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Throughout this paper, except in a few places, let

G = the R-rational points on a reductive group defined over R

K = a maximal compact subgroup

X = the associated symmetric space

Let (π, V ) be a finite-dimensional algebraic representation of G. Eventually G
will be assumed semi-simple and π irreducible. If V contains a vector v with the
property that K is the stabilizer of v, I will call (π, V, v) a spherical representation.
Let [v] be the image of v in P(V ). The closure of the image of the G-orbit of [v] in
P(V ) is then a G-covariant compactification Xπ of the symmetric space X . Such
compactifications were first systematically examined in Satake (1960a), and they
are called Satake compactifications.

Suppose G to be defined over Q and Γ an arithmetic subgroup. In a second paper
Satake (1960b) a procedure was given to obtain compactifications of the arithmetic
quotient Γ\X from certain of these compactificationsXπ, by adjoining to X certain
rational boundary components in Xπ. It was not clear at that time which (π, V, v)
were geometrically rational in the sense that one could use them to construct such
compactifications of Γ\X , but Satake did formulate a useful criterion for geometric
rationality in terms of the closures of Siegel sets in X , and verified that this criterion
held for several classical arithmetical groups. Satake’s geometrical conditions were
reformulated more algebraically in Borel (1962), where it was shown very generally
that (π, V, v) is geometrically rational if π is irreducible and Q-rational. A little
later it was shown in Baily-Borel (1966) that certain compactifications of Hermitian
symmetric spaces X (those now usually called Baily-Borel compactifications) were
also geometrically rational, even when not Q-rational. It seems, however, to have
remained an unsolved problem since then to formulate a simple necessary and
sufficient criterion for geometrical rationality. In this paper I will give a reasonably
useful result of this kind, involving the real and rational Galois indices of the group
G, for the case of irreducible representations.

The literature on compactifications dealing with these questions, aside from the
early papers already mentioned, is sparse. One exception is the book Ash et al.
(1975), in which the complicated case-by-case argument of Baily and Borel was
replaced by a more direct proof involving rational homogeneous cones. Another
exception is Zucker (1983), in which the general subject of geometric rationality
was broached perhaps for the first time since the original work. It was perhaps
there that the question of whether or not one could find a criterion involving the
Galois indices was first raised, although it was not a topic with which that paper was
directly concerned. It will become apparent that I am indebted to Zucker’s paper
for several valuable suggestions. In order to avoid confusion, however, I should
point out that Zucker’s discussion of rationality matters (in §3 of Zucker (1983))
is somewhat obscure and, as far as I can tell, in error (particularly his Proposition
(3.3)).
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Aside from the criterion for geometric rationality, there are a few other points in
this paper perhaps worth calling attention to. (1) Satake’s original construction
was for semi-simple groups G. It started with an arbitrary irreducible (π, V ) (no
K-fixed vector), and then considered the associated representation of G on the s-
pace of Hermitian forms on V , among which lies a positive definite one fixed by K.
Things are in fact greatly simplified if one looks instead directly at spherical triples.
It is possible also to use projective spherical triples, where v is only assumed to be
an eigenvector of K, but this does not seem to add much, and makes things a bit
more complicated. (2) The boundary components in Satake’s compactifications are
all symmetric spaces associated to semi-simple quotients of Levi factors of certain
parabolic subgroups of G. In an initial version of this paper I looked at the case of
reducible representations, when the boundary components possess abelian factors
as well. Allowing this, one obtains a larger class of compactifications than the ones
Satake found (the reductive as opposed to semi-simple ones). The most interesting
example is probably the one used by Goresky-Harder-MacPherson (1994), obtained
by collapsing the unipotent fibres at infinity in the Borel-Serre compactification. I
have abandoned this idea in the present paper because I was not entirely satisfied
with certain technically awkward points. I hope to return to it in a subsequent
paper. (3) Another direction for generalization would be to consider certain com-
pactification of other homogeneous quotients G/H . Among the most interesting of
these are Oshima’s G×G-covariant compactification of G. (4) I am not sure that
compactifications arising from finite-dimensional representations are ultimately the
natural ones to consider. Satake’s procedure for obtaining compactifications of sym-
metric spaces has much to recommend it, especially its simplicity. The topological
structure of these compactifications is not difficult to understand. But in fact the
compactifications one obtains are semi-algebraic spaces, and in various application-
s it this extra structure is useful. Moreover, one can also use the same technique
to obtain G(C)-covariant completions of the algebraic varieties G(C)/K(C). The
problem is that as semi-algebraic or algebraic completions the varieties one gets by
Satake’s procedure leave much to be desired. This is pointed out in Vust (1990),
where he constructs all normal G-covariant completions of G(C)/K(C), and shows
that Satake compactifications are not generally normal. If one wants compactifica-
tions of G/K with a structure finer than topological, one should probably look at
real points on Vust’s varieties, or at least use some of Vust’s techniques.

The basic technique in this paper is to look at the image of split real tori in com-
pactifications of X . These are looked at on their own in §§1–3. At the end of
§3 there is an observation about the classification of regular polyhedra. In §4 I
put results from §3 in a slightly more general context, with future work in mind.
Finite dimensional representations of G and compactifications of X are examined
in §§5–6. In §7 I introduce the Galois index of Borel and Tits, in §8 I formulate
and prove the main results, and in §9 I look at a few examples.

Although the subject of this paper is not directly related to work of Roger Richard-
son’s, it seems to me very likely that eventually the most elegant answer to ques-
tions raised here will in fact depend on the results of Richardson-Springer (1990)
and Richardson-Springer (1993) on the structure of BC\GC/KC, and for this reason
it is perhaps not inappropriate to dedicate it to his memory. I also wish to thank
I. Satake and A. Borel for helpful comments when I started out on this project.
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1. Convex polyhedra

This section will formulate some simple results about the geometry of convex poly-
hedra. Proofs are straightforward and will be left as exercises. Suppose V to be a
vector space over R, V ∗ its dual. Suppose C to be a compact convex polyhedron
in V ∗.

If H is a hyperplane intersecting C and all of C lies on one side of H then H ∩ C
is a closed face of C. If H is the hyperplane λ = c and the side containing C is
λ ≤ c then this face is the subset of C where λ achieves its maximum value c on
C. I call this the maximum locus of λ on C.

Conversely, if λ is any vector in V , its maximum locus is a closed face F of C. The
value of λ on this face is a constant 〈λ, F 〉, and on points not on F is strictly less.

Each closed face F of C therefore determines a subset σF of V , the set of λ such
that F is the maximum locus of λ.

Lemma 1.1. Suppose F to be a closed face of C.
(a) The vector λ lies in σF if and only if (i) λ takes a constant value 〈λ, F 〉 on F ,
and (ii) for any x in C but not in F

〈λ, x〉 < 〈λ, F 〉.

(b) The vector λ lies in the closure of σF if and only if (i) λ takes a constant value
〈λ, F 〉 on F , and (ii) for any x in C

〈λ, x〉 ≤ 〈λ, F 〉 .

