M . The same element represents in LG the unramified represen-
tation Ind

(
σ | P (F ), G(F )

)
of G(F ). Suppose given in U a particular vector ϕU fixed by M(o). In

the induced representation Ind
(
σ |M(F ), G(F )

)
there will be a unique function ϕσ fixed by G(o)

and such that ϕσ(1) = ϕU . Define ϕσ similarly in the representation induced from P .

Theorem. In these circumstances we have

τϕπ = c(π)ϕπ

where

c(π) =
detn̂opp

(
I − (t̂π × Frob)

)−1

detn̂opp

(
I − q−1

F (t̂π × Frob)
)−1

and n̂ is the radical of P̂ in Ĝ.

The proof of this formula follows almost immediately from the one in the previous section, because
induction from parabolic subgroups is transitive.
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• The global constant term

Now we consider things globally. Let P be a maximal proper rational parabolic subgroup of the
rational group G, σ a cuspidal automorphic representation of M(A), π = Ind

(
σ | P (F ), G(F )

)
.

Let t̂δ be the element of T̂ representing the modulus character δP . It lies in fact in the center of
LM , since δP is a character of M . It is also the image in T̂ of the product

∏

α∈Σ+

P

α∨(̟−1) .

The vector space n̂opp decomposes under t̂δ into eigenspaces with eigenvalues ai. Let ρi be the
representation of LM on the eigenspace for ai.

The constant term of the Eisenstein series corresponding to the local functions ϕs

r∏

1

L(ais, ρi, π)

L(ais+ 1, ρi, π)
.

In favourable cases (for example, when r = 1) this implies that the L-function has a meromor-
phic continuation. More about exactly which L-functions arise is discussed in some detail in the
Euler Products notes. I should add that although it was certainly impressive that Langlands was
able to use the theory of Eisenstein series to prove in one stroke that several new families of L-
functions possessed a meromorphic continuation, the technique was certainly limited. As observed
by Langlands himself, perhaps the most striking case was that where G = G2 and M = GL2.

A similar calculation for other terms in the Fourier expansion of Eisenstein series, suggested by
Langlands in the 1967 letter to Godement and carried out in detail much later by Shahidi, derives
a functional equation for the L-function in the cases where σ has a Whittaker model.

Langlands tells me that the L-functions arising in the constant term of Eisenstein series played a
crucial role in his thinking, but exactly what role is not clear to me. In the notes on Euler products
he credits Jacques Tits with the observation that they are of the form L(s, ρ, π) where ρ is the
representation on the nilpotent Lie algebra, but as far as I can see Tits could only have made this
observation in Langlands’ lectures at Yale in May, 1967, several months after the letter to Weil.

11. Some subsequent developments

Langlands realized the importance of the L-group much more clearly than any to whom he ex-
plained his conjectures. He immediately began to work out various ways in which it played a role.
Already in May, 1967, we find him writing a letter to Godement conjecturing a formula relating
Whittaker functions to the Weyl character formula applied to the L-group. (This was later to
become the formula of Casselman and Shalika, who learned only after they had proven it that
Langlands had conjectured it seven years before!)

Questions raised by his conjectures presumably motivated his exhaustive investigation of local
L-factors and root numbers, later simplified to some extent by Deligne. The local functoriality
principle received striking evidence from his work on the ℓ-adic representations of modular varieties
for presentation at the 1972 Antwerp conference, which I have already alluded to.
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But perhaps most interesting was the appearance of phenomena related to L-indistinguishability.
We have already seen that to some extent the functoriality principle asserted a kind of charac-
terization of an automorphic form, or equivalently an irreducible representation of G(A), by its
Frobenius classes. But what happens for GL2 turns out to be deceiving. For other groups, rep-
resentations both global and local come in equivalence classes called L-indistinguishable, which
means that as far as their L-functions are concerned they appear to be the same. For GLn, each
equivalence class has just a single element in it. This notion of equivalence among representations
turned out to be related to a simple equivalence relation on conjugacy classes. Both these notions
turned out to be necessary to understand the exact relationship between the trace formula and the
Hasse-Weil zeta functions of Shimura varieties. Questions raised in this way were surprisingly sub-
tle and complicated, and have occupied many first-rate mathematicians since they were brought to
public attention in Langlands’ lectures at the University of Paris. Many of the most difficult, but
presumably not impossibly difficult, open questions in the subject are concerned with these issues.
(A succinct and admirable discussion of these matters was presented by Arthur at the Edinburgh
conference.)

