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Continued fractions of quadratic irrationals

In this note I’ll explain how to calculate the continued fraction of a quadratic irrational number. This will be
used to find the units in the ring of integers in a real quadratic field and, as we shall see elsewhere, is related

to the problem of computing the class numbers of orders in the field. My approach to the construction of

units in a real quadratic field seems to be somewhat novel.

This is the third essay in a series on quadratic field extensions of Q. The previous two are the essays ‘Integer

square roots’ and ‘Approximating irrational numbers . . . ’ mentioned in the reference list, which I’ll refer to
as [ISQRT] and [CF].
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1. Review of continued fractions

I begin by recalling the basic continued fraction algorithm, applied to an arbitrary irrational λ. Set λ0 = λ,
ℓ0 = ⌊λ⌋. Thus

λ0 = ℓ0 + ε

with 0 ≤ ε < 1. Explicitly

ε = λ0 − ℓ0 =
1

1/(λ0 − ℓ0)
,

so we can write

λ0 = ℓ0 +
1

λ1

if λ1 = 1/(λ − ℓ0). This gives us ℓ1. Continue, step by step:

(1.1) λn = ℓn +
1

λn+1

with ℓn = ⌊λn⌋

so that

λn+1 =
1

λn − ℓn

> 1 .
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The first step is a little different from the rest since ℓ0 can be any integer, while ℓn ≥ 1 for n ≥ 1. Since λ is
irrational, the process will go on forever. At the n­th stage we get an expression for it as a finite fraction

(1.2)

λ = λ0

= ℓ0 +
1

λ1

= ℓ0 +
1

ℓ1 +
1

λ2

= ℓ0 +
1

ℓ1 +
1

ℓ2 +
1

λ3

. . .

Such fractions are conventionally written in more succinct fashion. For example, the last is written usually as

λ = ℓ0 +
1

ℓ1+

1

ℓ2+

1

λ3

.

However, I’ll write it as

〈〈ℓ0, ℓ1, ℓ2, λ3〉〉 .

In the limit we have the converging ‘continued fraction’:

λ = 〈〈ℓ0, ℓ1, ℓ2, . . . 〉〉 .

As a consequence of (1.1)

(1.3) λ =
pn−1λn + pn−2

qn−1λn + qn−2

with coefficients computed inductively:

p−2 = 0

p−1 = 1

pn = pn−1ℓn + pn−2

q−2 = 1

q−1 = 0

qn = qn−1ℓn + qn−2 .

The ratios pn/qn approximate λ more and more closely as n grows. They are called the convergents in the
expansion.

There is a simple formula for the error in the n­th approximation to λ:

λ − pn/qn =
(−1)n(λn − ℓn)

(qn−1λn + qn−2)(qn−1ℓn + qn−2)
.

Since the determinant alternates sign with n, the approximation is alternately from above and from below.
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2. A preliminary reduction

Starting with a quadratic irrational

λ =
a
√

D + u

v
.

we want to find a recipe for computing successive λn and ℓn in the continued fraction expansion of λ. We
want to do this only in exact arithmetic, because computers handle floating point numbers with only limited

precision that would inevitably cause serious problems.

From here on, I follow closely Chapter IV of [Davenport:1992].

The process will involve repeatedly finding ⌊λ⌋ for λ in this form. To do this, the first step is to put the
expression in the simpler form √

D + u

v
,

because this allows us to use a formula for ⌊λ⌋ that depend in a simple way on explicit computation of ⌊
√

D⌋
(see [ISQRT]). In the process to be described, λn will always be of this form.

So we start out by putting a inside the radical, replacing D by a2D.

GOOD FORM. The next step is to arrange the data so that v divides D − u2. There is a simple way to do
this, but I’ll do it by introducing a useful relation with quadratic equations. The number λ is the root of some

quadratic equation

ax2 + bx + c = 0 .

