
Harmonic analysis of the Schwartz space of Γ\SL2(R)

by Bill Casselman

To Joe Shalika with fond memories
of a fruitful if brief collaboration

This is the fourth in a series of papers (the earlier ones are [Casselman:1989], [Casselman:1993] and [Cassel-
man:1999]) intended to present eventually a new way of proving, among other things, the well known results
of Chapter 7 of [Langlands:1977] on the completeness of the spectrum arising from cusp forms and Eisenstein
series. That Langlands’ results have lasted for nearly 40 years without major improvements is testimony to
their depth, but—to (mis)quote Peter Sarnak, who had some recent work of Joseph Bernstein’s in mind—it
is time to reconsider the theory.

In the first of this series of papers I attempted to pursue with some force an idea apparently due originally
to Godement—that from an analyst’s point of view the theory of automorphic forms is essentially the study
of the Schwartz space of Γ\G and its dual. In the next two, I looked at subgroups of SL2(R) in this
perspective. In one of these two I attempted to explain in terms of tempered distributions certain features
of the theory—integral formulas such as that for the volume of Γ\G and the Maass-Selberg formula—which
might have seemed up to then coincidental. In the other I found a new derivation of the Plancherel measure
in the case of rank one groups.

This is presumably the last of the series in which I try to explain how a few new ideas, tailored principally to
the case of higher rank, may be applied in the simplest case, that of SL2(R). In this paper, the principal result
will be a theorem of Paley-Wiener type for the Schwartz space S(Γ\SL2(R)), from which the completeness
theorem (due originally in this case, I imagine, to Selberg) follows easily.

Paley-Wiener theorems of this sort have been proven before. The earliest result that I am aware of can be
found in the remarkable paper [Ehrenpreis-Mautner:1959]. Ehrenpreis and Mautner defined the Schwartz
space of SL2(Z)\H (where H is the upper half-plane) and characterized functions in it by their integrals
against cusp forms and Eisenstein series. Their formulation and their proof both depended strongly on
properties of the Riemann ζ-function, and it was not at all apparent how to generalize their results to other
than congruence subgroups. In fact, their dependence on properties of ζ(s) disguised the essentially simple
nature of the problem. I was able to find a generalization of their result in [Casselman:1984], in the course
of trying to understand the relationship between Paley-Wiener theorems and cohomology. In spite of the
title of that paper, the arguments there are valid for an arbitrary arithmetic subgroup acting on H, and
indeed only a few slight modifications would be required in order to deal with arbitrary arithmetic groups
of rational rank one.

In this paper, I will prove a slightly stronger result than that in [Casselman:1984], but by methods which I
have developed in the meantime to apply also to groups of higher rank. The point is not so much to prove
the new result itself, which could have been done by the methods of [Casselman:1984], but to explain how
the new methods work in a simple case.

What is new here? • In the Paley-Wiener theorem I envisage in general, a crucial role is played by a square-
integrability condition on the critical line. In the earlier work, I followed Langlands’ argument in shifting
contours in towards the critical line to deal with square-integrability before I moved contours out from the
critical line in order to derive estimates on the growth of certain functions near a cusp. This duplication of
effort was annoying. Since then, in [Casselman:1999], I have been able to obtain with no contour movement
a Plancherel theorem which implies the square-integrability condition directly. • Both here and earlier I
move contours in order to evaluate a certain constant term. The most difficult point in this is to take the
first nearly infinitesimal step off the critical line. In the earlier paper I used a very special calculation (the
Maass-Selberg formula) to do that. That argument, although surprisingly elementary (depending only on
the integrability of 1/

√
x near x = 0) will unfortunately not work in all situations which arise for groups of
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higher rank. In this paper I replace that argument by a very general one, one closely related to a more or
less standard one in the theory of Laplace transforms of distributions.

Roughly speaking, the arguments of this series differ from Langlands’ in that whereas he moved contours to
evaluate the inner product of two Eisenstein series of functions of compact support, I move them to evaluate
a constant term. There are many virtues to this new technique, but most of them will appear clearly only
for groups of higher rank. One virtue, likely to be appreciated by those familiar with Langlands’ work,
is that in the new arguments each Eisenstein series residue actually contributes to the spectrum, whereas
in Langlands’ argument (illustrated by his well known example of G2) there occurs a certain complicating
cancellation of residues which makes it difficult to understand their significance. I would like to think that
the new arguments will eventually make it possible to calculate residues of Eisenstein series by computer,
something not easy to see how to do at the moment.

1. Introduction

Let

G = SL2(R)
P = the subgroup of upper triangular matrices in G
N = the subgroup of unipotent matrices in P
A = the group of positive diagonal matrices in G, which may be identified with the multiplicative

group Rpos

K = the maximal compact subgroup of rotation matrices

[
cos θ − sin θ
sin θ cos θ

]
.

I assume Γ to be a discrete subgroup of SL2(R) of ‘arithmetic type’. In addition, a few extra conditions will
be put on Γ in order to simplify the argument without significant loss of generality. The precise assumptions
we make on Γ are:

• The group Γ has a single cusp at ∞;
• the intersection Γ ∩ P consists of all matrices of the form

[
±1 n

0 ±1

]

where n varies over all of Z.

The effect of these assumptions is to allow a reasonable simplification in notation, without losing track of
the most important ideas. Of course there is at least one group satisfying these conditions, namely SL2(Z).

Let H be the upper half-plane {z ∈ C | ℑ(z) > 0}. The group G acts on it on the left:

g =

[
a b
c d

]
: z 7−→ az + b

cz + d
.

This action preserves the non-Euclidean metric (dx2 + dy2)/y2 and the non-Euclidean measure dx dy/y2 on
H.

The group Γ∩P stabilizes each domain HT = {y ≥ T}, and for T large enough the projection from Γ∩P\HT

to Γ\H is injective. Its image is a neighbourhood of the cusp ∞. That Γ has a single cusp means that the
complement of this image is compact.
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The isotropy subgroup of i in H is the subgroup K, and the quotient G/K may therefore be identified with
H. Let GT be the inverse image of HT , which consists of those g in G with an Iwasawa factorization

g =

[
1 x
0 1

] [
a 0
0 a−1

]
k

where a2 > T and k lies inK. For large T the quotient Γ∩P\GT embeds into Γ\G with compact complement.

In the rest of this paper, T will be assumed to be large enough so that
this embedding occurs.

The area of Γ∩P\HT can be calculated explicitly, and it is finite. Because the complement is compact, the
area of Γ\H and the volume of Γ\G are both finite as well. Define δ to be the function pulled back from the
y-coordinate on H. In terms of the Iwasawa factorization G = NAK, δ(nak) = δ(a) =

∣∣det Adn(a)
∣∣, where

δ(a) = x2 if a =

[
x 0
0 x−1

]
.

The character δ is also the modulus character of P .

The length of the non-Euclidean circle around i and passing through iy is (y − y−1)/2. This means that in
terms of the Cartan factorization G = KAK we have an integral formula

∫

G

f(g) dg =

∫

K

∫

A

∫

K

f(k1ak2)

(
δ(a) − δ−1(a)

2

)
dk1 da dk2

with a suitable measure assigned to K. On G we define the norm

‖k1ak2‖ = max |δ(a)|, |δ(a)|−1 .

This is the same as
sup

‖v‖=1

‖gv‖ (v ∈ R
2)

and satisfies the inequality
‖gh‖ ≤ ‖g‖ ‖h‖ .

The function ‖g‖−(1+ǫ) is then integrable on G for ǫ > 0.