Another extremely interesting development was the extension of local functoriality to include Galois
representations with a large unipotent component, for example those arising from elliptic curves
with multiplicative reduction. Here arose the Deligne-Langlands conjecture, which predicted a
complete classification of square-integrable representations of p-adic reductive groups occurring as
subrepresentations of the unramified principal series. This conjecture was eventually proven by
Kazhdan and Lusztig. Related matters were investigated in a long series of papers by Lusztig on
the Hecke algebras associated to affine Weyl groups, where perhaps for the first time the L-group
occurred as a geometrical object. In particular, L-indistinguishability appeared naturally in terms
of local systems on the L-group.

12. Things to look for

One can find elsewhere accounts of serious and outrageously difficult conjectures implicit in Lang-
lands’ construction of the L-group and Arthur’s generalization of functoriality. I will not recall
these conjectures, but instead I will pose here a number of more frivolous questions which are
presumably more easily answered.

• Even in the case of compact quotients, the role of L-indistinguishability in the Arthur-Selberg
trace formula is not at all clear, as Arthur points out in his Edinburgh exposé. This is presum-
ably related to the rather formal aspect of proofs of the trace formula. Can one use ideas of
Patterson, Bunke, and Olberich to elucidate the nature of L-indistinguishability?

• Even more formal are Arthur’s arguments for non-compact quotients. What sort of analysis or
geometry would make the trace formula seem natural? This is somewhat mysterious even for
SL2(Q).

• Recently, following an extraordinary paper of Lusztig where intersection cohomology and the
Weyl character formula appear together, Ginzburg and others have formulated the Satake
isomorphism in terms of tensor categories of sheaves on a kind of Grassmannian associated
to a group over fields of the form F ((t)). In this context, the L-group is defined for the first
time as a group rather than just formally. Is there a version of this valid for p-adic groups?
Can one formulate and prove classical local class field theory in these terms? It is difficult to
believe that one will ever understand the conjectured relationship between local Galois groups
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and representations of p-adic groups until one has a formulation of local class field theory along
these lines.

• Geometry of the L-group first appeared, as I have already mentioned, in Lusztig’s work on
the conjecture of Deligne-Langlands. Lusztig showed in this work that Kazhdan-Lusztig cells
in affine Weyl groups were strongly related to unipotent conjugacy classes in the L-group.
Apparently still unproven remain conjectures of Lusztig relating such cells to cohomology of
subvarieties in the flag manifold of the L-group.

• What replaces the L-group in analyzing Kazhdan-Lusztig cells in hyperbolic Coxeter groups?
The phenomena to be explained can be found in work of Robert Bédard, but not even the
merest hint of what to do with them.

• Manin tells us that we should think of algebraic varieties at real primes as having the worst
possible reduction. Is there any way one can use this idea to make better sense of representations
of real groups? Can we use representation theory of either real or p-adic groups to explain
Manin’s formulas in Arakelov geometry?

• In his Zürich talk, Rapoport mentioned a possible approach to local functoriality conjectured
by Kottwitz and Drinfeld. The idea is highly conjectural, but any progress here would be
interesting.

• Another approach to local functoriality was mentioned in Ginzburg’s talk at the ICM in Berke-
ley. This looks more interesting in light of the ‘new’ Satake isomorphism. Is there anything to
it?

• One of the the oddest puzzles in the theory of local L-functions in representation theory is the
necessity of introducing an additive character to define the ǫ-factors. There are two places in
local representation theory where these arise naturally—in the theory of Godement-Jacquet for
GLn and in the theory of Whittaker functions, which play a puzzling role. In a recent paper,
Frenkel et al. interpret the explicit formula of Casselman-Shalika for Whittaker functions in
geometric terms. It would be interesting—illuminating both the meaning of local L-functions
and the L-group—if one could prove the formula in this context. It would also be interesting if
one could similarly understand Mark Reeder’s generalization of the Casselman-Shalika formula.

• I have proven above a formula for the effect of interwining operators on unramified functions on
a p-adic group, which has a striking formulation in terms of the L-group. The proof is entirely
computational, however. Can one explain this formula directly in terms of the L-group? Extend
it to ramified representations? Similarly deduce Macdonald’s formula for unramified matrix
coefficients?

• There has been a lot of work on the classification of irreducible representations of local reductive
groups in the past several years, but the Galois group plays no apparent role in these investiga-
tions. Is there any way to introduce it there? Is there any way to generalize Kazhdan-Lusztig’s
work on the Deligne-Langlands conjecture to ramified representations?

I refrain from commenting on overlap among these problems.
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