Proof. The only slightly non-trivial point is the sufficiency of these conditions for
the closure. Suppose λ to satisfy them, and let µ be an arbitrary element of σF .
For all t > 0 the sum λ+ tµ lies in σF .

The subset σF is conical, which is to say that λ lies in σF if and only if cλ lies in
it, for any c > 0. It is certainly convex. It is also polyhedral. We can describe its
faces explicitly:

Proposition 1.2. Suppose E and F are faces of C with F contained in the closure
of E. For any u in the interior of E and v in the interior of F , the closure of σE
is the maximum locus of u−v in the closure of σF . The closure of σF is the union
of these σE .

Proof. We must show that (•) u− v is constant, in fact 0, on σE , and that (•) for
λ in σF but not in σE ,

〈u− v, λ〉 < 0 .

The first follows immediately from the definition of σE since F is contained in the
closure of E and λ is constant on E. As for the second, suppose that λ lies in σF
and that 〈u, λ〉 = 〈v, λ〉. Since λ lies in σF , λ is at most 〈λ, v〉 everywhere on C,
and since u is in the interior of E, λ must be constant on E. But then its value on
E is the same as its value on F , and by the previous result λ must lie in the closure
of σE .

The last assertion follows from Lemma 1.1.
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A compact convex polyhedron C therefore determines a dual partition of V into
conical convex polyhedral subsets σF , one for each face F of C. The face C itself
corresponds to the linear space of functions constant on all of C, and vertices of C
correspond to open polyhedral cones.

In the following picture, the edges of the σF are in light gray, the faces of C in
black.

Several compact convex subsets C of V ∗ may determine the same partition of V .
What in fact determines the partition is the local configuration at each of the
vertices of C, not its global structure. In fact, a consequence of the previous result
is that if v is a vertex of C then the structure of the open cell σv is completely
determined by the cone c(u− v) as c ranges over all c ≥ 0 and u ranges over all of
C. This cone will have one face for each closed face of C meeting v. Two compact
convex polyhedra in V ∗ will determine the same partition of V precisely when the
cones attached to each vertex are the same.

2. Compactifications of torus orbits

This section will formulate simple results relating homogeneous spaces of real alge-
baric tori and convex polyhedra. Again, proofs will generally be left as exercises.

Let A be the group of real points on a split torus defined over R, Aconn its connected
component. Let (π, V ) be an algebraic representation of A and v a vector in V .

The vector v may be expressed as a sum of eigenvectors

v =
∑

α

vα

where the α are R-rational characters of A. The representation π induces an action
of A on P(V ) as well. Let [v] be the image of v in P(V ), AC its isotropy subgroup—
the subgroup of A acting by scalar multiplication on v. The closure of the Aconn-
orbit of [v] will be an Aconn-covariant compactification of Aconn/Aconn

C . In this
section I shall describe the structure of this closure.

Define
chars(v) = {α | vα 6= 0}

C = C(v) = the convex hull of chars(v) in X∗(A) ⊗ R
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where X∗(A) is the lattice Hom(A,Gm) of rational characters of A. Thus C is a
compact convex polyhedron of dimension equal to that of A/AC.

Recall that the lattice X∗(A) = Hom(Gm, A) is dual to X∗(A), where the duality
is expressed by the formula

t〈λ,α〉 = α(λ(t))

for t in R×. As suggested by the discussion in the previous section, to each closed
face F of C associate the subset σF of all λ in X∗(A) ⊗ R with the property that
F is the maximum locus of λ. That is to say for each λ in σF the values

〈λ, F 〉 = 〈λ, α〉

are all the same for α in F , and if β is any other vertex of C then

〈λ, β〉 < 〈λ, F 〉 .

The σF make up the dual convex polyhedral decomposition of X∗(A)⊗R described
in §1. All the σF are invariant under translation by X∗(AC) ⊗ R = σC. Whereas
the λ in σF are characterized by the property that F is the maximum locus of λ,
an element in the closure of the polyhedral cone σF will be constant on F , and this
constant will be the maximum value on C, but it may also have the same value on
a larger face. From §1:

Lemma 2.1. The closure of σF consists of all λ such that λ takes its maximum
value maxC λ on F . If E ⊆ F then σF ⊆ σE .

In other words, the partition of X∗(A) ⊗ R is dual to that of C into faces.

If F is any closed face of C then define

vF =
∑

α∈F

vα .

Lemma 2.2. The coweight λ lies in σF if and only if

[π(λ(t))v] → [vF ]

as t→ ∞.

Proof. This follows from the calculation

π(λ(t))v =
∑

α∈chars(v)

t〈λ,α〉vα

= tℓ
∑

α∈chars(v)

t〈λ,α〉−ℓ vα .

If ℓ = 〈λ, F 〉 then all terms vanish as t→ ∞ except the ones where 〈λ, α〉 = ℓ.

In particular vF lies in the closure of the Aconn-orbit of [v]. What does the whole
closure look like?
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Let E be the extremal vertices of C. If α is any character in chars(v) then

α =
∑

E

rǫǫ (rǫ ≥ 0,
∑

rǫ = 1)

If rǫ = mǫ/n with a common denominator n then we have homogeneous relations

cnα =
∏

cmǫ

ǫ

These relations persist in projective space. Since all points in the orbit itself have
non-zero coordinates, and any point in projective space must have at least one
non-zero coordinate, any point in the projective closure must lie in at least one of
the affine subsets where cǫ 6= 0. The same argument shows more generally that if a
point [u] in the orbit has cα 6= 0 for some α in the interior of a face, then cα 6= 0 for
all α in the face. Thus the set of α with cα 6= 0 must coincide with a whole face.

I claim now that if this face is F , then [u] lies in the orbit of [vF ]. If γ is a vertex
of F then [u] lies in the affine subset of projective space where cγ 6= 0. We can
normalize projective coordinates by dividing by cγ , which amounts to multiplying
all coordinates on the orbit of v by γ−1. So the representation of v is in these affine
coordinates

v =
∑

vα

where now γ is the trivial character. There will be a finite number of rational
linear relations among the characters occurring among these coordinates, and we
can therefore find a finite number of non-negative integers mi,α and sets Pi, Ni
such that the relations

∏

α∈Pi

cmi,α

α =
∏

α∈Ni

cmi,α

α , cα > 0

characterize vectors in the Aconn-orbit of v. The coordinates of the vector u must
also satisfy these relations, and all cα 6= 0 for α in F . But that implies that u lies
in the orbit of vF .

In other words:

Lemma 2.3. The closure of the Aconn-orbit of [v] is the union of the Aconn-orbits
of the [vF ] as F ranges over the closed faces of C. The orbit of [vF ] is contained
in the closure of the orbit of [vE ] if and only if F is contained in E.