Given λ, we see that

vλ =
√

D + u

vλ − u =
√

D

v2 λ2 − 2uv λ + u2 = D

so we may choose

a = v2

b = −2uv

c = u2 − D .

But now, given a, b, and c we can construct an equivalent set of variables D, u, v. First we divide a, b, c by

their common divisor. We now have

λ =
−b +

√
b2 − 4ac

2a
.

leading to

D = b2 − 4ac

u = −b

v = 2a .

If b is even, we can make these numbers a bit smaller:

D = (b/2)2 − ac

u = −b/2

v = a .

replacing b by b/2, D by b2 − ac, 2a by a.
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The point is that in either case we have arranged things so that v divides D − u2. In the course of the
algorithm to come, every λn will be expressed as (

√
D + u)/v that always satisfies this condition.

MCELIECE’S LEMMA. The basic continued fraction computation will require a repeated application of:

2.1. Lemma. If

λ =

√
D + u

v

then

⌊λ⌋ =



























⌊

⌊
√

D⌋ + u

v

⌋

if v > 0

⌊

⌊
√

D⌋ + 1 + u

v

⌋

if v < 0

The second follows from the first and the basic equation

⌊−λ⌋ = −⌊λ⌋ − 1 (λ /∈ Z, λ > 0) .

The first is not hard to prove, and it is also Exercise 35 in §1.2.4 of [Knuth:1968]. In the solution, Knuth points

out that this is a special case of a useful result he attributes to Robert McEliece:

2.2. Lemma. Suppose f to be a continuous and strictly monotonic function on the interval I ⊆ R. The
following are equivalent:

(a) ⌊f(x)⌋ = ⌊f(⌊x⌋)⌋ for all x in I ;
(b) ⌈f(x)⌉ = ⌈f(⌈x⌉)⌉ for all x in I ;
(c) f(x) is an integer implies that x is an integer.

Proof. (a) implies (c): If f(x) is an integer then ⌊f(x)⌋ = f(x), which by assumption is f(⌊x⌋). But since f
is monotonic, ⌊x⌋ = x. Similarly (b) implies (c).

Suppose (c) to hold. If ⌊f(⌊x⌋)⌋ < ⌊f(x)⌋, the by continuity there exists ⌊x⌋ < y ≤ x such that f(y) is an
integer. Then y must be an integer, a contradiction.

3. The basic step

Suppose we are given λ = (
√

D + u)/v such that v divides D − u2. Set

u0 = u

v0 = v

λ0 = λ

Write
ℓ0 = ⌊λ0⌋ .

λ0 = ℓ0 +
1

λ1

λ1 =
1

λ0 − ℓ0

.

Since 0 < λ0 − ℓ0 < 1, λ1 > 1. Continue inductively:
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ℓn = ⌊λn⌋

λn = ℓn +
1

λn+1

λn+1 =
1

λn − ℓn

.

I shall prove by induction that

λn =

√
D + un

vn

with vn dividing D − u2
n. With this assumption

λn − ℓn =

√
D + un

vn

− ℓ0

=

√
D + un − ℓnvn

vn

=

√
D − un+1

vn

with un+1 = ℓnvn − un

=
D − u2

n+1

vn(
√

D + un+1)
.

By assumption D − u2
n
is divisible by vn. So

D − u2
n+1 = D − (u2

n − 2ℓnvn + ℓ2
nv2

n)

is divisible by vn, and vn+1 = (D − u2
n+1)/vn is an integer. Finally

λn+1 =

√
D + un+1

vn+1

.

Since vnvn+1 = D − u2
n+1, the induction assumption remains valid.

One great virtue of this process is that we work with just the approximation ⌊
√

D⌋ to the initial square root,

and hence do not have to find integral square roots more than once. Another pleasant feature is that we don’t
have to carry out repeated long divisions in order to define the vn+1:

3.1. Lemma. For n ≥ 1
vn+1 = ℓn−1(un − un−1) + vn−1 .

Proof. Because

vn−1vn = D − u2
n−1

vn+1vn = D − u2
n

(vn+1 − vn−1)vn = u2
n − u2

n−1

= (un + un−1)(un − un−1)

= ℓnvn(un − un−1) .
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SUMMARY. I summarize the step from λn to λn+1.

