
The original version of this paper was published in Automorphic forms, automorphic representations,
and arithmetic, the proceedings of a symposium held to honor Goro Shimura, and published by the
AmericanMathematical Society, volume 66 in its series of symposia in puremathematics. I have revised
it to improve the exposition, and also to have its notation agree with my more recent conventions.

On the Plancherel measure for the continuous spectrum of the modular group

Bill Casselman

Department of Mathematics
University of B.C.

Vancouver, Canada

cass@math.ubc.ca

Let Γ = SL2(Z). In this paper I will give what is apparently a new proof of the basic Plancherel theorems on
Γ\H. The same argument will work in much more varied circumstances.

Maass’ Eisenstein series is defined by the formula

Es(z) =
1

2

∑

(m,n)=1

ys

|mz + n|2s

for z in the upper half planeH. If P is the group of upper triangular matrices in SL2(R), this is also

∑

Γ∩P\Γ

IM(γ(z))s ,

since elements of Γ ∩ P leave the imaginary part of z = x+ iy invariant, andIM(g(z)) =
IM(z)

|cz + d|2
, if g =

[
a b
c d

]
.

This series is convergent for RE(s) > 1, and continues meromorphically in s to all of C. It is invariant under Γ
and an eigenfunction of the Laplacian:

∆Es = s(s− 1)Es .

Recall that the constant term of any Γ­invariant function F is the constant term in its Fourier expansion

F (x + iy) =
∑

n

e2πnixFn(y) ,

which is

F0(y) =

∫ 1

0

F (x+ iy) dx .

The constant term of Es is of the form ys + c(s)y1−s, where

c(s) =
ξ(2s− 1)

ξ(2s)
, ξ(s) = π−s/2Γ(s/2)ζ(s) .

This function c(s) also occurs in the functional equation

E1−s = c(s)Es .

The only properties of c(s) that we shall need are:
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• The function c(s) is smooth on RE(s) = 1/2.

• For RE(s) = 1/2 it satisfies
|c(s)| = 1, c(s)c(1 − s) = 1 .

The function Es also satisfies the growth condition

Es(z) = Es,0(y) +O(y−N ) = ys + c(s)y1−s +O(y−N )

for all positiveN and large y.

Similar properties hold for Eisenstein series associated to any arithmetic group of rank one, as well as Eisenstein

series induced from cusp forms on maximal rational arabolic subgroups.

For ϕ(s) smooth and of compact support on RE(s) = σ = 1/2 I define two functions, the first on (0,∞) and the
second on Γ\H:

Fϕ(y) =
1

2πi

∫ 1/2+i∞

1/2−i∞

ϕ(s)ys ds

Eϕ(z) =
1

2πi

∫ 1/2+i∞

1/2−i∞

ϕ(s)Es(z) ds .

Its constant term of Eϕ is

Eϕ,0(y) =
1

2πi

∫ 1/2+i∞

1/2−i∞

ϕ(s)
(
ys + c(s)y1−s

)
ds

=
1

2πi

∫

σ=1/2

(
ϕ(s) + c(1 − s)ϕ(1 − s)

)
ys ds

=
1

2πi

∫

σ=1/2

ϕ#(s)ys ds

= Fϕ∗
(y) ,

where

ϕ#(s) =
(
ϕ(s) + c(1 − s)ϕ(1 − s)

)

is twice the projection of ϕ onto the space of functions satisfying

ϕ#(1 − s) = c(s)ϕ#(s) .

Thus for y large Eϕ(z) is equal to
Fϕ∗

(y) +O(y−N )

for allN .

The usual Fourier duality of Schwartz spaces on the multiplicative group (0,∞) guarantees that

Fϕ∗
(y) = O(y1/2 log−N y)

for allN > 0 and large y. Therefore for any twith RE(t) = 1/2 the Fourier­Eisenstein integral

〈Eϕ, E1−t〉 =

∫

Γ\H

Eϕ(z)E1−t(z)
dx dy

y2

is absolutely convergent.