The orbit of [vF ] is isomorphic to A/AF where AF is the subgroup of A with the
property that all α in F are equal on AF :

AF = ∩α,β∈F Ker αβ−1

The subgroup AF is also the linear support of σF , that is to say the smallest sub-
torus of A such that X∗(AF )⊗R contains σF . Let γF be the character of AF which
is the common restriction to AF of the characters in F . The vector space spanned
by the vα with α in F can be characterized as the eigenspace of V for the torus
AF with respect to the character γF .

Let ηF be the set of characters αβ−1 with α ∈ chars(v), β ∈ F . It generates a
semi-group of X∗(A) determining an affine covariant embedding of A/AC whose
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A-orbits are indexed by the closed faces of C containing F . The image is exactly
the closure of [v] in the open affine subset of P(V ) where the the cα 6= 0 for α in F .
Abstractly the closure of [v] is obtained by patching together these affine spaces as
F ranges over the faces of C. (This sort of argument is standard in Kempf et al.
(1973).) The algebraic structure of the closure of [v] in P(V ) depends explicitly on
the semi-groups ηF rather than the hull C itself. This conforms with remarks at
the end of §1.

Corresponding to the polyhedra σF in X∗(A) ⊗ R are subsets of Aconn which are
in some sense their spans. If F is a face of the cone C then define SF to be the
subset of a in Aconn such that all values of α(a) for α in F are equal to some real
constant ca, while α(a) < ca for α not in F . Thus for λ in σF and t > 1, λ(t) lies
in SF . Then π(an)v → vF as n→ ∞. The sets SF partition Aconn. It is simple to
prove:

Proposition 2.4. The closure of SF [v] in P(V ) is the union of the SF [vE ] as E
ranges over all faces of C containing F .

Corollary 2.5. The Aconn-orbits intersected by SF [v] in P(V ) are those containing
the limits

lim
t→∞

[π(λ(t))v]

for λ in σF .

3. The convex hulls of Coxeter group orbits

In this section, let (W,S) be an arbitrary finite Coxeter group. For each s, t in S
let ms,t be the order of st.

Fix a realization (π, V ) of (W,S). That is to say, π is a representation of W on
the finite dimensional real vector space V in which elements of S act by reflections.
There exists a positive definite metric invariant under W , and there exists a set
of vectors {αs} in V , indexed by S, such that the angle between αs and αt is
π − π/ms,t for each s, t in S.

Let ∆ be the set of αs. The Coxeter graph of (W,S) is the graph with nodes
indexed by S or equivalently ∆, in which αs and αt are linked by an edge labelled
by ms,t when ms,t > 2. (By default, an unlabelled edge has ms,t = 3.)

In V the region
C++ = {v ∈ V | 〈α, v〉 > 0 for all α ∈ ∆}

is an open fundamental domain for W . For each Θ ⊆ ∆ define

C++
Θ = {v | 〈α, v〉 = 0 for α ∈ Θ, 〈α, v〉 > 0 for α 6∈ Θ} .

Thus C++ = C++
∅ , and the closure of C++ is the disjoint union of the C++

Θ . We

have similar sets Ĉ++
Θ in V̂ .

Fix for the moment χ in V̂ , lying in the closure of Ĉ++. It will lie in a unique
Ĉ++

Θ . Let δ = δχ be the complement of Θ in the set of nodes in the Coxeter graph.
Equivalently

δχ = ∆ − {αs | sχ = χ} .
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A subset κ ⊆ ∆ is said to be δ-connected if every one of its nodes can be con-
nected to an element of δ by a path inside itself. Given a δ-connected set κ, its
δ-complement ζ(κ) is the set of α in the complement of κ which (a) are not in δ and
(b) are not connected to κ by an edge in the Coxeter graph. Define its δ-saturation

ω(κ) = κ ∪ ζ(κ) .

More generally, if θ is any set of nodes in the graph, define

κ(θ) = the largest δ-connected subset of θ

ζ(θ) = ζ(κ(θ))

ω(θ) = κ(θ) ∪ ζ(θ)

If κ = ∅ then ζ is the complement of δ. By construction, the two groups Wκ and
Wζ commute with each other.

If an element of θ has an edge linking it to κ(θ) then it lies in κ(θ) itself, and if
doesn’t then it lies in ζ(θ). Hence

κ(θ) ⊆ θ ⊆ ω(θ) .

If κ is any δ-connected subset of ∆ and ξ is any subset of ∆ then κ(ξ) = κ if and
only if

κ ⊆ ξ ⊆ ω(κ) .

The sets ω(κ) one gets as κ ranges over all δ-connected subsets of ∆ I call the
δ-saturated subsets of ∆. The correspondence between κ and ω is bijective.

The following is implicit in work of Satake and Borel-Tits (cf. Lemma 5 of Satake
(1960a) and §12.16 of Borel-Tits (1965)). The proof is essentially theirs as well.

Theorem 3.1. Suppose χ to lie in the closure of Ĉ++, and let δ = δχ. The map
taking κ to the convex hull Fκ of Wκ · χ is a bijection between the δ-connected

subsets of S and the faces F of the convex hull of W ·χ such that σF meets C
++

.

Every face of the convex hull of W ·χ is W -conjugate to exactly one of these faces.
The face corresponding to the empty set ∅ is χ itself. The dimension of the face Fκ
is the cardinality of κ. An increasing chain of δ-connected subsets corresponds to
an increasing chain of faces.

Proof. I begin with a simple observation. Suppose κ to be a δ-connected subset
of ∆, ω = ω(κ). Since s fixes χ and commutes with Wκ if s lies in ζ = ζ(κ), the
group Wζ fixes all of Wκ ·χ and

Wκ ·χ = Wω ·χ

so that for any θ ⊆ ∆, the orbit Wθ ·χ is the same as Wκ(θ) ·χ.

If ϕ lies in V̂ then we can write it as
∑
cαα. The support of ϕ is the set supp(ϕ)

of α with cα 6= 0.

For the duration of the proof, for each w in W let

Σw = supp(χ− wχ) .
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It is simple to calculate Σw in terms of a reduced expression for w. If w = s lies in
S we have (with α = αs)

sχ = χ− 〈χ, α∨〉α

χ− sαχ = 〈χ, α∨〉α

and the coefficient on the right is always non-negative. It is positive if α lies in δ,
otherwise 0. Therefore

Σs =

{
{αs} αs ∈ δ
∅ otherwise

Inductively, we write

χ− wχ =
∑

cγγ

with all cγ ≥ 0 and Σw a δ-connected subset of ∆. We then look at sαw > w.
Since w−1α > 0

wχ = χ−
∑

cγγ

sαwχ = wχ− 〈wχ, α∨〉α

= χ−
∑

cγγ − 〈χ,w−1α∨〉α

χ− sαwχ =
∑

cγγ + 〈χ,w−1α∨〉α

so that again the coefficients are always non-negative. Furthermore either (a)
Σsαw = Σw or (b) α does not lie in Σw and Σsαw is the union of Σw and {α}.
In the second case

〈wχ, α∨〉 = 〈χ, α∨〉 −
∑

cγ〈γ, α
∨〉

where all the non-zero terms in the sum are non-positive. Since the total sum is
non-zero, either α lies in δ or α is linked by an edge in the Coxeter diagram to an
element in Σw. Either way we see that Σsαw is again δ-connected.