ℓn = ⌊λn⌋

=

⌊

⌊
√

D⌋ + un

vn

⌋

un+1 = ℓnvn − un

vn+1 =
D − u2

n+1

vn

= ℓn−1(un − un−1) + vn−1 (n ≥ 1)

λn+1 =

√
D + un+1

vn+1

.

Remark. We shall see in a moment, in the example of
√

3, that even if λ is an algebraic integer, the continued

fraction algorithmmay produce values of λn that are not. This is harmless. Whether or not λ is an integer or
not is unimportant.

4. Periodicity

When we run this algorithm on a few examples, something extraordinary appears. For example, if we apply
it to λ =

√
3, we get:

ℓ0 = 1

λ1 =
1√

3 − 1
=

−1 −
√

3

−2
=

1 +
√

3

2

ℓ1 = 1

λ2 =
1

(1 +
√

3)/2 − 1
=

2

−1 +
√

3
= 1 +

√
3

ℓ2 = 2

λ3 =
1

(1 +
√

3) − 2
=

1√
3 − 1

= λ1 .

The calculation repeats from now on, so the values we get for ℓn are

1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1 . . .

In fact, as will be proved, this sort of thing happens for every quadratic irrational, and only those. This

will take some time to explain. The first step is to characterize those real numbers with periodic continued

fractions. It is apparent from the case looked at above, for example, that this is so for λ = 1 +
√

3 ∼ 2.732.
Since 1 −

√
3 ∼ −0.732 this illustrates:

4.1. Proposition. The real number λ has a periodic continued fraction if and only if

(a) it is a quadratic irrational
(b) λ > 1
(c) −1 < λ < 0.

Here λ is the algebraic conjugate—the conjugate of x + y
√

N is x − y
√

N . In these circumstances λ is said

to be reduced .
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It seems to have beenGalois who first proved this, in his first paper, although predecessors must have known
it.

Proof. (a) Suppose the continued fraction of λ to be periodic. According to Lemma 4.3, this implies that

λ =
aλ + b

cλ + d

with suitable coefficients. But then λ is a root of the quadratic equation

cx2 + x(d − a) − b = 0 .

(b) In any continued fraction, ℓn > 1 for n ≥ 1. If the fraction has period n, then ℓ0 = ℓn > 1 as well. So

λ > 1.

(c) To show that −1 < λ < 0, it suffices to show that −1/λ > 1. Because of (b), there is a satisfying reason

for this:

4.2. Lemma. If the continued fraction of λ is periodic with period [ℓ0, . . . , ℓn−1], the continued fraction of
−1/λ is that with period [ℓn−1, . . . , ℓ0].

Proof. The equation (1.3) may be expressed as

[

λ
1

]

= Cn

[

λ
1

]

where

Cn =

[

ℓ0 1
1 0

]

. . .

[

ℓn−1 1
1 0

]

.

But then the transpose of Cn is
[

ℓn−1 1
1 0

]

. . .

[

ℓ0 1
1 0

]

with corresponding matrix
[

a c
b d

]

.

The number whose fraction has period [ℓn−1, . . . , ℓ0] is therefore a root of

bx2 + (d − a)x − c = 0 .

But the roots of this are −1/λ and −1/λ. It cannot be −1/λ which has the periodic expansion, since it is
negative. So it must be−1/λ.

This concludes the proof that (a)–(c) are necessary conditions.

It remains to prove the converse. Suppose λ to be a reduced quadratic irrational. Why is the continued
fraction of λ periodic?

4.3. Lemma. Suppose

λ =

√
D + u

v
.

Then λ is reduced if and only if

0 < u <
√

D,
√

D − u < v <
√

D + u .
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Proof. It is immediate that λ is reduced if the inequalities hold.