A function f on Γ\G is said to be of moderate growth at ∞ if f = O(δm) on the regions GT for some
integer m > 0, and rapidly decreasing at ∞ if it is O(δ−m) for all m. The Schwartz space S(Γ\G) is that
of all smooth right-K-finite functions f on Γ\G with all RXf (X ∈ U(g)) rapidly decreasing at ∞. Because
of the condition of K-finiteness, any function in S(Γ\G) may be expressed as a finite sum of components
transforming on the right by a character χ of K:

S(Γ\G) = ⊕S(Γ\G)χ

S(Γ\G)χ = {f ∈ S(Γ\G) | f(gk) = χ(k)f(g) for all k ∈ K, g ∈ G} .

If χ = 1, we are looking at functions on Γ\H.

The problem that this paper deals with is how to characterize the functions in the Schwartz space by their
integrals against various automorphic forms, and especially Eisenstein series. There are technical reasons
why the Paley-Wiener theorem for S(Γ\H) is simpler than the one for S(Γ\G), and for that reason I will
discuss the first case in detail, then go back and deal with the extra complications needed to deal with
S(Γ\G). But in order to give an idea of what’s going on, I’ll explain in the next section a few of the simplest
possible Paley-Wiener theorems.
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2. The simplest Paley-Wiener theorems

It will be useful to keep in mind a few elementary theorems of the kind we are looking for.

(1) Define the Schwartz space S of the group A, identified here with the multiplicative group of positive real
numbers Rpos, to be made up of those smooth functions f(x) on A satisfying the condition that it and all
its derivatives vanish rapidly at 0 and ∞ in the sense that

∣∣f (n)(x)
∣∣ = O(xm)

for all non-negative integers n and all integers m, whether positive or negative. Then for all s in C we can
define the Fourier transform

F (s) = f̂(s) =

∫ ∞

0

f(x)x−s dx

x
.

It turns out to be holomorphic in all of C, and since the Fourier transform of the multiplicative derivative
x df/dx is sf̂ it satisfies the growth condition

F (σ + it) = O

(
1

1 + |t|m
)

for all m > 0, uniformly in vertical bands of finite width. Conversely, if F (s) is any entire function satisfying
these growth conditions, then for any real σ

f(x) =
1

2πi

∫ σ+i∞

σ−i∞

F (s)xs dx

will be a function in S(A), independent of σ, whose Fourier transform is F . The proof depends on a clearly
justifiable shift of contour of integration.

(2) A second result will turn out to look even more similar to that for arithmetic quotients. Define L2,∞
S (A)

to be the space of all smooth functions f on (0,∞) such that (a) f and all its derivatives vanish of infinite
order at 0; (b) f and all its multiplicative derivatives are square-integrable on A. Condition (a) implies that
the Fourier transform is defined and holomorphic in the region ℜ(s) > 0. On the other hand, condition (b)
implies that the Fourier transform of f on the line ℜ(s) = 0 exists as a square-integrable function. The
relationship between the two definitions of F (s) on ℜ(s) = 0 and ℜ(s) > 0 is that uniformly on bounded
horizontal strips the function F (σ+it) approaches the function F (it) in the L2-norm. In these circumstances
we have the following result:

Theorem. If f(x) lies in L2,∞
S then its Fourier transform F (s) satisfies the following conditions:

• F (s) is holomorphic in the half plane ℜ(s) > 0;
• it satisfies the condition

F (σ + it) = O

(
1√

σ(1 + |t|)n

)

for σ > 0 and all n > 0, uniformly on horizontally bounded vertical strips;
• the restriction of F to ℜ(s) = 0 is square-integrable, and the weak limit of the distributions

Fσ(it) = F (σ + it)

as σ → 0.

Conversely, if F (s) is a function satisfying these conditions then it is the Fourier transform of the function

f(x) =
1

2πi

∫ σ+i∞

σ−i∞

F (s)xs ds

which does not depend on the choice of σ > 0, and which lies in L2,∞
S .

The natural proof of this relies on results from the last section of this paper, and much of the argument
duplicates what I shall say about the analogous (and more difficult) result for the upper half plane. I leave
it as an exercise.
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3. Quotients of the upper half-plane

For the group Rpos, the results stated in the previous section are just some of many analogous results, most
notably one characterizing functions of compact support by their Fourier transforms. But for quotients of
symmetric spaces by arithmetic subgroups I do not know whether a result for functions of compact support
is possible even in principle. A Paley-Wiener theorem for functions of rapid decrease may be the only natural
one to consider.

In this section I’ll explain the Paley-Wiener theorem for S(Γ\H). The definition of the space S(Γ\H) involves
lifting a function f on Γ\H to a function F on Γ\G and then considering the right derivatives RXF . But
the functions in S(Γ\H) may be more concretely identified with those smooth functions on Γ\H satisfying
the condition that

∆nf = O(y−m)

for all positive integers n and m, where ∆ is the non-Euclidean Laplace operator

∆ = y2

(
∂2

∂x2
+

∂2

∂y2

)
.

This definition of the Schwartz space is the one used by Ehrenpreis and Mautner, and in my 1984 paper
(Proposition 2.3) I showed that this notion is equivalent to the one given earlier. That equivalence will not
play a role here except in so far as it ties the result of Ehrenpreis and Mautner to mine.

Any smooth function f(z) on Γ\H may be expanded in a Fourier series

f(x+ iy) =

∞∑

−∞

fn(y)e2πinx .

If f is any smooth function on Γ\H which is of uniform moderate growth in the sense that for some fixed
m

∆nf = O(ym)

for all n > 0, then all coefficient functions fn(y) for n 6= 0 vanish rapidly as y → ∞, and more generally the
difference between f(y) and f0(y) also vanishes rapidly. In other words, the asymptotic behaviour of f(y)
as y → ∞ is controlled by the constant term f0(y). Furthermore, as we shall see later, the Schwartz space
decomposes into a sum of two large pieces—the cuspidal component, that of functions whose constant terms
vanish identically, and the Eisenstein component orthogonal to the cuspidal one. The cuspidal component
is a discrete sum of eigenspaces of the Laplace operator, and is of no particular interest in this discussion.

The spectrum of ∆ is continuous on the Eisenstein component. The functions which for Γ\H play the role
of the characters xs on Rpos are the Eisenstein series. For every s with ℜ(s) > 1 the series

Es(z) =
∑

Γ∩P\Γ

y(γ(z))s

converges to an eigenfunction of ∆ on Γ\H, with eigenvalue

∆(s) = s(s− 1) = (s− 1/2)2 − 1/4 .

When Γ = SL2(Z), for example, this series was first defined by Maass, and can be expressed more explicitly
as

Es(z) =
∑

c>0, gcd(c,d)=1

ys

|cz + d|2s
.
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For all Γ, the function Es continues meromorphically in s to all of C. In the right-hand half-plane ℜ(s) ≥ 1/2
there is always a simple pole at s = 1, and there may be a few more simple poles on (1/2, 1). The constant
term of Es is of the form

ys + c(s)y1−s

where c(s) is a meromorphic function on C. For Γ = SL2(Z)

c(s) =
ξ(2s− 1)

ξ(2s)
, ξ(s) = π−s/2Γ(s/2)ζ(s) .

In this case the behaviour of Es for ℜ(s) < 1/2 is therefore related to the Riemann hypothesis, and ought
to be considered, whenever possible, as buried inside an impenetrable box. The function Es satisfies the
functional equation

Es = c(s)E1−s

so that s and 1− s contribute essentially the same automorphic forms to Γ\H. From this equation for Es it
follows that c(s) satisfies the functional equation

c(s)c(1 − s) = 1 .