Summarizing this argument:

Lemma 3.2. The set Σw is always δ-connected. If w = xy with ℓ(w) = ℓ(x)+ ℓ(y)
then Σy ⊆ Σw.

The argument shows also that if w lies in Wκ then Σw ⊆ κ. The converse is also
true:

Lemma 3.3. If κ is a δ-connected subset of ∆ then the character wχ lies in Wκ·χ
if and only if Σw is contained in κ.

Proof. For the new half, let w = snsn−1 . . . s1 be a reduced expression for w. Let
wi = si . . . s1 for each i, w0 = 1. If k is the smallest such that wkχ doesn’t lie in
Wκ ·χ, then ǫ = wk−1χ does lie in Wκ ·χ, but skǫ doesn’t. Then sk isn’t in Wω ,
and skǫ 6= ǫ. Since

skǫ = ǫ− nαk
αk

with nαk
> 0, the support of χ − wkχ contains αk. The same is true of χ − wχ

since support increases along a chain.

Lemma 3.4. Every δ-connected subset κ of ∆ is the support of some χ− wχ.
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Proof. We prove this by induction on the size of the δ-connected subset. It is clear
for single elements in δ.

Otherwise, suppose that κ is δ-connected and χ− xχ has support κ. Suppose then
that α does not lie in κ and that κ ∪ α is δ-connected. Either there is an edge in
the Coxeter graph connecting α to κ or α itself lies in δ.

If xχ = χ−
∑
nββ where all nβ > 0 for β in κ, then

sαxχ = sαχ−
∑

nβsαβ

= sαχ−
∑

nβ[β − 〈β, α∨〉α]

sαxχ− χ = (sαχ− χ) −
∑

nββ +
∑

nα〈β, α
∨〉α

and all of the coefficients in the last sum are non-positive. If α itself lies in δ then
sαχ has support α, so the support of the whole expression is the union of κ and
α. If not, then the first term vanishes, but at least one term in the sum is actually
negative.

Lemma 3.5. For λ in C++
θ the subset of W ·χ where λ achieves its maximum is

Wκ(θ) ·χ.

This is immediate from Lemma 3.3. The main Theorem now follows from it and
Lemma 3.4, which guarantees that the sets Wκ ·χ are all distinct.

The main Theorem of this section is curiously relevant to the classification of reg-
ular polyhedra. It follows by induction that the symmetry group of any regular
polyhedron is a Coxeter group. Since all vertices are W -conjugate every regular
polyhedron must be the convex hull of a single vector. Since all faces of a given
dimension must also be W -conjugate, the δ-connected sets must form a single as-
cending chain. This means that δ itself must be a single node at one end of the
Coxeter graph and that the Coxeter graph has no branching. Also, an automor-
phism of the Coxeter graph induces an isomorphism of corresponding polyhedra.
Therefore the regular polyhedra correspond to isomorphism classes of pairs ∆, α
where ∆ is the Coxeter graph of a finite Coxeter group, without branching, and α
is an end-node in ∆. This is of course the usual classification, which I exhibit in
these terms in the following table. Keep in mind that the dimension in which the
figure is embedded is the number of nodes. The marked end denotes the vertex.
Thus, in the first line for H3 we list the vertex, then the pentagonal face, on the
dodecahedron, whereas in the next line, reading from right to left, we meet the
vertex and then a triangular face.

System Marked Coxeter diagram Figure

An (n ≥ 2) tetrahedron

Bn (n ≥ 2) 4 cube
4 octahedron

F4
4

G2
6 hexagon

H3
5 dodecahedron
5 icosahedron
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H4
5

5

Ip (p = 5, p ≥ 7) p polygon

4. Satake partitions

Continue the notation of the last section. In particular, χ is an element of V ∗ lying
in the closure of Ĉ++, and δ = δχ. In this section I shall describe in more detail
the partition of V dual to the convex hull of W ·χ.

I shall begin in a little more generality. I define a Satake partition of V to be
any partition of V into convex polyhedral cones σ which is geometric in the sense
that any open face of one of these cones is also a subset of the partition, and which
is also W -invariant. According to Proposition 1.2, the partition of V dual to the
convex hull of any W -orbit of a finite set of points in V ∗ is a Satake partition.

Define a Weyl cell in V to be a W -transform of some C++
θ . The partition of V

into Weyl cells is a Satake partition I call the Weyl partition.

Suppose now and for a while that that σ is one of the cells in an arbitrary Satake
partition. Since the partition is W -invariant, for any given w in W exactly one of
two possibilities is true: (a) wσ and σ are disjoint, or (b) wσ = σ. Define Wσ to
be the group of w in W with wσ = σ. Define the centre of σ to be the elements of
σ fixed by Wσ. For any x in σ define

Πσx =
1

#Wσ

∑

Wσ

w x

to be the average of the transforms of x by elements of Wσ. Because of convexity,
Πσx lies also in σ, and in particular the centre Cσ of σ is not empty. If wx = x
for w in W and x in Cσ then wσ ∩ σ 6= ∅ so w has to be in Wσ . In other words, for
any x in Cσ

Wσ = {w ∈ W | wx = x}

which proves:

Lemma 4.1. There exists a unique Weyl cell containing the centre of σ.

For θ ⊆ ∆ define

Πθx =
1

#Wθ

∑

Wθ

w x

to be the average over Wθ.

Lemma 4.2. For ψ ⊆ θ ⊆ ∆ and x in C++
θ the projection Πψx lies in C++

ψ .

Proof. For x in C++
θ

Πψx = x−
∑

θ−ψ

cαα
∨

with cα ≥ 0. But then for β ∈ ∆ − ψ

〈β,Πψx〉 = 〈β, x〉 −
∑

cα〈β, α
∨〉 .
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Since by assumption the first term is positive and the rest are non-negative, the
sum is positive.

Lemma 4.3. If C is any Weyl cell intersecting σ, then the closure of C contains
the centre Cσ.

Proof. The interior of the segment from x to Πσx cannot cross any root hyper-
plane.

If σ intersects C
++

, suppose that κ is minimal such that σ intersects C++
κ . This

will be unique, since a segment from C++
θ to C++

ψ will cross C++
θ∩ψ. I call it the linear

support of σ. The centre of σ will intersect a unique Weyl cell, which according to
Lemma 4.3 will be contained in C++

κ . It will therefore be C++
ω for some set ω ⊇ κ

which I call the central support of σ.

Lemma 4.4. Suppose that σ intersects C
++

. Let κ be the linear support of σ
and ω its central support. Then

σ ∩ C
++

=
⋃

κ⊆θ⊆ω

σ ∩ C++
θ

Proof. A simple consequence of Lemma 4.2.

Lemma 4.5. Suppose that σ intersects C
++

and let ω be its central support. then

σ = Wω(σ ∩ C
++

) .

