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Abstract

In this dissertation, we combine the work of A. Aizenbud and D. Goure-
vitch on Schwartz functions on Nash manifolds, and the work of F. du Cloux
on Schwartz inductions, to develop a toolbox of Schwartz analysis. We then
use these tools to study the intertwining operators between parabolic induc-
tions, and study the behavior of intertwining distributions on certain open
subsets. Finally we use our results to give new proof of results in [15] on
irreducibilities of degenerate principal series and minimal principal series.
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Lay Summary

Parabolic inductions and intertwining operators between them are of
great importance in representation theory. The structure of parabolic in-
ductions is still mysterious, and only sporadic results have been obtained.

Our final goal is to find a unified approach to study intertwining op-
erators between parabolic inductions, by using only the structures of the
quotient spaces and the information about the representations to be in-
duced.

This dissertation shows the very first step of the entire framework. We
combine the work of A. Aizenbud, D. Gourevitch and F. du Cloux, develop
an algebraic toolbox, and use the results to study the irreducibility of unitary
parabolic inductions. We give a new proof of results on irreducibilities of
degenerate principal series and minimal principal series in [15].

iii



Preface

This dissertation is the original, unpublished work of the author, Xinyu
Liu.
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Chapter 1

Introduction.

1.1 A Brief Summary of the Thesis

1.1.1 Goal of the Thesis

The long-term goal of our work is to study intertwining operators be-
tween two parabolic inductions, by using the tools of Schwartz analysis
developed in [1], [2], [20] and Chapter {4/ of this thesis.

In this thesis, to simplify the problem, we will work under the following
basic setting;:

e The Lie groups studied in the thesis, are the real point groups of con-
nected reductive linear algebraic groups defined over R.

e We will only work on smooth inductions of unitary representations,
namely for a unitary representation (7, V') of a parabolic subgroup P,
we study the smooth induction C*Ind%(r ® 511,3/ 2), which is infinitesi-
mally equivalent to the ordinary (Hilbert) normalized induction IndgT.
And temporarily we only study the irreducibilities of such representa-

tions.

Many sporadic results have been obtained for irreducibilities of parabolic
inductions. Most of them follow Mackey’s machinery, and prove the irre-
ducibility by finding upper bound of certain multiplicities. Some other peo-
ple use pure algebraic tools especially for degenerate principal series. Our
aim is to find a unified approach to study intertwining operators, by only
using the geometric structure on the group (or flag manifolds) and results
in pure representation theory. As the reader can see in the main body of
this thesis (Chapter , we prove irreducibilities by geometric/algebraic
tricks, combined with some fundamental results in representation theory
(e.g. Frobenius reciprocity, Schur lemma etc). The only unusual result we
have used is Shapiro’s Lemma, but we only use the special case on Oth
cohomology, which is an extension of the Frobenius reciprocity.

In this thesis, we first develop a toolbox of Schwartz analysis on algebraic
groups. Then we study intertwining operators as intertwining distributions,
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classify them by their supports, and study their local behavior by restricting
the distributions to open neighbourhoods of double cosets. In the local study
of intertwining distributions, we combine the tools of transverse derivatives,
torsion subspaces and Shapiro’s Lemma. In the current version of thesis,
we are able to prove the results analogous to Theorem 7.2 and 7.4 in [15],
about irreducibilities of minimal principal series and degenerate principal
series, for the above class of Lie groups.

In the following three subsections|1.1.2} [1.1.3|and |1.1.4, we give a sketchy
outline of the thesis.

1.1.2 Distribution Analysis (Chapter 5)

The central idea of our study is to realize intertwining operators (be-
tween two parabolic inductions) as “intertwining distributions on Schwartz
induction spaces”, and study the local properties of such distributions. The
strong confinement from the local properties will tell us when there is no
non-scalar intertwining distributions (operators), thus the unitary parabolic
inductions are irreducible. This method also partially tells us what the in-
tertwining distributions look like on certain open subsets. One object of our
future study is to answer how to the intertwining distributions on the entire

group.

Intertwining Distributions (5.1 5.3))

Let G be a connected reductive linear algebraic group defined over R, let
P, Q be two parabolic R-subgroups of G, let G, P, Q be the corresponding
real point groups. Let (o1, V1) be a Harish-Chandra representation of P (see
, and (02, V3) be a Harish-Chandra representation of Q. Let C®Ind%o;
(resp. C“Indgaz) be the space of (unnormalized) smooth induction of o;
(resp. o02) from P (resp. @) to G. Since the P, Q are parabolic sub-
groups, the quotient manifolds P\G, Q\G are compact, and the above two
smooth inductions equal to the corresponding Schwartz inductions (see
for the term “Schwartz inductions”): C®Ind%o; = SInd%oy, CmIndgag =
SIndgag. For simplicity, we denote them by I = SIndgal, J = SIndgag,
and let Homg (7, J) be the space of intertwining operators from I to J.