In the region ℜ(s) > 1/2, s /∈ (1/2, 1] the Eisenstein series can be constructed by a simple argument relying
only on the self-adjointness of the operator ∆ on Γ\H. The rough idea is this:

Let χ(y) be a function on (0,∞) which is identically 1 for large y, and non-vanishing only for large y. The
product χ(y)ys may be identified with a function Ys on Γ\H. Choose s such that ℜ(s) > 1/2, s /∈ (1/2, 1],
and let λ = s(s − 1). Then Xs = (∆ − λ)Ys will have compact support on Γ\H, since ∆ys = λys. For
λ /∈ (−∞, 0] (the spectrum of ∆) let

Fs(z) = −(∆ − λ)−1Xs .

Then
Es(z) = Fs(z) + Ys(z) .

In other words, for s in this region the function Es is uniquely determined by the conditions that (a)
∆Es = λEs and (b) Es − ys is square-integrable near ∞. (This is explained in more detail in [Colin de
Verdière:1981].) The theory of self-adjoint operators also guarantees that

‖∆ − λ‖2 = ‖∆ −ℜ(λ)‖2 + |ℑ(λ)|2

‖∆ − λ‖ ≥ |ℑ(λ)|
= |2σt| (s = 1/2 + σ + it)

‖∆ − λ‖−1 ≤ |2σt|−1 ,

which implies that ‖Fs‖ = O(|2σt|−1).

For T large enough we can define the truncation of an automorphic form F (z) in the region y ≥ T . On
the quotient Γ\HT the truncation ΛTF is the difference between F and its constant term. Because the
asymptotic behaviour of F is controlled by its constant term, this is always square-integrable. For Eisenstein
series there exists the explicit Maass-Selberg formula for the inner product of two truncations. For generic
s and t it asserts that

〈ΛTEs,Λ
TEt〉 =

T s+t−1 − c(s)c(t)T 1−s−t

s+ t− 1
− c(s)T 1−s+t − c(t)T 1−t+s

s− t
.

Formally, the expression on the right is

∫ T

0

(
ys + c(s)y1−s

)(
yt + c(t)y1−t

)
y−2 dy .
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This apparent accident is explained in [Casselman:1993]. When s = 1/2 + σ + iτ and t = s it becomes

‖ΛTEs‖2 =
T 2σ − |c(s)|2T−2σ

2σ
− c(s)T−2iτ − c(t)T 2iτ

2iτ
.

This formula makes more precise the idea that the behaviour of Es is determined by that of c(s), and vice
versa. That this must always be positive, for example, implies that |c(s)| must be bounded at ±i∞ in the
region σ > 0, and that the poles of Es and c(s) have to be simple in that region. (See [Langlands:1966], or
the proof of Proposition 3.7 in [Casselman:1984] for more detail.)

The Fourier-Eisenstein transform of f in S(Γ\H) is

F (s) = f̂(s) =

∫

Γ\H

f(z)E1−s(z)
dx dy

y2
.

It follows immediately from properties of Es that

(PW1) The function F (s) satisfies the functional equation

F (1 − s) = c(s)F (s) .

(PW2) The function F (s) is meromorphic everywhere in C, holomorphic in the half-plane ℜ(s) ≤ 1/2
except for possible simple poles in [0, 1/2) corresponding to those of E1−s.

There are also a few other significant and more subtle properties of F (s).

(PW3) The function F (s) is square-integrable on ℜ(s) = 1/2.
(PW4) In any region

σ0 < ℜ(s) < 1/2, |ℑ(s)| > τ

we have for all m > 0

|F (s)| = O

(
1

|1/2− σ| |t|m
)

(s = σ + it) .

The first follows from the following result, a Plancherel formula for the critical line, which is far more basic:

• For Φ(s) a function of compact support on the line ℜ(s) = 1/2, the integral

EΦ(z) =
1

2πi

∫ 1/2+i∞

1/2−i∞

Φ(s)Es(z) ds

defines a square-integrable function on Γ\H with

1

2
‖EΦ‖2 =

1

2πi

∫ 1/2+i∞

1/2−i∞

|Φ(s)|2 ds .

This is well known. The usual proof (as in [Langlands:1966]) relies on contour movement, but in [Cassel-
man:1999] it is proven directly. At any rate, given this, we can verify property (PW3). First of all it implies
that EΦ can be defined as an L2 limit for arbitrary functions in L2(1/2 + iR). Second, for f in S(Γ\H) we
can calculate that

‖f‖ ‖EΦ‖ ≥ 〈f, EΦ〉

=
1

2πi

∫ 1/2+i∞

1/2−i∞

Φ(s)〈f, Es〉 ds

=
1

2πi

∫ 1/2+i∞

1/2−i∞

Φ(s)f̂(1 − s) ds
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for any square-integrable Φ, which implies that f̂ itself is square-integrable.

As for property (PW4), it can be proven either from the spectral inequality mentioned above, or from the
Maass-Selberg formula. This property is used in moving contours of integration; the second proof, which
asserts a more precise result than the other, allows an elementary argument in doing this (see [Cassel-
man:1984]), but in higher rank becomes invalid. The first is therefore preferable. In both proofs, we begin
by writing

〈f, Es〉 = 〈f,ΛTEs〉 + 〈f, CTEs〉
and arguing separately for each term. For the first term, use the spectral construction of Es described earlier.
An estimate for the second term follows easily from an argument about the multiplicative group.

Theorem. Let F (s) be any function on C such that all ∆n(s)F (s) satisfy conditions (PW1)–(PW4), and for
each pole s in [0, 1/2) let F#(s) be the residue of F there. Then

f(z) = −
∑

F#(s)Es +
1

2

1

2πi

∫ 1/2+i∞

1/2−i∞

F (s)Es(z) ds

lies in S(Γ\H) and has Fourier-Eisenstein transform F .

Note that because c(s)c(1− s) = 1, if c has a pole at 1− s then c(s) = 0, Es is well defined, and its constant
term is exactly ys. The integral is to be interpreted as the limit of finite integrals

1

2πi

∫ 1/2+iT

1/2−iT

F (s)Es ds

which exists as a square-integrable function on Γ\H by the Plancherel formula explained above. In fact,
it lies in the space Aumg(Γ\H). This is proven directly in [Casselman:1984], but follows easily from ex-
tremely general reasoning about L2,∞(Γ\G) (Theorem 1.16 and Proposition 1.17 of [Casselman:1989]). This
argument is recalled in a simplified form later in this paper.

What this means is that in order to determine whether f(x) lies in S(Γ\H) we can look at its constant term.

The constant term of the integral is

1

2πi

∫ 1/2+i∞

1/2−i∞

[
F (s)ys + c(s)F (s)y1−s

2

]
ds

(suitably interpreted as a limit) which is equal to

1

2πi

∫ 1/2+i∞

1/2−i∞

[
F (s)ys + c(1 − s)F (1 − s)ys

2

]
ds =

1

2πi

∫ 1/2+i∞

1/2−i∞

F (s)ys ds

by (PW2). The most difficult step in the whole proof is to justify replacing the integral

1

2πi

∫ 1/2+i∞

1/2−i∞

F (s)ys ds

by the integral
1

2πi

∫ σ+i∞

σ−i∞

F (s)ys ds

for some number σ very close to 1/2. This can be done by the results in the final section of this paper. Once
this step has been taken, the growth conditions on F (s) in vertical bands allow us to move arbitrarily far
to the left, picking up residues as we go. Recall that the constant term of Es is ys at a pole of F (s). These
residues cancel out with the residues in the formula for f(z). Therefore the constant term of f(z) is equal to

1

2πi

∫ σ+i∞

σ−i∞

F (s)ys ds

for arbitrary σ ≪ 0, which implies that it vanishes rapidly as y → ∞. A classical result from the theory of
the Laplace transform finishes off the Proposition.
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4. The constant term

In this section, I begin consideration of Γ\G instead of Γ\H. Some points are simpler, and in fact some of
the claims for Γ\H are best examined in the current context. The principal complication is that notation is
more cumbersome.