Proof. If w in W takes C to C++
θ then C and C

++

θ must both contain C++
ω . But

then wC++
ω = C++

ω , which in turn means that w must lie in Wω.

Suppose that κ is a δ-connected subset of ∆, and let F be the face of the convex hull
of W ·χ spanned by Wκ·χ. We know from the previous section that the intersection

of σF with C
++

is the union of the C++
θ with θ ranging over all subsets of ∆ with

κ ⊆ θ ⊆ ω(κ). Lemma 4.5 implies:

Proposition 4.6. If κ is a δ-connected subset of ∆, ω = ω(κ), and F is the face
of the convex hull of W ·χ spanned by Wκ ·χ then σF is the union of the transforms
of the C++

θ by elements of Wω as θ ranges over all subsets of ∆ such that

κ ⊆ θ ⊆ ω .

It can also be characterized as the union of all Weyl cells C in the linear subspace
spanned by the cell C++

κ with C containing C++
ω .

This result shows that the partition dual to a W -orbit has the property that all
its cells are unions of Weyl cells. Suppose that, conversely, we are given a Satake
partition {σ} with this property. If σ is an open cell in this partition then it must
contain at least one Weyl chamber as an open subset. We can transform this cell
by an element of W so that this chamber is just C++. Let δ be the central support

of this σ. Lemma 4.4 then shows that the intersection of σ and C
++

consists of
all C++

θ with θ ⊆ δ. In other words, the open cell of the partition containing C++
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is the same as the open cell of the Satake partition associated to δ. The geometric
condition implies that in fact the two partitions are the same.

Proposition 4.7. If Σ is a Satake partition of V whose cells are unions of Weyl
cells, then there exists a subset δ of ∆ such that Σ is the Satake partition associated
to δ.

In other words, there is a natural bijection between Satake partitions of this sort
and subsets of ∆. We know then that the structure of the partition can be described
in terms of the apparatus of δ-connected sets. Can we understand arbitrary Satake
partitions in terms of similar combinatoric data? Lemma 4.4, Lemma 4.5, and
Proposition 4.7 suggest a start.

5. Parabolic subspaces

In this section, let

G = a complex reductive group

B = AN = a Borel subgroup of G

∆ = the basic roots associated to the choice of B

For each θ ⊆ ∆ let Pθ = MθNθ be the associated parabolic subgroup containing
B = P∅, so that the Lie algebra nθ is the sum of positive root spaces nα with α not a
linear combination of elements of θ. The split centre Aθ of Mθ is the intersection of
the kernels ker(α) as α ranges over θ. Let C++

θ be the subset of X∗(A∅) comprising
λ with 〈α, λ〉 = 0 for α in θ, 〈α, λ〉 > 0 for α in ∆ − θ. The Lie algebra of Mθ is
spanned by a∅ and the root spaces gα with 〈α, λ〉 = 0 for λ in C++

θ and the Lie
algebra of Nθ is spanned by the gα with 〈α, λ〉 > 0 for λ in C++

θ .

Let W be the Weyl group of G with respect to A, S the reflections associated to
elements of ∆. The set ∆ may be identified with the nodes of the Coxeter graph
of (W,S).

Fix a finite-dimensional representation (π, V ) of G. A parabolic subspace of V is
one of the form Fix(N) whereN is the unipotent radical of some parabolic subgroup
of G. I recall that

Fix(N) = {v ∈ V | π(n)v = v for all n ∈ N} .

Suppose that π is irreducible with highest weight χ. The set of all weights of π
is contained in the convex hull of the Weyl orbit W ·χ. Let δ = δπ be the set of
roots α in ∆ such that sαχ 6= χ. Equivalently, δπ is the complement in ∆ of the
set θ such that Pθ is the stabilizer of the line through the highest weight vector of
π. For example, δ = ∅ when π is the trivial representation of G, and δ = ∆ itself
when the highest weight is regular. Recall that a δ-saturated subset ω is a subset
of the nodes of the Dynkin diagram of G with this property: let κ be the union of
connected components of ω containing elements of δ. Then the complement of ω
in ∆ is made up of exactly those nodes of ∆ which do not lie in κ, and which either
lie in δ or possess an edge in common with an element of κ.

Theorem 5.1. Suppose (π, V ) to be an irreducible finite dimensional representa-
tion of G with highest weight χ. Suppose that χ lies in C++

θ and let δ = ∆ − θ.
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Then for any δ-saturated subset ω of ∆ the subspace Fix(Nω) is the sum of weight
spaces with weights in the convex hull of Wω ·χ. This space is the same as Fix(Nθ)
for any θ with ω(θ) = ω. It is an irreducible representation of Mω.

Proof. Let Vω be the direct sum of the weight spaces with weights in the convex
hull of Wω ·χ. It follows from the remarks above about C++

θ and Lemma 2.1 that
π(ν)v = 0 if ν lies in nθ and v in Vω . Since Nω ⊆ Nθ we have

Vω ⊆ Fix(Nθ) ⊆ Fix(Nω) .

The space Vω is stable under Pω , hence a representation of Mω, as is Fix(Nω). Both
have a unique highest weight vector, namely the highest weight vector of V itself,
and are hence irreducible and identical. So the inclusions above are all equalities.

Another way of phrasing this is to define a saturated parabolic subgroup of G
(with respect to π) to be a conjugate of some Pω with ω saturated. The Theorem
amounts to the assertion that the map P = MN 7→ Fix(N) is a bijection between
saturated parabolic subgroups of G and parabolic subspaces of V .

Recall that if A is a torus in G and λ in X∗(A) then Pλ is the parabolic subgroup
of G corresponding to the sum of eigenspaces gα with 〈α, λ〉 ≥ 0. Its unipotent
radical Nλ has as Lie algebra the sum of eigenspaces with 〈α, λ〉 > 0. The proof
above also leads to the following result.

Proposition 5.2. Suppose A to be any torus in G, λ in X∗(A). Let π be an
irreducible representation of G, let F be the face of the convex hull of the weights
of π restriced to A where λ takes its maximum value, and let VF be the sum of
weight spaces associated to F . Then VF = Fix(Nλ). This is also Fix(N) if P = MN
is the minimal saturated subgroup containing Pλ.

How does Mω act on Vω? The Dynkin diagram of Mω is the sub-diagram of the
Dynkin diagram of G corresponding to the nodes in ω. The group Mω is isogeneous
to a product of a torus and semi-simple groups Gκ, Gζ whose diagrams are the
sub-diagrams corresponding to κ and ζ. Since Nκ acts trivially on Vω, so do all
its conjugates in Mω, and in particular by elements of Wω . The group Aω acts by
scalars on Vω . Therefore the kernel of the representation of Mω on Vω contains Gζ ,
and this representation factors through a representation of Gκ.

6. Compactifications of G/K

Again suppose G to be the group of R-valued points on a semi-simple group defined
over R. Let P∅ be a minimal real parabolic subgroup with unipotent radical N∅,
M∅ the quotient P∅/N∅, A∅ the maximal split real torus in P∅ invariant under the
involution associated to the maximal compact subgroup K.