For the implication in the other direction, suppose λ to be reduced. We have

λ =
u −

√
D

v
.

Since λ > λ, we must have v > 0. Since λ + λ > 0, we have also u > 0. Since λλ < 0, u2 − D < 0. The rest
is immediate.

I claim that if λ > 1 and −1 < λ < 0 then the same pair of inequalities hold for all λn in the course
of the continued fraction computation. This will follow from two observations: (1) λ > 1 and only if

−1 < −1/λ < 0; (2) if

λ = ℓ +
1

µ

with λ > 1, µ > 1 then−1 < λ < 0 if and only if −1 < µ < 0, and in that case

ℓ = ⌊−1/µ⌋ .

This is because λ = ℓ + 1/µ if and only if

−1

µ
= ℓ +

1

−1/λ
.

Now assume that λ > 1 and and −1 < λ < 0. It follows from these observations that the same inequalities

hold for all λn. But the inequalities in Lemma 4.3 imply that only a finite number of acceptable un, vn arise
in the computation. This implies that there must be eventual periodicity.

It reamins now to show full periodicity. Suppose λm = λn for m ≥ 1. I claim that then λm−1 = λn−1 as
well. We have

λm−1 = ℓm−1 +
1

λm

, λn−1 = ℓn−1 +
1

λm

,

so that it suffices to show that ℓm−1 = ℓn−1. This follows from observation (2) above.

Remark. We have seen that the period of the expansion of µ = −1/λ is the reverse of that of λ. Correspond­
ingly, if

λ =
aλ + b

cλ + d

then

µ =
aµ + c

bµ + d
.

◦————­ ◦

Finally:

4.4. Proposition. Every quadratic irrational number has an eventually periodic continued fraction.

Proof. Since λn > 1 for n ≥ 1, Proposition 4.1 assures us that it suffices to show that−1 < λn < 0 for n ≫ 0.

we know that

λ =
pn−1λn + pn−2

qn−1λn + qn−2

.

Solving this for λn gives us However,

λn = −qn−2λ − pn−2

qn−1λ − pn−1

= −qn−2

qn−1

· λ − (pn−2/qn−2)

λ − (pn−1/qn−1)

for all n. What happens as n → ∞? The coefficients here are all positive and grow indefinitely. The ratios

pn−2/qn−2 and pn−1/qn−1 have limit λ as n → ∞. Therefore λn is eventually negative. Furthermore, the
ratios lie alternately on either side of λ, and qn−1 > qn−2, so that eventually we come across some λn > −1.
From that point on, the expansion is periodic.
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5. Units

Suppose N square free, F = Q(
√

N).

ORDERS. An element of F is an (algebraic) integer if it is a root of a monic polynomial

x2 − bx + c = 0

with integral coefficients b, c. The integers in F form a ring oF . Explicitly, this ring has Z­basis 1 and

ωN =







1 +
√

N

2
if N ≡4 1

√
N if N ≡4 2 or 3.

.

The discriminant DF of this ring is, respectively, N and 4N .

An order o in F is a subring of oF of finite index. According to the principal divisor theorem, the quotient

oF /owill be cyclic, say of order f . Then (1, fωN) is a basis of o. Its discriminant is f2DF . EveryD congruent
to either 0 or 1 modulo 4 is the discriminant of a unique order oD in Q(

√
D).

It is convenient to deal with orders more uniformly. Each order is characterized by its discriminant D, and
given a number D that is congruent either to 0 or 1 modulo 4, the element

D +
√

D

2

is part of a basis of oD.

The ring oD contains a reduced element λD that serves as a basis element of oD. Explicitly

λD =
δ +

√
D

2

in which δ is distinguished by the conditions

δ ≡2 D,
√

D − 2 < δ <
√

D .