For any reasonable function f on Γ\G define its constant term to be the function on N(Γ ∩ P )\G defined
by the formula

fP (g) =

∫

Γ∩N\N

f (xg) dx .

If f lies in S(Γ\G) then fP will be bounded on all of N(Γ ∩ P )\G and in addition satisfy an inequality

RXf(g) = O(δ(g)−m)

on GT , for all X in U(g) and m > 0.

Define Aumg(Γ\G) to be the space of all functions of uniform moderate growth on Γ\G—those smooth
functions F for which there exists a single m > 0 with

|RXF (g)| = O(δ(g)m)

on GT , for all X in U(g).

If F lies in Aumg(Γ\G) and f lies in S(Γ\G) then the product Ff will lie in S(Γ\G), and hence may
be integrated. The two spaces are therefore in duality. It is shown in [Casselman:1989] that the space
Aumg(Γ\G) may be identified with the G̊arding subspace of the dual of S(Γ\G), the space of tempered

distributions on Γ\G.

For large T , the truncation ΛTF of a continuous function F on Γ\G at T is what you get from F by chopping
away its constant term on GT . More precisely, if Φ is any function on N(Γ ∩ P )\G define CT Φ to be the
product of Φ and the characteristic function of GT , and then for F on Γ\G set

CTF (g) =
∑

Γ∩P\Γ

CTFP (γg)

ΛTF = F − CTF .

The sum F = ΛTF + CTF is orthogonal.

One of the basic results in analysis on Γ\G is that

• if F lies in Aumg(Γ\G) then ΛTF is rapidly decreasing at ∞.

5. Analysis on N(Γ ∩ P)\G

The space N(Γ ∩ P )\G plays the same role for Γ\G that A ∼= N(Γ ∩ P )\G/K plays for Γ\H. And analysis
on N(Γ∩P )\G still looks much like analysis on the multiplicative group Rpos. One can be phrased literally
in terms of the other since we can look at irreducible K-eigenspaces, and N\G/K ∼= A/{±1} ∼= Rpos.

For each s in C define the space

Is = {f ∈ C∞(G) | f is K-finite, f(pg) = δs(p)f(g) for all p ∈ P, g ∈ G} .

Right derivation makes this into the principal series representation of (g,K) parametrized by the character
p 7→ δs(p). It has a basis made up of functions fn,s where

fn,s(pk) = δs(p)εn(k)
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where

ε:

[
c −s
s c

]
7−→ c+ is .

If

κ =

[
0 −1
1 0

]

X+ = (1/2)

[
1 −i

−i −1

]

X− = (1/2)

[
1 i
i −1

]

then on Is
Rκfn,s = nifn,s

RX+
fn,s = (s+ n/2)fn+2,s

RX
−

fn,s = (s− n/2)fn−2,s .

These are generators of U(g), and therefore every element of U(g) acts on Is by a polynomial function of s.

The representation of (g,K) on Is is irreducible for almost all s, and the Casimir operator C acts as the
scalar ∆(s) = s(s − 1) on it. Elements of I0 may be identified with functions on P1(R), those of I1 with
smooth 1-densities on P1(R). With a suitable choice of measures, the integral formula

∫

N(Γ∩P )\G

f(x) dx =

∫

P\G

f(x) dx

is valid, where

f(x) =

∫

A

δ−1
P (a)f(ax) da

lies in I1.

The product of an element of Is and one in I1−s lies in I1, and may then be integrated. The space I1−s

is therefore the contragredient of Is. If ℜ(s) = 1/2 so that s = 1/2 + it, then 1 − s = 1/2 − it = s; the
representation of (g,K) on Is is therefore unitary.

Let
I = the space of K-finite functions on K ∩ P\K .

Since G = PK, restriction to K is a K-covariant isomorphism of Is with I. Thus as vector spaces and as
representations of K, all the Is may be identified with each other. It therefore makes sense to say that they
form a holomorphic family, or that the representation of g varies holomorphically with s. Restriction to K
can be used to define a norm on the Is. For f in Is with the decomposition f =

∑
fχ into K-components,

define

‖f‖2 =

∫

K∩P\K

|f(k)|2 dk =
∑

χ

‖fχ‖2 .

For ℜ(s) = 1/2, ‖f‖ is the same as the norm induced by the identity of I1−s with the contragredient of Is,
the G-invariant Hilbert space norm on Is.

Fourier analysis decomposes functions on N(Γ∩P )\G into its components in the spaces Is. As with classical
analysis, there are several variants.

⋄ A Paley-Wiener theorem. Suppose ϕ to be a smooth K-finite function on N(Γ ∩ P )\G which is rapidly
decreasing at infinity on N(Γ ∩ P )\G in both directions, in the sense that for any integer m whatsoever
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(positive or negative) RXϕ = O(δm) for all X in U(g). Then for any s in C we can define an element ϕ̂s in
Is by the condition

〈ϕ̂s, ψ〉 =

∫

N(Γ∩P )\G

ϕ(x)ψ(x) dx

for each ψ in I1−s. More explicitly, we can write the integral as

∫

N(Γ∩P )\G

ϕ(x)ψ(x) dx =

∫

P\G

∫

A

δ−1
P (a)ϕ(ax)ψ(ax) da dx

so that

ϕ̂s(g) =

∫ ∞

0

δ(a)−sϕ(ag) da .

The function ϕ̂s will determine a section of I over all of C, rapidly decreasing at ±i∞. We can recover ϕ
from the functions ϕ̂s by the formula

ϕ(g) =
1

2πi

∫

ℜ(s)=σ

ϕ̂s(g) ds

for any real number σ.

If ϕ and ψ are two such functions on N(Γ ∩ P )\G then their inner product can be calculated from their
Fourier transforms by the formula

∫

N(Γ∩P )\G

ϕ(g)ψ(g) dg =
1

2πi

∫ 1/2+i∞

1/2−i∞

〈ϕ̂s, ψ̂1−s〉 ds .

The map taking ϕ to ϕ̂ is an isomorphism of S(N(Γ ∩ P )\G) with that of all holomorphic sections Φs of Is
over all of C satisfying the condition that for all m > 0 we have

‖Φσ+it‖ = O

(
1

1 + |t|m
)

uniformly on horizontally bounded vertical strips.

⋄ The Laplace transform. Suppose ϕ to be a smooth function on N(Γ∩P )\G, such that each right derivative
RXϕ is bounded overall and rapidly decreasing at ∞ (but not necessarily at 0). These conditions are satisfied,
for example, by the constant terms of functions in S(Γ\G). Then for any s in C with ℜ(s) < 1/2 the integral

ϕ̂s(g) =

∫ ∞

0

δ(a)−sϕ(ag) da

converges and defines a function in Is. In other words, we now have a holomorphic section of Is over the region
ℜ(s) < 1/2, which can reasonably be called the Laplace transform of ϕ. When only one K-component is
involved, this amounts to the usual Laplace transform on the multiplicative group R

pos. Standard arguments
from the theory of the Laplace transform on the multiplicative group of positive reals then imply that the
function ϕ can be recovered from ϕ̂:

ϕ(g) =
1

2πi

∫ σ+i∞

σ−i∞

ϕ̂s(g) ds

for all σ < 1/2. The integral over each line makes sense because under the assumptions on ϕ the magnitude of
ϕ̂(s) decreases rapidly at ±i∞. In particular, if ϕ̂(s) vanishes identically, then ϕ = 0. This is a consequence
of our assumption that Γ ∩ P contains ±1—without this assumption we would have to take into account
characters of A not necessarily trivial on ±1.