To study the intertwining operators in Homeg (I, J), we first apply Frobe-
nius reciprocity, i.e. the isomorphism:

Homg(1,J) = Homg(I, V), T+ Q.oT.

Thus we identify the space Homg (1, J) of intertwining operators, with the

2



space Homg (1, V2) of Q-equivariant Va-valued distributions on I = SIndIGgal.
We call such distributions intertwining distributions. In this thesis, we
will work on the case when Q = P, 09 = 0.

Self-Intertwining Distributions and Irreducibility (5.4)

Let P = Pg be a parabolic R-subgroup of G corresponding to a subset
O of the base of restricted roots, with real point group P = Pg, let (o, V) be
a Harish-Chandra representation of P, and let I = SInd$o (= C*Ind%o)
be the Schwartz (smooth) induction space. We are interested in the space
Homg (1, 1) of self-intertwining operators on 1.

In particular, when o = 7'®511D/ 2 where 7 is a unitary representation on V,
the I is irreducible if and only if Homg (1, I) = C. Actually the I is infinites-
imally equivalent to the normalized unitary (Hilbert) parabolic induction
Ind%r (see. The I and Ind%7 are irreducible /reducible simultaneously.
And they are irreducible if and only if Homg (I, I) = Homg(Ind%7, Ind%7) =
C. The main body of the thesis (Chapter |§|to @, are devoted to the study of
irreducibility of I. By the above discussion, we can show the irreducibility
of I (equivalently Ind%7), by showing the space Homp(I, V) of intertwining
distributions is one dimensional.

The Supports and Maximal Double Cosets (5.2 5.4)

We consider self-intertwining distributions and keep the above setting
on G,P = Pg,7,0. Let D € Homp(I,V) be an intertwining distribution.
We will show in that every intertwining distribution has a well-defined
support, denoted by suppD, and it is a (real) Zariski closed union of (P, P)-
double cosets. Obviously, the intertwining distributions corresponding to
scalar intertwining operators have their supports contained in P.

Actually for any algebraic subgroup H of P, the suppD is also a union
of (P, H)-double cosets. In particular, for any subset 2 C O, let Pg be
the corresponding standard parabolic R-subgroup with P be its real point
group. Then the support suppD is also a union of (P, Py)-double cosets.
There are finitely many (P, Py)-double cosets on GG, parameterized by the
set [We\W/Wq] of minimal representatives (see[3.3), and they are ordered
by the closure order (see by the real Zariski topology.

For each Q2 C O, and a representative w € [Wo\W/Wgq], we denote by



GS! = PwPy the corresponding (P, Pg)-double coset, and let

,= [ PzPa
PwPqoCPxPq
Q _ 0 Q
G>w - GZw - Gw

These two are Zariski open subsets of G, and G<! is closed in Ggw with open
complement G, For the (P, Pg)-stable subsets G, G%,, G5, we denote
the corresponding local Schwartz inductions (see by
Q
g, = SInd}GDE”U, Igw = SIndggwa, I§ = SIndgga.

They are smooth Po-representations under the right regular Pn-actions. We
have the inclusions (of Pq-representations): I}, I C I for each Q C ©
and w € [We\W/Wq]. -

Since there are finitely many (P, Pq)-double cosets on G, one can choose
a (non-unique) mazimal (P, Po)-double coset (under the closure order) con-
tained in suppD, say G%.. Then the restriction of the intertwining distribu-
tion D € Homp(I,V) to the subspace Igw is non-zero, and the restriction
of D to the subspace %, is zero.

Restricting the Intertwining Distributions (5.5))

Let D € Homp(/,V) be an intertwining distribution with its support
denoted by suppD. There are two special cases: (1) the suppD is contained
in P (the identity double coset PeP); (2) the suppD is not contained in P.
We will study these two cases separately.