A spherical representation of G is a triple (π, V, v) where v in V is fixed by K.

Irreducible spherical representations arise in a simple manner. If χ is a rational
character of P∅ then the space

Ind(χ | P∅, G) = {f ∈ C∞(G) | f(pg) = χ(p) f(g) for all p ∈ P∅}

is a smooth representation of G with respect to the right regular action. If (π, V ) is
the irreducible finite dimensional representation with lowest weight χ then the map
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from V to V/n∅V is χ-covariant, hence induces by Frobenius reciprocity a G-map
from V to Ind(χ | P∅, G). If χ is trivial on P∅ ∩K then since G = PK the space of
K-invariant functions in Ind(χ | P∅, G) has dimension 1. It is a theorem of Helgason
that the finite-dimensional representation contains the space of K-invariants. The
converse is also true: any irreducible spherical representation has the property that
its lowest weight is a character of P∅ trivial on P∅ ∩K. (A strictly algebraic proof
of all these assertions can be found in Vust (1974).)

To summarize:

Proposition 6.1. The irreducible spherical representations of G are the irreducible
finite dimensional representations with highest weights which are characters of P∅

trivial on P∅ ∩K.

Corollary 6.2. If (π, V, v) is a spherical representation of G then it is defined
over R, and it possesses a highest weight whose stabilizer in G is a real parabolic
subgroup of G.

Proof. Since P∅/N∅(P∅∩K) is split over R, its algebraic characters are all real. The
stabilizer of a highest weight stabilized by P∅ must be defined over R and contain
P∅, hence be a real parabolic subgroup of G.

In the terminology of Borel-Tits (1965), the irreducible spherical representations of
G are strongly rational over R.

Proposition 6.3. If (π, V, v) is an irreducible spherical representation of G then
the highest weight of v with respect to A∅ is the restriction to A∅ of the highest
weight of V .

Proof. Since π is irreducible, V = U(g)v. Because g = n∅ + a∅ + k, U(g)v =
U(n∅)U(a∅)v.

Corollary 6.4. If (π, V, v) is an irreducible spherical representation of G then the
extremal weights of the restriction to A∅ of the weights of V are the same as the
exremal A∅-weights of v.

Suppose that (π, V, v) is a spherical triple, non-trivial on each simple factor of G.
We can embed X = G/K into P(V ) according to the recipe

x 7→ ι(x) = π(g)v, (x = gK) .

What does the closure Xπ of Xπ = ι(X) look like?

If P is a parabolic subgroup of G and A the maximal split torus in the centre of
a Levi component of P , define A++ to be the subset of a in A with the property

that all its eigenvalues on the Lie algebra of P are ≥ 1, and let A
++

be the closure
of A++.

The Cartan decomposition asserts that G = KA
++

∅ K, and implies that the closure
Xπ is the same as the K-orbit of the closure of A++

∅ [v], and also of the closure
of A∅[v]. According to results of §2 this closure is obtained in the following way:
for any face F of the convex hull of the A∅-weights of v, let vF be the sum of
the components of v corresponding to characters in F . The closure of A∅[v] is the
union of A∅-orbits of the [vF ].

What are the faces of this convex hull?
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It will be shown in the next section that the extremal characters of the restriction
of π to A∅ are the WR-transforms of the restriction of the highest weight, and
according to Proposition 6.3 this is also the set of extremal A∅-weights of v. It will
also be shown in the next section that the weight space corresponding to a face of
this hull is stablized by a π-saturated parabolic subgroups of G which is real.

Suppose P to be a real π-saturated parabolic subgroup of G. Let VP be Fix(NP ),
πP the representation of P on πP , which factors through P/NP . If ι is the Cartan
involution of G fixing the elements of K, let MP be P ∩ P ι, the unique Levi
subgroup of P stable under ι. Let AP be the maximal split torus contained in MP ,
a in A++

P . Then
vP = lim

n→∞
π(an)v

lies in VP , and since πP is irreducible, (πP , VP , vP ) is a spherical triple for MP . If
P corresponds to the face F of the convex hull of the A∅-weights of v, then vP is
the same as vF . The natural embedding of VP into V induces an embedding of
P(VP ) into P(V ). Let LP be the projective kernel of the representation of MP on
VP , GP the quotient MP /LP . The embedding of P(VP ) into P(V ) induces one of
XP = GP /KP into X , where KP is the image of K ∩ P in GP . The symmetric
space XP is contained in the closure of X , and called a boundary component of
X . The transverse structure of a neighbourhood of XP in X is related to the group
LP , which I call the link group.

Proposition 6.5. The closure of X in P(V ) is the union of its boundary compo-
nents. If A is a split torus in G, λ in X∗(A), then the limit

lim
t→∞

λ(t)x0

lies in XP if P is the smallest saturated parabolic subgroup of G containing Pλ.

The parabolic subgroup Pλ is the one with the property that its Lie algebra is
spanned by the eigenvectors of λ(t) (t > 1) with eigenvalues ≤ 1.

7. Galois indices

Let k be a subfield of C, G a semi-simple group defined over k. Let P∅,k be a
minimal parabolic subgroup of G, Ak a maximal k-split torus in P∅,k.

Choose a Borel subgroup BC in GC and let AC be a maximal torus contained in
it. Let ∆C be the corresponding basis of roots of the pair gC, aC. The maximal
parabolic subgroups of GC containing BC are parametrized by maximal proper
subsets of ∆C, or equivalently by their complements, which are singletons. If τ is
an automorphism of C/k and P is a maximal proper parabolic subgroup of GC then
P τ is conjugate to a unique maximal proper parabolic subgroup of G containing
B. This induces an action of Aut(C/k) on the complex Dynkin diagram which
Borel-Tits (1965) call the ∗ action (see also §2.5 of Tits (1966)). It factors through
the Galois group of the algebraic closure of k in C, and does not depend on the
particular choice of data.

We may assume that BC ⊆ P∅,k, Ak ⊆ AC. Restriction of roots determines a map

ρC/k: ∆C → ∆k ∪ {0} .
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The anisotropic kernel of ρC/k is the inverse image ∆0
C/k of {0}. It is stable under

Aut(C/k), as is its complement. Galois orbits in the complement are exactly the
inverse images in ∆C of single elements of ∆k. The Galois action and the anisotropic
kernel together make up the index of Gk. Tits explains in §2.5 of Tits (1966) how
the relative root system can be reconstructed from the index.

If k = R, there is a standard way of coding the index in the complex Dynkin
diagram. The nodes of the anisotropic kernel are coloured black, and the remaining
white nodes interchanged by conjugation are linked together. We shall see some
examples later on.

For a subset θ ⊆ ∆k define

ǫC/k(θ) = ρ−1(θ) ∪ ∆0
C/k .

Such sets are exactly the subsets of ∆C/k stable under Aut(C/k) containing ∆0
C/k,

and the parabolic subgroups they parametrize are the k-rational parabolic sub-
groups containing P∅,k.