In particular:
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• If f lies in S(Γ\G) and the Laplace transform of fP vanishes, then so does fP .

⋄ Square-integrable functions. The map taking f in from S(N(Γ ∩ P )\G) to f̂ extends to an isomorphism
of L2(N(Γ ∩P )\G) (square-integrable half-densities) with the space L2(1/2 + iR, I) of all square-integrable
functions Φ on 1/2 + iR with values in I, i.e. those such that

1

2πi

∫ 1/2+i∞

1/2−i∞

‖Φ(s)‖2 ds <∞ .

6. Eisenstein series

Suppose Φ to be an element of Is with ℜ(s) > 1. Then the Eisenstein series

E(Φ) =
∑

Γ∩P\Γ

Φ(γg)

will converge absolutely to a function of uniform moderate growth—in fact, an automorphic form—on Γ\G.

Let ιs be the identification of I with Is, extending ϕ on K ∩ P\K to ϕs = ιsϕ on N(Γ ∩ P )\G where

ϕs(pk) = δs(p)ϕ(k) .

Then the composite
Es(ϕ) = E(ϕs)

will vary holomorphically for s with ℜ(s) > 1.

The map
Es: I → Aumg(Γ\G)

continues meromorphically to all of C, defining where it is holomorphic a (g,K)-covariant map from Is to
A(Γ\G). It is holomorphic in the region ℜ(s) ≥ 1/2 except for a simple pole at s = 1 and possibly a few
more simple poles on the line segment (1/2, 1).

The constant term of E(ϕs) is for generic s a sum

ϕs + τ(ϕs)

where τ is a covariant (g,K) map from Is to I1−s. Let τs be the composite

τs: ϕ→ ϕs → τ(ϕs)|K .

It is meromorphic in s. For ℜ(s) > 1/2 and s /∈ [1/2, 1], the Eisenstein series E(ϕs) is determined uniquely by
the conditions that (1) near ∞ it is the sum of ϕs and something square-integrable; (2) it is an eigenfunction
of the Casimir operator in U(g). As a result of uniqueness, the Eisenstein series satisfies a functional

equation

Es(ϕ) = E1−s(τsϕ) .

In any event, the operator τs satisfies the condition τsτ1−s = 1, and is a unitary operator when ℜ(s) = 1/2.
When ϕ ≡ 1 and Γ = SL2(Z), as I have already mentioned, τs(ϕ) is related to the Riemann ζ function. In
this case, the functional equation for the Eisenstein series is implied by—but does not imply—that for ξ(s).
Poles of Es in the region ℜ(s) < 1/2 will in this case arise from zeroes of ζ(s).

It is not important in this context to know exactly what happens to the left of the critical line ℜ(s) = 1/2.
This is just as well, because this is uncharted—and perhaps unchartable—territory.
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The truncation ΛTE of any Eisenstein series E will be square-integrable. There is a relatively simple formula,
called the Maass-Selberg formula, for the inner product of two of these. For generic values of s and t we
have a formal rule

〈ΛT Φs,Λ
T Ψt〉 = −

∫

N(Γ∩P )\GT

〈ϕs, ψt〉 dx

where Φs lies in the image of Es, etc. and ϕs is its constant term. The integral is defined by analytic
continuation and, if necessary, l’Hôpital’s rule. If we take Ψ to be the conjugate of Φ, we get a formula for
‖ΛT Φs‖.
If ϕ is K-invariant, there is always a pole of E(ϕs) at s = 1, and its residue is a constant function whose
value is related to the volume of Γ\G. For other K-eigenfunctions there will be no poles at s = 1. These
phenomena occur because the trivial representation of (g,K) is a quotient of I1 and embeds into I0. Since
Is is irreducible for 1/2 < s < 1, poles in (1/2, 1) will occur simultaneously for all K-components of I s.

7. The cuspidal decomposition

A function F on Γ\G is said to be cuspidal if its constant term vanishes identically. If F lies in Aumg(Γ\G)
and it is cuspidal then it will lie in S(Γ\G). Define Scusp to be the subspace of cuspidal functions in S(Γ\G).

If ϕ lies in S(N(Γ ∩ P )\G) then the Eisenstein series

Eϕ(g) =
∑

Γ∩P\Γ

ϕ(γg)

will converge to a function in S(Γ\G), and the map from S(N(Γ ∩ P )\G) to S(Γ\G) is continuous. Define
SEis to be the closure in S(Γ\G) of the image of S(N(Γ ∩ P )\G).

Proposition. The Schwartz space S(Γ\G) is the direct sum of its two subspaces Scusp and SEis.

As a preliminary:

Lemma. The space L2,∞(Γ\G) is contained in Aumg.

I recall that the space L2,∞ is that of all functions Φ on Γ\G such that the distributional derivatives RXF
(X ∈ U(g)) are all square-integrable. It is to be shown that every Φ in L2,∞ is a smooth function on Γ\G
and that for some single m > 0 independent of Φ we have

RXΦ(g) = O(δm(g))

on GT , for all X ∈ U(g).

A much more general result is proven in [Casselman:1989] (Proposition 1.16 and remarks afterwards), but
circumstances here allow a simpler argument.

Proof of the Lemma. According to the Decomposition Theorem (see §1.2 of [Cartier:1974]) we can express
the Dirac δ at 1 as

δ1 =
∑

ξi ∗ fi

where ξi are in U(g), the fi in Ck
c (G), and k is arbitrarily high. As a consequence, every Φ in L2,∞ can be

expressed as a sum of vectors RfF , where F lies in L2,∞ and f in Ck
c (G). Furthermore, if

Φ =
∑

Rfi
Fi

then
RXΦ =

∑
RXfi

Fi .
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It therefore suffices to prove that for some m > 0, all f in Cc(G), and all F in L2,∞ the convolution RfF is
continuous on Γ\G and satisfies

RfF (g) = O(δm(g))

on GT . On a fundamental domain of Γ, the function δ(g) and the norm ‖g‖ are asymptotically equivalent,
hence it is sufficient to verify

RfF (g) = O(‖g‖m) .

Formally we can write

RfF (g) =

∫

G

F (gx)f(x) dx

=

∫

Γ\G

F (y)
∑

Γ

f(g−1γy) dy

= 〈F,ΘLgf 〉
≤ ‖F‖ ‖ΘLgf‖

where Θ is the map taking f in Cc(G) to

Θf (y) =
∑

Γ

f(γy) .

There are only a finite number of non-zero terms in this series, which therefore converges to a continuous
function of compact support on Γ\G, so the formal calculation at least makes sense.

Since
‖Θf‖ ≤ vol(Γ\G)1/2 sup

Γ\G

∣∣Θf(x)
∣∣

we must find a bound on the values of Θf , and then see how the bound for ΘLgf changes with g.

Choose a compact open subgroup U such that

Γ ∩ U−1 · U = {1}

and let
‖U‖ = max

u∈U
‖u‖ .

Then for u in U , γ in Γ, x in G
‖uγx‖ ≤ ‖u‖ ‖γx‖

≤ ‖U‖ ‖γx‖
1

‖γx‖ ≤ ‖U‖
‖uγx‖ .

and ∑

Γ

1

‖γx‖1+ǫ
≤ ‖U‖1+ǫ

meas(U)

∫

Uγx

1

‖y‖1+ǫ
dy .