The first of the two major results of this paper is this:
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Theorem 1. (Fourier inversion)We have

〈Eϕ, E1−t〉 =

(
1

2

) ∫ ∞

0

F#(y)
(
y1−t + c(1 − t)yt

) dy
y2

= ϕ#(t) .

Here is the second:

Theorem 2. (Plancherel formula)We have

〈Eϕ, Eψ〉Γ\H =

(
1

2

)
1

2πi

∫

σ=1/2

ϕ#(s)ψ#(1 − s) ds =

(
1

2

)
〈Fϕ#

, Fψ#
〉(0,∞) .

Both are special cases of a formal equation

〈Eϕ, EΦ〉Γ\H =

(
1

2

)
〈 constant term of Eϕ, constant term of EΦ〉(0,∞) .

This theory (extended to include arbitrary arithmetic groups Γ of SL2(Q)) is due to Maass, Roelcke, and Selberg.
The usual proof of these results (found, for example, in Langlands (1965) or §7.4 of Kubota (1973)) involves
moving a contour integral from the domain of convergence of Eisenstein series to the critical line σ = 1/2. This
will be avoided in the argument below, which considers only Eisenstein series parametrized by s on the critical
line. The usual argument, I should remark, also proves the full Plancherel theorem for the continuous spectrum

and the part of the discrete spectrum arising from residues of Eisenstein series, whereas the argument below says
nothing directly about completeness. Another argument, however, like that in Casselman (1983), can be used in

some circumstances to prove an even stronger completeness result starting with the one given here. In particular,

the argument given here allows one to prove the Paley­Wiener theorem of Casselman (1983) without moving
contours twice, first one way and then the other, as was done there.

The proof below, and the proofs I have in mind of all its generalizations, proceeds in three steps: (1) truncation;
(2) regularization, which yields the Maass­Selberg formula, following Casselman (1993); (3) ordinary Fourier
analysis (here on (0,∞)). Of course the aim in all proofs of the Plancherel theorems for Eisenstein series is to
reduce the calculation on Γ\H to that on the multiplicative group. The only difference between various proofs is
exactly how and where one does this. In particular, it is how this step is taken which is new in this paper. In the

literature, when truncation is used to derive a Plancherel measure, it is followed by taking limits as the truncation
parameter passes to infinity. What is apparently novel in this paper is that a well known device from harmonic

analysis makes the limit process unnecessary.

The usual proof, as explained in Langlands (1965), generalizes to other rank one groups easily. It generalizes
to groups of higher rank only with a great deal of trouble, since one has to be extremely careful of how one

moves contours of integration around. This part of the theory is notoriously difficult, and the difficulty is only
partly alleviated by the recent exposé in Moeglin­Waldspurger (1995). The proof I give below also generalizes

immediately to other groups of rank one. Although the generalization to groups of higher rank is a little less

obvious, it is still rather elementary. I will deal with this in another place. The proof I give below also seems
to work without essential modification for real groups, p­adic groups, and symmetric spaces, but that, too, is
another story.

The first section recalls well known facts, and the second contains the proofs of the Theorems.

I would like to take this opportunity to thankGoro Shimura for acceptingme as a student one daymany years ago
in the hall of the old Fine Hall. Without his council, I might well have never taken up the subject of automorphic

forms.
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1. Truncation

A variant of Eisenstein series is formally adjoint to the constant term. For any function f on (0,∞)we can extend
it to a function f on H invariant with respect to real translations z 7→ z + x. The function f is invariant under
Γ ∩ P , where P is the group of upper triangular elements in SL2(R) and Γ ∩ P is thus the group of upper
triangular elements

±

[
1 x
0 1

]

in Γ. Note that [
1 x
0 1

]

acts by translation onH. We can then define, at least formally, the Eisenstein series

Ef (z) =
∑

Γ∩P\Γ

f(γ(z)) .

For f = ys this gives Maass’ series. A formal manipulation gives

〈Ef , F 〉Γ\H = 〈f, F0〉(0,∞) .

For T > 0, define the operator CT on (0,∞) to be multiplication by the characteristic function χ(T,∞), and ΛT to
be multiplication by χ(0,T ). Thus for any f on (0,∞) we have an orthogonal decomposition

f = ΛT f + CT f .

