
Review of
Spectral Decomposition and Eisenstein Series

by C. Moeglin and J.-L. Waldspurger

Bill Casselman
University of British Columbia
E-mail: cass@math.ubc.ca

There were foreshadowings in work of Hecke and his student Reidemeister, but what we
now call the analytic theory of Eisenstein series really began with work of Maass carried
out just after the war and published in (Maass 1949). Maass defined formally the series
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for z = x + iy in the upper half plane ℑ(z) > 0. This series converges uniformly for
ℜ(s) > 1 to an eigenfunction of the Laplacian on the upper half-plane (with eigenvalue
λs = s(s − 1)) which is manifestly invariant under the group SL2(Z) of integral modular
transformations. In particular it is invariant under the group of translations z 7→ z + n,
and hence has a Fourier expansion

Es(z) =
∑

n

En,s(y)e2πinx

where the Fourier coefficients, which are functions of y alone, are expressed as

En,s(y) =

∫ 1

0

Es(x + iy)e−2πinx dx .

These can be explicitly evaluated in terms of Riemann’s ζ(s) and certain classical special
functions, so that well known properties of ζ(s) lead to the meromorphic continuation of
Es(z) with a simple pole at s = 1 and others contributed by the possible zeroes of ζ(2s)
in the region ℜ(s) < 1/2. The functional equation of ζ(s) leads to a functional equation

Es(z) = c(s)E1−s(z)

for some function c(s) calculated explicitly in terms of ζ(s). Maass also defined Eisenstein
series associated to Dirichlet characters and congruence subgroups, using Dirichlet L func-
tions instead of ζ(s). The significance of all these series is that since they are eigenfunctions
of the non-Euclidean Laplacian on H, they are analogous to classical automorphic forms,
and are now treated democratically with the classical ones. In the same paper Maass
defined real-analytic automorphic forms more generally (which he called ‘non-analytic’ to
distinguish them from complex-analytic ones). Just as for the classical holomorphic auto-
morphic forms, one can define the cusp forms to be those automorphic forms orthogonal
to the Eisenstein series, or equivalently those with vanishing constant term in the Fourier
expansion at cusps. Roelcke examined Eisenstein series for more general discrete groups



commensurable with SL2(Z), and was able to show through spectral techniques that they
could be defined for s in the region ℜ(s) > 1/2 except for the interval (1/2, 1]. This work
was published in (Roelcke 1956) quite a while after the work was done. The point here
is that constructing Eisenstein series is essentially a boundary value problem, with a few
technical twists. The Laplacian ∆ is negative definite, so that for s in the region

R1/2 = {ℜ(s) > 1/2, s 6∈ (1/2, 1]}

the eigenvalue λs does not lie in the spectrum of ∆. It is not difficult to see that for s in
R1/2 we have the asymptotic behaviour Es ∼ ys for y near ∞ in the sense that Es − ys

is square-integrable near ∞ (interpreting y loosely here as a function on the quotient).
If χ(y) is a test function on the quotient identically equal to 1 near ∞ and identically
vanishing in the interior, then

(∆ − λs)(Es − χ(y)ys) = −(∆ − λs)χ(y)ys

is then a smooth function of compact support on the quotient. This means that Es can
be recovered from the solution to a simple boundary value problem for s in R1/2, and that
in this region holomorphic continuation of Es is elementary.

Selberg worked on these questions also, but he was able to prove the meromorphic contin-
uation as well as a functional equation over the whole complex plane. This was a much
stronger and more difficult result. He himself did not publish at that time the details
of this early work, but it has been well explained by others. Similar techniques, once the
notion of cusp form had been explicated by Gelfand for a larger class of discrete subgroups,
including all arithmetic subgroups of semi-simple groups defined over Q, led to a similar
theory of Eisenstein series for automorphic forms on the space Γ\G associated to maximal
rational parabolic subgroups, and the spectral decomposition of the part of L2(Γ\G) with
a one-dimensional continuous spectrum. This part of the theory is from an analytic point
of view reasonably well understood; particularly elegant expositions of the basic ideas,
along slightly different lines (both following the classic work), can be found in (Colin de
Verdière 1981) and (Efrat 1987). It was simple to extend this theory to adèle groups when
they were introduced in the late 1950’s.

The extension to Eisenstein series of higher rank and to the continuous spectrum of di-
mension greater than one, or in other words to automorphic forms associated to arbitrary
rational parabolic subgroups, was more difficult. The decisive step was taken by Langlands
around 1965, who produced a set of notes on the theory. These were widely distributed but
not published until much later, in (Langlands 1976). There were two main parts to Lang-
lands’ theory. The first was the meromorphic continuation of Eisenstein series associated
to cusp forms on the reductive factors of rational parabolic subgroups. The second applied
these Eisenstein series to two further and intimately related problems: describing (1) the
complete discrete spectra of arithmetic quotients Γ\G where G is a reductive group and Γ
an arithmetic subgroup; (2) the complete spectral decomposition of L2(Γ\G) in terms of
the discrete spectra of reductive factors of rational parabolic subgroups.