The Schwartz space of an arithmetic quotient 15

If Cf,ǫ = max ‖x‖1+ǫ |f(x)| then

∣∣Θf (x)
∣∣ ≤

∑

Γ

∣∣f(γx)
∣∣

≤
∑

Γ

Cf,ǫ

‖γx‖1+ǫ

= Cf,ǫ

∑

Γ

1

‖γx‖1+ǫ

≤ Cf,ǫ
‖U‖1+ǫ

meas(U)

∑

Γ

∫

Uγx

1

‖y‖1+ǫ
dy

≤ Cf,ǫ
‖U‖1+ǫ

meas(U)

∫

G

1

‖y‖1+ǫ
dy

(since the Uγx are disjoint) and ∣∣ΘLgf (x)
∣∣ ≤ K‖g‖1+ǫCf,ǫ

for a constant K > 0 depending only on ǫ. Everything we want to know follows from this.

Proof of the Proposition. Let L2
cusp be the subspace of functions in L2(Γ\G) whose constant terms vanish,

and L2
Eis its orthogonal complement. Any f in S can be expressed as a sum of two corresponding components

f = fcusp + fEis

where a priori each component is known only to lie in L2. But the first component lies in L2,∞ ⊆ Aumg and
has constant term equal to 0, so lies itself in S. Therefore the second does, too. This proves that

S = Scusp⊕
(
S ∩ L2

Eis

)
.

It remains to be shown that the second component here is the closure of the functions E(ϕ) with ϕ in
S(N(Γ ∩ P )\G).

For this, because of the Hahn-Banach theorem, it suffices to show that if Φ is a tempered distribution which
is equal to 0 on both Scusp and all the E(ϕ), then it is 0. On the one hand, the constant term of Φ vanishes,
and therefore so does that of every RfΦ, which since it lies in Aumg must also lie in Scusp. But on the
other hand, the orthogonal complement of Scusp is G-stable, so all these RfΦ also lie in this complement.
But since they themselves are cuspidal, they must vanish, too. However, Φ is the weak limit of RfΦ if f
converges weakly to the Dirac distribution δ1. Therefore Φ itself vanishes.

An analogous result for groups of arbitrary rank, essentially a reformulation of a result due to Langlands, is
proven in [Casselman:1989].

8. Definition of the Fourier-Eisenstein transform

Suppose f to be in S(Γ\G). For s ∈ C where the Eisenstein series map E1−s is holomorphic, define its

Fourier-Eisenstein transform f̂(s) to be the unique element of Is such that

〈f, E1−s(ϕ)〉 = 〈f̂(s), ιsϕ〉

for every ϕ in I. The section F = f̂ of I is meromorphic in s and has poles where E1−s does. It clearly
satisfies this condition:
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(PW1) F (1 − s) = τsF (s)

The next step is to investigate more carefully the singularities of F (s). They will only occur at the poles of
E1−s. In the region ℜ(s) < 1/2, which is all we will care about, they are simple. What can we say about its
residues in that region?

(PW2) The function F (s) has simple poles on [0, 1/2) where E1−s does, and the residue F#(s) at such a
pole lies in the image of the residue of τ1−s.

Proof. For ℜ(s) < 0 we a simple rearrangemnt of a converging series shows that

〈f, E1−s(ϕ)〉Γ\G = 〈fP , ϕ1−s〉N(Γ∩P )\G

so that f̂ = 0 if fP = 0. The kernel of this transform is therefore precisely the subspace Scusp of ‘The
cuspidal decomposition’, and the transform is completely determined by its restriction to SEis. The space
SEis is the closure of the image of the functions Ef for f in S(Γ\G). Any particular K-constituent in Is is
finite-dimensional, so the image of all of S(Γ\G) in Is under the Fourier-Eisenstein transform is the same as
the image of the functions Ef for f in SN(Γ∩P )\G.

If f lies in SN(Γ∩P )\G we can express it as

1

2πi

∫ σ+i∞

σ−i∞

f̂(s) ds

for any real σ. If we choose σ > 1 this gives us

Ef =
1

2πi

∫ σ+i∞

σ−i∞

E(f̂(s)) ds

and then

[Ef ]P =
1

2πi

∫ σ+i∞

σ−i∞

E(f̂(s))P ds

=
1

2πi

∫ σ+i∞

σ−i∞

f̂(s) + τsf̂(s) ds

=
1

2πi

∫ σ+i∞

σ−i∞

f̂(s) ds+
1

2πi

∫ σ+i∞

σ−i∞

τsf̂(s) ds

=
1

2πi

∫ 1−σ+i∞

1−σ−i∞

f̂(s) + τ1−sf̂(1 − s) ds .

In the last step we move the contour of one integral and make a substritution of 1 − s for s in the other.
This implies that the Fourier-Eisenstein transform of Ef is f̂(s) + τ1−sf̂(1 − s). If we take residues of this
expression at a pole, we obtain (PW2).

Keep in mind that since τsτ1−s = 1, on this image Es is well defined and τs = 0. Hence the constant term
of E(Fs) will just be Fs itself.



The Schwartz space of an arithmetic quotient 17

9. The Plancherel theorem

Suppose ϕs to be a smooth function of compact support on the critical line ℜ(s) = 1/2 with values in I.
Define the Eisenstein series Eϕ to be

Eϕ =
1

2πi

∫ 1/2+i∞

1/2−i∞

E(ϕs) ds .

It will be a smooth function on Γ\G. The Plancherel Formula for Γ\G asserts that it will be in L2(Γ\G
and that its L2-norm will be given by the equation

1

2
‖Eϕ‖2 =

1

2πi

∫ 1/2+i∞

1/2−i∞

‖ϕs‖2 ds .

As a consequence, the map ϕ 7→ Eϕ extends to one from L2(1/2+iR) to L2(Γ\G). The principal consequence
of the Plancherel Theorem for our purposes is this:

(PW3) For f in S(Γ\H) the function f̂(s) is square-integrable on 1/2 + iR in the sense that

1

2πi

∫ 1/2+i∞

1/2−i∞

‖f̂(s)‖2 ds <∞

Proof. For ϕ of compact support

〈f, Eϕ〉 =
1

2πi

∫

ℜ(s)=1/2

〈f, E(ϕs)〉 ds

=
1

2πi

∫

ℜ(s)=1/2

〈f̂1−s, ϕ1−s〉 ds

≤ ‖f‖ ‖Eϕ‖

=
1

2
‖f‖ ‖ϕ‖

so f̂(s) extends to a continuous functional on L2(1/2 + iR), and must itself lie in L2(1/2 + iR) by Radon-
Nikodym.

10. Spectral considerations

The Casimir operator is self-adjoint on any one K-component of L2(Γ\H). A standard argument about
self-adjoint operators implies that

‖C − λ‖−1 ≤ |ℑ(λ)|−1

and here
ℑ(s(s− 1)) = 2σt, s = 1/2 + σ + it

‖C− s(s− 1)‖−1 ≤ 1

2|σt| .

The construction of Eisenstein series in, for example, [Colin de Verdière:1981] shows then that

‖ΛTE(ϕs)‖ = O

(
1

2σ|t|

)
.