Nowwe combine these constructions to define analogous operations on Γ\H. Assume T > 1. For F on Γ\H, let
f be its constant term. Then for T > 0, CT f has support on (T,∞). We can consider its Eisenstein series in turn,
which I define to be CTF :

CTF = ECT f .

It is characterized by these two conditions: (a) it is Γ­invariant; (b) in the fundamental domain |x| ≤ 1/2, |z| ≥ 1

CTF =

{
0 y < T

F0(y) otherwise.

Define the truncation of F at T to be the difference

ΛTF = F − CTF .

Because the image of

HT = {IM(z) ≥ T}

under γ inΓ is eitherHT itself (if γ lies inΓ∩P ) or a circle in the region{IM(z) < 1} (otherwise), the decomposition

F = ΛTF + CTF

is orthogonal whenever orthogonality makes sense. Both operators ΛT and CT are idempotent and self­adjoint:

CTCT = CT , ΛTΛT = ΛT , 〈CTF1, F2〉 = 〈F1, C
TF2〉, 〈ΛTF1, F2〉 = 〈F1,Λ

TF2〉 .

For functionsF satisfying somemild growth and smoothness conditions—whenF is of uniform moderate growth
on Γ\H—the function ΛTF is rapidly decreasing at∞.
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The integral Es has uniform moderate growth. Thus

Es = ΛTEs + CTEs

is an orthogonal sum at least formally, and ΛTEs is rapidly decreasing at∞. In particular it is square­integrable
on Γ\H.

The Maass-Selberg formula asserts that

〈ΛTEs,Λ
TE1−t〉 =

T s−t − c(s)c(1 − t)T−(s−t)

s− t
+
c(s)T 1−s−t − c(1 − t)T s+t−1

1 − s− t
.

In Casselman (1992) this is derived from a curious regularization of integrals on Γ\H, which allows one to start
with the formal identity ∫

Γ\H

EsE1−t
dx dy

y2
= 0

which can be justified for generic values of s and t. In this scheme, the Maass­Selberg formula is expressed in the
form

〈ΛTEs,Λ
TE1−t〉 =

∫ T

0

(
ys + c(s)y1−s

) (
y1−t + c(1 − t)yt

)
dy/y2

=

∫ T

0

(
ys−t + c(s)y1−s−t + c(1 − t)ys+t−1 + c(s)c(1 − t)y−s+t

)
dy/y

where the right hand side is evaluated by analytic continuation, writing

∫ T

0

ys dy/y =
T s

s
.

Since truncations are rapidly decreasing at infinity, the right hand side of the Maass­Selberg formula cannot, and

does not, have any poles, even though its individual terms do.

2. Fourier analysis

Because of orthogonality, we can write

Eϕ = ΛTEϕ + CTEϕ

〈Eϕ, E1−t 〉 = 〈ΛTEϕ, E1−t 〉 + 〈CTEϕ, E1−t〉

= 〈ΛTEϕ,Λ
TE1−t 〉 + 〈CTEϕ, C

TE1−t〉

=
〈 1

2πi

∫

σ=1/2

ϕ(s)ΛTEs ds,Λ
TE1−t

〉
+ 〈CTEϕ, C

TE1−t〉 .

The point now is that each of these two terms has an interpretation purely in terms of harmonic analysis on

(0,∞).

The second term is

〈CT · constant term of Eϕ, constant term of E1−t〉(0,∞) = 〈CTFϕ#
, y1−t + c(1 − t)yt 〉(0,∞) .
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As for the first term, we can bring the integral outside the coupling because the integrand is square­integrable.

We then have fromMaass­Selberg

〈 1

2πi

∫

σ=1/2

ϕ(s)ΛTEs ds,Λ
TE1−t

〉

=
1

2πi

∫

σ

ϕ(s)〈ΛTEs,Λ
TE1−t〉 ds

=
1

2πi

∫

σ

ϕ(s)

[
T s−t − c(s)c(1 − t)T−(s−t)

s− t
+
c(s)T 1−s−t − c(1 − t)T s+t−1

1 − s− t

]
ds .