If δ = D + 2k then, if d = ⌊
√

D⌋, the second condition becomes

√
D − D < 2k <

√
D − D

(d + 1) − D − 2 ≤ 2k ≤ d − D

d − D − 1 ≤ 2k ≤ d − D

d − D − 2 < 2k ≤ d − D

(d − D)/2 − 1 < k ≤ (d − D)/2

k ≤ (d − D)/2 < k + 1

k = ⌊(d − D)/2⌋ .

I define the positive cone in R ⊗ F to be the closed real cone spanned by 1 and
√

D. Let o
+

D
be the set of

integers in it. This region is a fundamental domain for the action of the group generated by sign change and
conjugation.

Every element of oD has a unique expression

λ = m + n · D +
√

D

2
.
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It can also be expressed uniquely as

(5.1) λ =



















m + n
√

D + ε ·
√

D

2
if D ≡4 0

m + n
√

D + ε · 1 +
√

D

2
if D ≡4 1.

In both of these, m and n are integers, and ε is 0 or 1. For elements of o
+

D
, m and n are non­negative.

UNITS. A unit of oD is an element in oD whose inverse is also in oD. These are also the elements of oD with
norm 1. They form a group under multiplication. They are a discrete subset of oD ⊂ R⊗F , contained in the

hyperbolas x2 − y2D = ±1. On general principles, then, they are either to the finite group {±1} or to the

direct product of {±1} and an infinite cyclic group. We shall shortly construct explicit non­trivial unist, so it
is the second possibility that occurs.

There is a good way to specify one particular generator. I’ll put a linear order on o
+

D
:

x1 + y1

√
D < x2 + y2

√
D

if and only if
y1 < y2 or y1 = y2 and x1 < x2 .

What I’ll call the positive basic unit εD is distinguished by requiring that it lie in o
+

D
and be least among all

units in this region. How to find it?

If λ = x + y
√

D and µ = u + v
√

D then

λµ = (x + y
√

D)(u + v
√

D) = (xu + vyD) + (yu + xv)
√

D ,

so that if ε is a positive unit then εn > ε for n > 1. The positive basic unit is the x+ y
√

D with the least value

of y.

There is one special case worth noting. Sometimes the basic positive unit is easy to find.

5.2. Proposition. The following are equivalent:

(a) λD is a unit;
(b) λD = εD;
(c) δ2 − D = −4;
(d) the length of the period of the continued fraction of λD is equal to 1.

In this case the norm of εD is −1.

Proof. Left as exercise.

REDUCED ELEMENTS AND UNITS. The main point of what is to come is a simple relationship between

reduced elements of F and units. Suppose λ to be any reduced element of F . Its continued fraction

expansion will be periodic. Suppose n to be the length of a period (which may be a sequence of shorter
periods). Then

λ = 〈〈ℓ0, . . . , ℓn−1, ℓ0, . . . 〉〉
and

λ =
pn−1λ + pn−2

qn−1λ + qn−2

= say
aλ + b

cλ + d
.

Here the coefficients are those appearing in the continued fraction of λ.

Here a, b, c, d are positive integers satisfying a > b > 0, c > d ≥ 0, and ad − bc = ±1. This gives us first of
all

cλ2 + (a − d)λ − b = 0
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and then
(cλ)2 − (a − d)(cλ) + cd = 0

which tells us that cλ is an algebraic integer.

The basic fact is this:

5.3. Proposition. In these circumstances cλ + d is a unit of oD.

Proof. This can be seen by direct computation, but a slightly more enlightening way is to interpret multipli­

cation by cλ + d as a linear operator on F , given the basis (λ, 1). Since

(cλ + d) ·λ = aλ + b

(cλ + d) ·1 = cλ + d ,

its matrix is
[

a c
b d

]

.

But the norm of cλ + d is the determinant of this matrix, which is (−1)n.

In this way, every reduced λ produces a sequence of units in the endomorphism ring of the lattice spanned
by 1 and λ, which is an order in F .