Since we can write
E(ϕs) = ΛTE(ϕs) + CT (ϕs)

we have
〈f, E(ϕ1−s)〉 = 〈f,ΛTE(ϕ1−s)〉 + 〈f, CTE(ϕ1−s)〉

|〈f, E(ϕ1−s)〉| ≤ ‖f‖ ‖ΛTE(ϕ1−s)‖ + |〈f, CTE(ϕ1−s)〉| .
The second term involves an easy calculation on Rpos, and since the same reasoning applies to all Cnf we
deduce
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(PW4) In any sub-region of ℜ(s) < 1/2, |ℜ(s)| > τ bounded to the left

‖F (s)‖ = O

(
1

σ|t|m
)

for all m > 0, where s = 1/2− σ + it.

11. The Paley-Wiener theorem

If f lies in S then so does every Cmf . Define PW (Γ\G) to be the space of all meromorphic functions F (s)
with values in I such that every Φ(s) = ∆(s)mF (s) satisfies (PW1)–(PW4). These translate to the following
conditions on F (s) itself:

• F (1 − s) = τsF (s)
• F (s) has only simple poles on [0, 1/2) in the region ℜ(s) ≤ 0, located among the poles of E1−s. The

residue F#(s) at s lies in the image of τ1−s.
• The restriction of any smF (s) to (1/2 + iR) is square-integrable.
• In any region s = 1/2− σ + it with σ bounded, t bounded away from 0, we have

‖F (s)‖ = O

(
1

σ|t|m
)
.

for all m > 0.

For F in PW (Γ\G), let F#(s) be its residue at any s in [0, 1/2). Define

E(F ) = −
∑

Es(F
#(s)) +

1

2

1

2πi

∫ 1/2+i∞

1/2−i∞

Es(F (s)) ds .

Theorem. (1) The map E has image in S(Γ\G). (2) If F = f̂ then E(F ) has the same constant term as f .

Proof. It comes to showing that the constant term of E(F ) is

1

2πi

∫ σ+i∞

σ−i∞

F (s) ds

for σ ≪ 0. The crucial point, as before, is that we are allowed to move contours by the results of the last
section.

12. Cusp forms

We now have a map from S(Γ\G) to a space of meromorphic sections of I satisfying certain conditions,
with an inverse map back from the space of such sections to S(Γ\G). The kernel of this map is precisely
the subspace of functions in S(Γ\G) whose constant term vanishes identically. This is the subspace of cusp

forms. We therefore have an explicit version of the direct sum decomposition

S(Γ\G) = Scusp ⊕SEis .

The space of cusp forms is itself a direct sum of irreducible G-representations, each with finite multiplicity.
If π is one of these components, then the map f 7→ 〈f, v〉 (v ∈ Vπ) induces a map from S(Γ\G) to the
dual of a cuspidal representation π. The cuspidal component of S(Γ\G) is a kind of Schwartz discrete
sum of irreducible unitary representations of G. In order to say more we must know about the asymptotic
distribution of cusp forms. But that is another story.
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13. A calculus exercise

In the next section we shall need this result:

Lemma. Suppose f(x) to be a function in Cr+1(0, ρ], such that for some κr+1

∣∣f (r+1)(x)
∣∣ ≤ κr+1

xr

for all 0 < x ≤ ρ. Then
f0 = lim

x→0
f(x)

exists, and

|f0| ≤ Aκr+1 +
∑

0≤k≤r

ρk

k!
|f (k)(ρ)|

for some positive coefficient A independent of f .

In effect, the function f(x) extends to a continuous function on all of [0, ρ].

As an illustration of the Lemma, let ℓ(x) = x log x− x. We have on the one hand

ℓ(x) = x logx− x

ℓ′(x) = logx

ℓ′′(x) =
1

x

ℓ′′′(t) = − 1

x2

ℓ(p)(x) = (−1)p (p− 2)!

xp−1

ℓ(r+1)(x) = (−1)r+1 (r − 1)!

xr
,

and on the other limx→0 ℓ(x) = 0. The function ℓ(x) will play a role in the proof of the Lemma.

Proof. It is an exercise in elementary calculus. The cases r = 0, r ≥ 1 are treated differently. Begin by
recalling the elementary criterion of Cauchy: If f(x) is continuous in (0, ρ] then limx→0 f(x) exists if and
only if for every ε > 0 we can find δ > 0 such that |f(y) − f(z)| < ε whenever 0 < y, z < δ.

(1) The case r = 0. By assumption, f is C1 on (0, ρ] and f ′ is bounded by κ1 on that interval. For any y, z
in (0, ρ].

f(z) − f(y) =

∫ z

y

f ′(x) dx, |f(z) − f(y)| ≤ κ1 |z − y| .

Therefore Cauchy’s criterion is satisfied, and the limit f0 = limx→0 f(x) exists. Furthermore

f0 = −f(ρ) +

∫ ρ

0

f ′(x) dx

|f0| ≤ |f(ρ)| + κ1ρ .

(2) The case r > 0. For any y in (0, ρ] we can write

f(ρ) − f(y) =

∫ ρ

y

f ′(x1) dx1

f(y) = −
∫ ρ

y

f ′(x1) dx1 + f(ρ) .
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We extend this by repeating the same process with f ′(x1) etc. to get

f ′(x1) = −
∫ ρ

x1

f ′′(x2) dx2 + f ′(ρ)

f(y) = −
∫ ρ

y

f ′(x1) dx1 + f(ρ)

= −
∫ ρ

y

(
−

∫ ρ

x1

f ′′(x2) dx2 + f ′(ρ)

)
dx1 + f(ρ)

=

∫ ρ

y

∫ ρ

x1

f ′′(x2) dx2 dx1 + (y − ρ)f ′(ρ) + f(ρ)

= −
∫ ρ

y

∫ ρ

x1

∫ ρ

x2

f ′′′(x3) dx3 dx2 dx1 +
(y − ρ)

2

2

f ′′(ρ) + (y − ρ)f ′(ρ) + f(ρ)

= . . .

= (−1)p

∫ ρ

y

. . .

∫ ρ

xp−1

f (p)(xp) dxp . . . dx1

+
(y − ρ)

(p− 1)!

p−1

f (p−1)(ρ) +
(y − ρ)

(p− 2)!

p−2

f (p−2)(ρ) + · · · + f(ρ) .

This is the familiar calculation leading to Taylor series at ρ. If we apply this also to z in (0, ρ] and set
p = r + 1 we get by subtraction

f(y) − f(z) = (−1)r+1

∫ z

y

. . .

∫ ρ

xr

f (r+1)(xr+1) dxr+1 . . . dx1

+ [(y − ρ)r − (z − ρ)r]
f (r)(ρ)

r!

+ [(y − ρ)r−1 − (z − ρ)r−1]
f (r−1)(ρ)

(r − 1)!

+ · · · + [y − z] f ′(ρ)

In order to apply Cauchy’s criterion, we must show how to bound

∣∣∣∣
∫ z

y

. . .

∫ ρ

xr

f (r+1)(xr+1) dxr+1 . . . dx1

∣∣∣∣ ≤
∫ z

y

. . .

∫ ρ

xr

κr+1

xr
r+1

dxr+1 . . . dx1 .

We do not have to do a new calculation to find an explicit formula for the iterated integral

Ky,z,r =

∫ z

y

. . .

∫ ρ

xr

1

xr
r+1

dxr+1 . . . dx1 .

If we set f = ℓ above we get

ℓ(y) = y log y − y

=

∫ ρ

y

. . .

∫ ρ

xr

(r − 1)!

xr
r+1

dxr+1 . . . dx1

+
(y − ρ)

r!

r

ℓ(r)(ρ) +
(y − ρ)

(r − 1)!

r−1

ℓ(r−1)(ρ) + · · · + ℓ(ρ) ,
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so that

Ky,ρ,r =

∫ ρ

y

. . .