For any subset θ of ∆k let C++
k,θ be the corresponding wall of the closed positive

chamber in X∗(Ak). The definitions imply immediately:

Proposition 7.1. If θ is a subset of ∆k and the element λ of X∗(Ak) lies in C++
k,θ

then its image in X∗(AC) lies in C++
C,ψ where ψ = ǫC,k(θ).

If we are given a Satake partition of X∗(AC) with the property that its cells are
unions of Weyl cells, then the partition of Ak induced from inclusion in AC will also
be such a Satake partition. According to Proposition 4.7 it is therefore determined
by a subset δk of ∆k. The significance of this is that C++

k,θ is in the same cell of

the partition of X∗(AC) as C++
k,κ if κ is the union of connected components in θ

containing elements of δk. There is a simple criterion to determine the set δk in
terms of the index. Let κ0 = κ0

C/k be κ(∆0
C/k), and let

δC/k = the nodes of ∆ − ∆0
C/k which are either in δC or connected by an edge

to an element of κ0
C/k.

Corollary 7.2. A node α in ∆k lies in δk if and only if it is the image under
restriction of an element of δC/k.

Proof. The set δk is the complement of ωk(∅). This is the largest set θ such that
C++
k,θ lies in the same partition cell as C++

k,∅ . By the previous result, this is the

partition cell containing C++
∆0 , which contains, in addition to ∆0 = ∆0

C/k, all nodes

not in δC and not connected to κ0 by an edge.

A strongly k-rational representation of G is one where the stabilizer of some highest
weight is a k-rational parabolic subgroup. When δC arises from a strongly k-rational
representation of G then it has no nodes inside ∆0

C/R
, and it is invariant under the

Galois group. It is therefore equal to the inverse image of δk. In these circumstances,
if θ is any subset of ∆k then the smallest saturated subset of ∆ containing it is the
same as the inverse image of the smallest saturated subset of ∆k with respect to
the subset δk.
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Suppose that π is strongly k-rational. It follows from the remarks above and from
Proposition 5.2 that the convex hull of the weights of π restricted to Ak has its
vertices the Wk-transforma of the highest weight, and that the stabilizers of its
faces are the parabolic subgroups of G associated to saturated subsets of ∆k. (This
observation was required in the previous section for k = R.)

For some groups G, the symmetric space X = G/K possesses a G-invariant Her-
mitian structure (this is explained nicely in §1.2 of Deligne (1979)). In these cases,
X may be embedded as a bounded symmetric domain in a complex vector space,
and its closure in this vector space will be a G-stable compactification of X . It
is called a Baily-Borel compactification of X . It is not associated to a spherical
triple (not even for PGL2(R)), but it is topologically equivalent to one which is.
In the following pictures, I exhibit the index data for Baily-Borel compactifications
(compare the diagrams in Deligne (1979)). Nodes in δ are dotted, compact nodes
(making up the anisotropic kernel of C/R) are black.

System Type Marked index diagram

AIII SU(p, q) (q ≥ p+ 2)

SU(p, p+ 1)

SU(p, p)

CI Sp(2n)

BI SO(2, p) (p odd )

DI SO(2, p) (p ≡ 2 (4))

SO(2, p) (p ≡ 0 (4))
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DIII SO∗(2n) (n odd )

SO∗(2n) (n even )

EIII

EV II

8. Arithmetic quotients

Suppose G to be defined over Q. Let x0 be the point in X fixed by K. If P is
a parabolic subgroup of G and A a maximally split torus in the centre of a Levi
component then I shall call (P,A) a parabolic pair. If (P,A) is a parabolic pair, let
ΣP be the eigencharacters of A acting on the Lie algebra of the unipotent radical
N of P , and define for T > 0 the set A++(T ) to be

A++(T ) =
{
a ∈ A

∣∣|α(a)| > T for all α ∈ ΣP
}
.

If (P < A) is a Q-rational parabolic pair, Ω is a compact subset of P , and T > 0,
the Siegel set associated to these data is the image of

S(P,A,Ω, T ) = ΩA++(T )

in X = G/K. The main result of reduction theory, in its simplest form, is that (a)
the arithmetic quotient Γ\X is covered by a finite number of Siegel sets with respect
to minimal Q-rational parabolic subgroups, and (b) the covering of X by the Γ-
transforms of this finite collection of Siegel sets is locally finite. In other words, we
can assemble a sort of fundamental domain for Γ from Siegel sets. We can choose
one set for each Γ-conjugacy class of minimal Q-rational parabolic subgroups.

Fix a spherical triple (π, V, v), and let X = Xπ be the corresponding Satake com-
pactification of X . For brevity let ∆0 = ∆0

C/Q
and similarly for κ0.

A boundary component XP of X is called geometrically rational if it satisfies these
two conditions:
(GR1) Its stabilizer P is a Q-rational parabolic subgroup of G.
(GR2) Its link group LP is isogeneous to the product of a rational group and a

compact one.

These conditions guarantee that the image of Γ ∩ P in MP is arithmetic, and
acts discretely on XP . I shall say that the compactification X →֒ X itself is
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geometrically rational if the boundary components met by the closure of every
Siegel set are all geometrically rational.

If X →֒ X is geometrically rational, the rational boundary components are those
intersected by the closure of a Siegel set. In these circumstances, define X∗ to
be the union of X and all of the rational boundary components. The conditions
guarantee that each of these components XP is a symmetric space of some semi-
simple group defined over Q, which will be the product of GP and some possibly
trivial compact factor. Assign to X∗ the topology characterized by the condition
that a set is open if and only if its intersection with the closure of every Siegel set
in X is open. Combining the main result of Satake (1960b) with a result of Borel
(1962), we see that Γ acts discretely on X∗ and that the quotient Γ\X∗ is both
compact and Hausdorff.

What properties of π determine whether or not X →֒ Xπ is geometrically rational
or not? The first step is to decide what boundary components are intersected by
Siegel sets. Suppose (P,A) is a Q-rational parabolic pair with P minimal Q-rational.
Choose parabolic pairs (PC, AC), (PR, AR) with

P ⊆ PR ⊆ PC, A ⊇ AR ⊇ AC .

Let δ = δπ in ∆C. If θ is a subset of ∆Q then for each λ in X++(Aθ) the limit
of λ(t)x0 lies in XPω

where ω = ω(ǫC/Q(θ)). According to Proposition 5.2 each
of the boundary components intersected by the closure of A++(T ) is of this form.
Since each one of the saturated parabolic subgroups contains P , these are also the
boundary components intersected by any Siegel set for P .

Lemma 8.1. If (P,A) is a Q-rational parabolic pair and P is a minimal Q-rational
parabolic subgroup of G then the boundary components met by the closure of a
Siegel set S(P,A,Ω, T ) are those whose stabilizer is Pω , where ω is of the form
ω(ǫC/Q(θ)).