Langlands’ results were a major tour de force, and in the light of history they become all
the more impressive. But his notes were difficult to read and in a few places the difficulty
was extreme. The first part of the theory was not so inaccessible as the second, and was
the main topic of the book (Harish-Chandra 1968), which appeared soon after Langlands’
notes. This book, however, did not attempt to explain the spectral decomposition of
Langlands’ Chapter 7. The first attempt to do so was the book (Osborne & Warner 1981).
This book was also extremely difficult to read, but it helped some mathematicians, at
least, to penetrate slightly further into what Langlands had in mind.

A second step in the exposition of Langlands’ theory was made in (Harder 1974) and
(Morris 1982), who dealt with the entirely analogous but somewhat simpler case of groups
defined over function field extensions of finite fields.

A third step in the exposition of Langlands’ work is the book under review (which is
subtitled Une paraphrase de l’Écriture). This includes complete proofs in nearly all cases,
including both reductive groups defined over number fields and arithmetic function fields,
as well as central extensions of these groups such as the metaplectic groups. It is not self-
contained. It depends strongly on, among other things, the truncation theory of Arthur
and Langlands which it does not itself attempt to explain, and occasionally refers to other
places for the details of a proof. It does, however, attack the spectral decomposition
directly and without hesitation, and does a reasonably clean job. The one exception to
its completeness is that whereas Langlands and the book by Osborne & Warner deal with
arbitrary arithmetic groups Γ, this one deals exclusively with adèle groups. This has both
bad and good effects — it makes the underlying analysis a little less approachable, but it
does get one further into the region where interesting applications lie. How complicated
life in an adelic world can be is shown in an appendix treating relatively explicitly the case
of G2, the sequel to an interesting and more elementary appendix in Langlands’ Springer
lecture notes.

This book, as I have already indicated, is valuable, but it should probably not be expected
to serve as an introduction to the subject. The main problem is that it proves things in the
utmost generality straight off, without looking at simple examples first. For a beginning,
the book (Kubota 1973) is still valuable. For a clearer proof of meromorphic continuation
in the rank one case one should probably look first at (Colin de Verdière 1983) or (Müller
1996), next (Efrat 1987), before looking at the very general case dealt with in this book.
The step from this to the meromorphic continuation of Eisenstein series in the higher rank
case is in some sense a technicality, but it does not appear so simple in most expositions.
The exposition in this book is not bad, but one still might want to look at Harish-Chandra’s
notes before tackling it.

As for the final few steps — constructing the residual spectrum and then the associated
Eisenstein series — this book is probably the best, if not for some things the only, place
to look. Undertaking this task is still not simple. Before one attempts to understand
the argument, which is a simplification of Langlands’ own, one would want to look at
Langlands’ article from the Boulder conference, where he discusses SL3(Z), as well as the
brief survey (Arthur 1979) from the Corvallis conference.



For many applications of Eisenstein series, one does not have to understand the proofs. In
fact, for many applications it might be more important to understand the technical details
of truncation, which are used here but for which the reader is referred to the original papers
of Arthur. In the future, however, one might very want to understand the construction
of the residual spectrum, which in turn depends in a recursive way on the continuous
spectra of lower rank groups. Ideally, one would be able to start with a description of the
Eisenstein series associated to cusp forms for maximal proper rational parabolic subgroups
of a given group, and then apply a straightforward algorithm to see what happens for the
group itself. We are not apparently at this stage yet. This book explains necessary facts
about the residue process used, but for help here the reader might want to look at (van
den Ban & Schlichtkrull 1997), who try very hard to isolate what is needed in very general
circumstances. A complicated but important example of how explicit calculations go can
be found in the paper (Moeglin-Waldspurger 1989).

Perhaps the two most serious applications of Eisenstein series so far are the trace formula
and the work (Franke 1997) on cohomology and automorphic forms. Also important is
Werner Müller’s proof of traceability in (Müller 1989), and it should not be forgotten that
at the moment of their birth the residues of Eisenstein series at one point were used by
Langlands to prove a large class of new cases of Weil’s conjecture on Tamagawa numbers.
None of these apparently requires understanding the most difficult parts of the theory of
Eisenstein series. But in the long run, work on the conjectures of Arthur regarding the
residual spectrum, as the authors point out, will probably be more demanding.

I do not believe that the story of Eisenstein series, even at the level at which this book is
working, has come to its conclusion. I have mentioned above that in rank one situations
Eisenstein series are the solution to a relatively simple boundary value problem. Many
of the problems which Langlands had to confront, and which this book still confronts
much as he did, would be drastically simplified if one understood how residual Eisenstein
series were also the solution to a kind of boundary value problem. This can be done in a
limited number of circumstances, and evidence suggests that it can always be done. Other,
smaller, bits of the puzzle can be filled in right now. For example, one result of Langlands’
work is that the Plancherel measure on the continuous spectrum is constant. I think it
is fair to say that the underlying reasons for this are not seen directly in the argument
of Langlands or of this book. Nonetheless it is not more than an interesting exercise in
truncation theory to provide a direct argument.
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