∫ ρ

xr

(r − 1)!

xr
r+1

dxr+1 . . . dx1

= ℓ(y) − (y − ρ)

r!

r

ℓ(r)(ρ) − (y − ρ)

(r − 1)!

r−1

ℓ(r−1)(ρ) − · · · − ℓ(ρ) .

Ky,z,r = Kz,ρ,r −Ky,ρ,r

Since ℓ(x) is continuous on [0, ρ] we may now apply Cauchy’s criterion in the other direction to see that the
limit f0 exists. Furthermore, the bound on f (r+1) together with the equation for f(y)− f(z) enable us to to
see that

|f0| ≤ κr+1 |K0,ρ,r+1| +
r∑

0

ρ

k!

k ∣∣f (k)(ρ)
∣∣ .

This concludes the proof of the Lemma.

14. Moving contours

In the proof of Paley-Wiener theorems for the Schwartz space of arithmetic quotients, it is necessary to allow
a change of contour of integration which is not obviously justifiable. This is a consequence of the following
very general result. In this paper I require only the special case n = 1, but it is only slightly more difficult
to deal with the general case, which will be needed for Paley-Wiener theorems for groups of higher rank.

For the next result, for ε > 0 let
Σε = {s ∈ C

n | 0 < ℜ(si) < ε}

and
Σε = {s ∈ C

n | 0 ≤ ℜ(si) < ε} .

Theorem. Suppose Φ(s) to be holomorphic in Σε. Suppose that in addition that for some positive integers
m and r ≥ 0 it satisfy an inequality

Φ(σ + it) = O

(
1 + ‖t‖m

∏
σr

i

)
.

Thus for a fixed s in Σε the function t 7→ Φ(s+ it) is of moderate growth and therefore defines by integration
a tempered distribution Φs. For every s in the region Σε the weak limit

Φs = lim
x∈Σε,x→s

Φx

exists as a tempered distribution. If the tempered distribution ϕ0 is the inverse Fourier transform of Φ0,
then for every s in Σε the product distribution ϕs = e−〈s,•〉ϕ0 is tempered and has Fourier transform Φs.

Proof. It is a straightforward modification of that of a similar result to be found on p. 25 in volume II of
the series on methods of mathematical physics by by Mike Reed and Barry Simon (which also contains an
implicit version of the Lemma in the previous section).

Suppose for the moment that s = 0, and choose λ a real point in Σε. Suppose Ψ(t) to be a function in the
Schwartz space S(Rn). For each x in (0, 1] let

fλ(x) =

∫

Rn

Φ(xλ+ it)Ψ(t) dt
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i.e. integration against Ψ on the space ℜ(s) = xλ. Then

f ′
λ(x) =

∫

Rn

d

dx
Φ(xλ + it)Ψ(t) dt

=

∫

Rn

∑
λk

[
∂ Φ

∂sk

]
(xλ + it)Ψ(t) dt

=

∫

Rn

∑
λk

1

i

∂

∂tk

[
t 7→ Φ(xλ + it)

]
Ψ(t) dt

= i

∫

Rn

Φ(xλ+ it)
∑

λk
∂Ψ(t)

∂tk
dt (integration by parts)

=

∫

Rn

Φ(xλ+ it)DλΨ(t) dt

where

Dλ = i
∑

λk
∂

∂tk
.

Therefore for all p

f
(p)
λ (x) =

∫

Rn

Φ(xλ + it)Dp
λΨ(t) dt .

The assumptions on Φ and Ψ ensure that for all large integers k and suitable Cm+k

∣∣Φ(xλ + it)Dp
λΨ(t)

∣∣ ≤ C
1 + ‖t‖m

xnr
∏
λr

k

Cm+k

1 + ‖t‖m+k

∣∣f (p)
λ (x)

∣∣ ≤ 1

xnr

CCm+k∏
λr

k

∫

Rn

1 + ‖t‖m

1 + ‖t‖m+k
dt .

The Lemma can therefore be applied to fλ(x) to see that fλ(0) exists and depends continuously on the
norms of Ψ, therefore defining in limit the tempered distribution

〈Φ0,λ,Ψ〉 = lim
x→0

〈Φxλ,Ψ〉

where

〈Φσ,Ψ〉 =

∫

Rn

Φ(σ + it)Ψ(t) dt .

Define ϕ0,λ to be the inverse Fourier transform of Φ0,λ, a tempered distribution on R
n. It remains to be

shown that the product ϕσ of e−σx and ϕ0,λ is also tempered for σ in Σε, and that Φσ is the Fourier transform
of ϕσ. This will prove among other things that Φ0,λ doesn’t actually depend on the choice of λ.

Choose a function ψ in C∞
c (Rn). Its Fourier transform

Ψ(s) =

∫

Rn

ψ(x)e−〈s,x〉 dx

will be entire, satisfying inequalities

|Ψ(s)| = O

(
1

1 + ‖ℑ(s)‖m

)

for every m > 0, uniformly on vertical strips ‖ℜ(s)‖ < C.

Then for every σ in Rn with σi > 0 the product e−〈σ,x〉ψ(x) will also be of compact support with Fourier
transform

Ψσ(s) =

∫ ∞

−∞

e−〈σ,x〉e−〈s,x〉f(x) dx = Ψ(σ + s)
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Recall that if ϕ is a tempered distribution on Rn and and ψ in S(Rn) with Fourier transforms Φ and Ψ then
(expressing it formally)

〈ϕ, ψ〉 =

(
1

2πi

)n ∫

(iR)n

Φ(s)Ψ(−s) ds .

Thus
〈ϕσ, ψ(x)〉 = 〈ϕ0, e

−〈σ,x〉ψ(x)〉

= lim
x→0

(
1

2πi

)n ∫

(iR)n

Φ(xλ+ it)Ψ(σ − it) dt

We change of contour of integration from σ + (iR)n to (iR)n, which is permissible by our assumptions. The
calculation continues

〈ϕσ , ψ(x)〉 = lim
x→0

(
1

2πi

)n ∫

(iR)n

Φ(xλ + σ + iu)Ψ(−iu) du

=

(
1

2πi

)n ∫

(iR)n

Φ(σ + iu)Ψ(−iu) du .

This result implies that the limit of Φs as s approaches 0 does not depend on the way in which the limit is
taken, since Φ0 = e〈s,x〉Φs for all s in Σε.

Dealing with an arbitrary s in Σε is straightforward, since e−〈s,•〉ϕ0 is clearly tempered.

This concludes the proof of the Theorem.

Corollary. Suppose Φ(s) to be holomorphic in the region Σε, having as continuous limit as ℜ(s) → 0 a
function in L2((iR)n). Assume that for some integer r > 0 it satisfies an inequality

|Φ(σ + it)| ≤ Cm

(1 + ‖t‖m)
∏
σr

i

for all m > 0 in the region Σε. Then

lim
T→∞

(
1

2πi

)n ∫

‖s‖≤T

Φ(s)e〈s,x〉 ds =

(
1

2πi

)n ∫

ℜ(s)=σ

Φ(s)e〈s,x〉 ds

for any σ in Σε.

The limit here is to be the limit in the L2 norm of the functions

ϕT (x) =

(
1

2πi

)n ∫

‖s‖≤T

Φ(s)e〈s,x〉 ds

Formally, this is just a change of contours, but a direct argument allowing this does not seem possible.
Instead, apply the Theorem to the function Φ(s), using the hypotheses to compute its inverse Fourier
transform in two ways.

To apply the results of this section to the principal results of this paper, a change from additive to multi-
plicative coordinates is necessary. Thus e〈s,x〉 is replaced by xs =

∏
xsk

k .
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