Therefore, in order that (GR1) hold it is necessary and sufficient that

(•) for every θ ⊆ ∆Q the group Pω is Q-rational, where ω = ω(ǫC/Q(θ)).

This condition amounts to a finite number of conditions, but the number of condi-
tions grows rapidly with the Q-rank, so that it is not entirely practical.

What does condition (GR1) amount to for θ = ∅? Since ǫC/Q(∅) is just ∆0
C/Q

, ω in

this case will be the union of ∆0
C/Q

and those roots outside ∆0
C/Q

which are not in

∆C,δ and not connected to κ0
C/Q

by a single edge. Since this contains ∆0
C/Q

, it will
parametrize a Q-rational parabolic subgroup if and only if the elements in it which
are not in ∆0

C/Q
are Galois invariant, or equivalently if and only if its complement

δC/Q in ∆C − ∆0
C/Q

is Galois invariant. I recall that this complement consists of

elements of ∆C−∆0
C/Q

which are either in the set δC or connected to κ0
C/Q

by a single
edge. In order that the stabilizer of every minimal rational boundary component
be Q-rational, it is thus necessary and sufficient that δC/Q (defined in §7 by these
two conditions) be Galois invariant. In fact:

Theorem 8.2. Condition (GR1) holds if and only if δC/Q is Galois invariant.
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Proof. We need to show sufficiency of this condition. It remains to show that under
the assumption, if θ is a Galois invariant subset of ∆C containing ∆0

C/Q
, then ω(θ)

is Galois invariant.

Suppose that α lies in κ(θ). There exists a path inside θ connecting α to an element
of δ. Either this path lies entirely inside ∆0

C/Q
, or it doesn’t. In the first case, α lies

in κ0
C/Q

. In the second, either the path goes through an element of ∆ − ∆0 which

lies in δ, or it passes back into ∆0 without meeting such an element. In the second
case it passes through an element of ∆ − ∆0 which is connected to κ0 by a single
edge. In either of the last two cases, it is connected to an element of δC/Q inside θ.
Conversely, if it is connected inside θ to an element of δC/Q, then it lies in κ(θ). As
a consequence

(•) the set κ(θ) − κ0 is Galois invariant.

We shall use this observation a bit later on.

The set ζ(θ) is made up of the elements of ∆C which are not connected to κ(θ) by
a single edge, and ω(θ) is the union of κ(θ) and ζ(θ). Since θ contains ∆0 it only
has to be shown that if α lies in ω(θ) and the complement of ∆0 then any Galois
transform also lies in ω(θ).

If α lies in κ(θ) − ∆0 then we have just seen that any Galois transform lies also in
the same set. So it remains to be seen that if α lies in ζ(θ) but not in ∆0 then any
Galois transform lies in the same set. If β is a transform of α which does not lie
in ζ(θ) then there exists an edge from β to an element of κ(θ). If this edge leads
to an element of κ(θ)− κ0 we get a contradiction, while if it leads to an element of
κ0 then β lies in δC/Q and we again get a contradiction.

Corollary 8.3. If G is quasi-split, then a compactification

X →֒ Xπ

is geometrically rational precisely when it is rational.

Proof. In this case the anisotropic kernel is empty and condition (GR2) is auto-
matic.

The situation for condition (GR2) is similar—that is to say, the condition for it to
hold with respect to minimal boundary components, which is clearly necessary, is
also sufficient for it to hold in general. For the minimal boundary component, the
factor GP has Dynkin diagram κ0. Condition (GR2) means that this must be a
rational group up to a compact factor, which means in turn that the Galois orbit
of κ0 must be the union of κ0 and a set of compact nodes.

Theorem 8.4. Assuming that condition (GR1) is valid, condition (GR2) holds
if and only if the Galois orbit of κ0 in the index is the union of κ0 and a set of
compact nodes.

Proof. This is clear, since condition (GR1) implies, as the proof of the last result
showed, that for any θ parametrizing a Q-rational subgroup, κ(θ) is the union of a
Galois invariant subset and κ0.
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If X →֒ X is a geometrically rational compactification, then the rational boundary
components coincide with those whose stabilizers are Q-rational, and the stabi-
lizers in this case coincide with the rational parabolic subgroups parametrized by
saturated subsets of ∆Q.

9. Some examples

Fix a real quadratic extension F of Q.

• Let G be the unitary group of an isotropic Hermitian form of dimension three
over F , which is a Q-rational group isomorphic over F to SL3(F ). Over Q it is
quasi-split. Its Dynkin diagram and index are

Over R the group is split. If we pick as δ either one of the two nodes (say the one
marked by a dot in the centre), condition (GR1) is not satisfied. On the other hand
this example satisfies Assumption 1 (quasi-rationality) of §3.3 in Zucker (1983), and
this example seems to show that his Proposition 3.3.(ii) is false. It is not clear to
me what the significance of Zucker’s notion of quasi-rationality is.

• Let Q be an anisotropic quadratic form over F of dimension four, arising from a
quaternion algebra over F which is split at both real embeddings of F into R. Let
G be the orthogonal group of the quadratic form H ⊕ Q, where H is hyperbolic
space. The group G may be considered by restriction of scalars as a group over Q.
The index of G is shown by the following figure:

Here the anisotropic kernel of G over Q consists of the top four nodes. Conjugation
over Q just interchanges the two components. If δ is made up of the left bottom
node and the right top node, then (GR1) is valid but (GR2) is not.

• Let K be a quadratic imaginary extension of F obtained by adjunction from one
over Q. Let Q be a Hermitian form of dimension three over K, anisotropic at one
real embedding of F and of signature (2, 1) at the other. Let G be the unitary
group of of H ⊕ Q, where H is the hyperbolic Hermitian form, considered as a
group over Q. Its index is
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where the anisotropic kernel over Q consists of the four bottom nodes. Conjugation
over Q interchanges the two components, and complex conjugation interchanges the
branches inside each component.

Let δ be the marked nodes. Then the compactification of each real factor of G is
its Baily-Borel compactification, and conditions (GR1) and (GR2) are both valid.
All other Baily-Borel compactifications can be dealt with in a similar case by case
analysis, somewhat different from the one in Baily-Borel (1966). What one needs
for this are the diagrams in §7 and the observation in §3.1.2 of Tits (1966) about
induced indices.

This compactification does not arise from a rational representation, and the bound-
ary components have a different structure from those of the compactification asso-
ciated to the similar rational representation whose figure is

although the saturated parabolic subgroups are the same for both cases. In the
second case, the minimal boundary components are just points, while in the first
they are non-trivial symmetric spaces.

I have not attempted a classification of all semi-simple groups over Q in order to try
to find all geometrically rational Satake compactifications. This example illustrates
that the first step is probably to break them up into families, each family having the
same set of saturated Q-rational parabolic subgroups, but differing in the structure
of its boundary components.
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nali Sc. Norm. Pisa 17 (1990), 165–195.

S. Zucker, ‘Satake compactifications’, Comm. Math. Helv. 78 (1983), 312–343.