Since the integrand is holomorphic in s and t we can also write it as

lim
ǫ→0

1

2πi

∫

|s−t|≥ǫ,|s+t−1|≥ǫ

ϕ(s)

[
T s−t − c(s)c(1 − t)T−(s−t)

s− t
+
c(s)T 1−s−t − c(1 − t)T s+t−1

1 − s− t

]
ds .

But now we can separate terms in the integral to get this to be the limit as ǫ→ 0 of the sum

1

2πi

∫

|s−t|≥ǫ

ϕ(s)
T s−t

s− t
ds−

1

2πi
c(1 − t)

∫

|s−t|≥ǫ

ϕ(s)c(s)
T t−s

s− t
ds

+
1

2πi

∫

|s+t−1|≥ǫ

ϕ(s)c(s)
T 1−s−t

1 − s− t
ds−

1

2πi
c(1 − t)

∫

|s+t−1|≥ǫ

ϕ(s)
T s+t−1

1 − s− t
ds .

We can make a change of variables of 1− s for s in two of these and reassemble to make this

lim
ǫ→0

−
1

2πi

∫

|s−t|≥ǫ

ϕ#(s)
T−(t−s)

t− s
ds−

1

2πi
c(1 − t)

∫

|1−t−s|≥ǫ

ϕ#(s)
T−(1−t−s)

1 − t− s
ds .

How can this be interpreted? At this point I recall some elementary Fourier analysis on (0,∞). Recall that we
are given on (0,∞) the measure dy/y2. The Fourier transform is therefore

f̂(s) =

∫ ∞

0

f(y)y1−s dy/y2

for RE(s) = 1/2. The inverse transform is

1

2πi

∫ 1/2+i∞

1/2−i∞

F (s)ys ds .

Define sgnT to be the function

sgnT =

{
1/2 if y > T

−1/2 otherwise

T

Its Fourier transform is the principal value of T −s/s, which is the distribution

〈PV(T−s/s), ϕ〉 = lim
ǫ→0

1

2πi

∫

|s|≥ǫ

ϕ(s)

(
T−s

s

)
ds .
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Recalling how convolution and multiplication relate to each other under the Fourier transform, we see that

lim
ǫ→0

−
1

2πi

∫

|s−t|≥ǫ

ϕ#(s)
T−(t−s)

t− s
ds−

1

2πi
c(1 − t)

∫

|1−t−s|≥ǫ

ϕ#(s)
T−(1−t−s)

1 − t− s
ds

= −〈sgnTFϕ#
, y1−t + c(1 − t)yt〉(0,∞) .

In other words, Fourier duality on (0,∞) proves this extremely useful if technical result, which is really the main
result of this paper:

Theorem 3. For ϕ of compact support on RE(s) = 1/2

〈ΛTEϕ, E1−t〉Γ\H = −〈sgnT Fϕ#
, y1−t + c(1 − t)yt〉(0,∞) .

Our original expression therefore becomes

〈−sgnTFϕ#
, y1−t + c(1 − t)yt〉 + 〈CTFϕ#

, y1−t + c(1 − t)yt〉

= (1/2) 〈Fϕ#
, y1−t + c(1 − t)yt〉

= (1/2)
(
ϕ#(t) + c(1 − t)ϕ#(1 − t)

)

= ϕ#(t)

since −sgnT + χ(T,∞) is the constant 1/2.

From Theorem 1 we can easily evaluate the inner product

〈Eϕ, Eψ〉 =

(
1

2

)
〈Fϕ#

, Fψ#
〉 .

Keep in mind that Fϕ#
is the constant term of Eϕ, Fψ#

that of Eψ .

The function sgnT is a multiplicative translation of sgn = sgn1. The function sgn has exactly two important
properties we require for this proof to work:

−sgn + χ(1,∞) = 1/2

ŝgn = PV

(
1

s

)
.

I leave it for now as interesting exercise in Euclidean truncation to figure out what function will replace it for root

systems of rank > 1.
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