Actually, a given λ gives rise to an infinite sequence of units. For any matrix

A =

[

a b
c d

]

and real λ define

A(λ) =
aλ + b

cλ + d
.

Multiplication of matrices corresponds to composition of maps. If λ is a reduced element,A(λ) = λ as above,

and u is the associated unit, then An(λ) = λ as well, and corresponds to un. These are all powers of one
minimal unit, corresponding to the shortest period of λ.

5.4. Theorem. The basic unit of oD is the unit constructed in this way if n is the length of the minimal period
of λD .

Proof. This will take several steps.

Step 1. I have taken the following, with minor modifications, from §83 of [Dirichlet:1863].

5.5. Lemma. Suppose λ to be reduced and

λ =
aλ + b

cλ + d

with a, b, c, d > 0 and |ad − bc| = 1. Then a > b > 0 and c > d > 0.

Proof. The argument will depend on a simple fact. Multiplying the equation by cλ + d, we see that

P (λ) = cλ2 − (a − d)λ − b = 0 .

Since λ is reduced, P (−1) > 0 and P (1) < 0. This means that

(a) c + (a − d) − b > 0

c − (a − d) − b < 0

hence

(b) − c + (a − d) + b > 0 .
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Adding (a) and (b) gives us (i) a > d.

Suppose b ≥ a, say b = a + x with x ≥ 0. From the first inequality

c − d > b − a = x

so c = d + y with y > 0. Then

±1 = ad − bc = ad − (a + x)(d + y) = −ay − dx − xy .

If x > 0 the expression on the right is ≤ 3, a contradiction. If x = 0 then −ay = ±1. Since a, y ≥ 0,
a = 1 = y. Therefore c = d + 1. But then (b) says

c − (a − d) − b = (d + 1) − (1 − d) − 1 = 2d − 1 < 0 ,

which is again a contradiction. Hence (ii) a > b.

Since µ = −1/λ is also reduced and

µ =
aµ + c

bµ + d
,

we also deduce (iii) a > c. But the Euclidean algorithm tells us that if we find the continued fraction of a/c,
then

aqn−1 − bpn−1 = ±1

with 0 < pn−1 < a, 0 < qn−1 < b, and that every other solution is of the form

(pn−1 + ka, qn−1 + kb) .

Our solution can be one of those only if k = 0, which means that (iv) c > d.

Step 2.

5.6. Proposition. If λ is reduced and

λ =
aλ + b

cλ + d

with ad − bc = ±1 and a, b, c, d > 0, then b/d and a/c are successive convergents in the continued fraction
of λ.

Proof. The consequence of the Lemma together with Theorem 184 of [Hardy­Wright:1960] (also Proposition

7.1 of [CF]).

Step 3.

I now return to the original question about units. I shall show that if u is any positive unit, then either (a) the
matrix determined by u with respect to the basis (1, λD) has positive entries or (b) it is the unit with a period

of length 1 referred to in Proposition 5.2. Because of the previous result, this will conclude the proof of the

Theorem.

Multiplication by any element of F is a linear tramnsformation of F . Let ∆ = D − δ2 > 0. With respect to

the basis 1, λD it corresponds to a matrix. Since

√
D = 2λD − δ

√
DλD = δλD + ∆/2

the matrix corresponding to x + y
√

D is

[

x + yδ 2y
y∆/2 x − yδ

]
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All the matrix entries are positive, except possibly that at lower right. I claim that that that one is at least
non­negative. For this, it suffices to show that x2 − δ2y2 ≥ 0, since

x2 − y2δ2 = (x + yδ)(x − yδ) .

But if x + y
√

D is unit, then

(x2 − y2δ2 = (x2 − y2D) + y2(D − δ2) = ±1 + y2(D − δ2) .

But y lies in Z/2 and D ≡4 δ2, so y2(D − δ2) = (2y)2(D − δ2)/4 ≥ 1, and x2 − y2δ2 ≥ 0. From here the

claim is straightforward to verify
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