Suppose suppD is contained in P. Let Is. = SIndIGfP o be the local
Schwartz induction of ¢ from P to the open complement G — P, then I,
is a P-subrepresentation of I, and D vanishes on this subspace. Therefore
D : I — V factor through the quotient space I/Is., and let D be the
corresponding map D : I /I, — V. Obviously D is still P-equivariant when
the quotient is endowed with the quotient P-action. Its adjoint map D
V' — (I/Is.) is also a P-equivariant continuous linear map. Since V' and
I/I-. are nuclear hence reflexive, we have the following linear isomorphism:

{D € Homp(I,V) : suppD C P} = Homp(V’,(I/Is.)"), D+~ D"

Suppose suppD is not contained in P. Then for each subset ) C ©,
as above we can find a mazimal (P, Pq)-double coset contained in suppD,
say G5} for some w € [We\W/Wgq]. Since G¥! is maximal in the support,
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the restricted distribution D2 : I, — V is Py-equivariant, nonzero and

vanishes on the subspace Igw. Similar to the above discussion, it factor
through the quotient Igw / Igw, and the corresponding map is denoted by

—=Q . . N
Dy, 1 gw /I, — V. This map is also Po-equivariant and non-zero. By the

same argument as above, the correspondence D — (ﬁgw)* gives a bijection:
{D : G%! is maximal in suppD} = Homp, (V’, (Igw/fgw)’) — {0}

Combining the above two cases, to show the irreducibility of I, we just
need to:

e Show the Homp(V’, (I/I-.)") = C.

e Find a subset Q C ©, and for all w € [We\W/Wq] and w # e, show
the Homp, (V', (12,,/12,))") = {0}.

1.1.3 Organization of the Thesis

By the above discussion, we are required to study the local behavior of in-
tertwining distributions, namely the dual quotients (I, /I%,)’ (the (I/Is.)
is the special case when w = ¢), and the spaces Homp, (V’, (I, /1%,)"), for
all @ C © and w € [We\W/Wq]. -

General Attempts
We have made progress in the following three steps:

e Step 1: Express the dual quotients (I£, /I ) as transverse
derivatives. The main result in the first step is summarized as The-
orem namely, the (I$},/I%,) is isomorphic to the space of dis-
tributions on Igw supported in Ggw, and the latter space consists

of transverse derivatives of distributions on G%!. More precisely the
following map is an isomorphism:

(Ip) @ Ulty) = (1£,/12,),
where the tg is the transverse subalgebra g N w ™ npw.

e Step 2: Study the torsion subspace on (I, /I%,) ~ (I} ®
U(tl). To make the spaces Homp, (V', (I, /1%,)") computable, we
need the special properties on V’. The following two special cases
caught our attention:



(1) If (1,V) is P-irreducible and unitary, then the Np = Ng acts
trivially on V and V'. If we let Q = ©, then an arbitrary map
® € Homp, (V',(12,/12,)) has its image in the ne-invariant
subspace of (Igw /12,)". Therefore we have

Homp, (V', (12,,/12,,)') = Homarg (V/, [(12,,/12,) "),
where the [(Igw /19, J"e'] is the neg-invariant subspace. How-
ever, computing the ng-invariant subspace on

(I2,/12,) = (1) @ U(ty)

is infeasible since the tensor product is not a module tensor prod-
uct. We do not have a good algebraic description of the ng-
invariant subspace [(I9, /Igw)’][“@l]. To compromise, we com-
pute the ng-torsion subspace [(I9,/19,)]""], and we have the
following inclusion: N

Homp, (V', (ISW/I‘QW)’) — Hompy, (V' [([Sw/jgw)/] me®ly,

(2) If V is ny-torsion (e.g. V is finite dimensional or certain discrete
series), then the ny acts nilpotently on V' and V'. In particular,
the V’ equals to its ng-torsion subspace, and an arbitrary ® €
Homp, (V’, (I>w/I>w)’) has its image in the nyp-torsion subspace
of (I>y/Isy)'. Therefore we have

HOme (V/, (Izw/f>w)/) = HOHIM® (V’7 [([Zw/l>w)/][n@'])‘

The above two special cases urge us to compute the torsion subspaces
on the dual quotients. To deal with all cases simultaneously, we con-
sider the ng-torsion subspaces on (I£, /I,) ~ (I$})' ® U(t}) for all
Q) C ©. The main result in the second step is summarized as Theorem

namely we have:

(1) @ UE)) = [(1) " @ U (L)

e Step 3: The ng-torsion subspace on (IS})’. The above two steps
require us to find the Mq-action on the torsion subspace [(I:2)]"] or
more precisely on the annihilators [(2)]") for all k > 0. This step
is comprised by the following three steps:



(1) First we use the annihilator-invariant trick to show
()1 = HO(ng, (17 © FY),

where F{! = U(ng)/(n§) is a finite dimensional representation of
Ngq (or even Pg).

(2) Second we show the local Schwartz induction IS is isomorphic to
another Schwartz induction space:

Q Po w
I, ~ SIndPgmw—IPwU

where o = 0 o Adw is the twisted representation of o.

(3) Third we use the tensor product trick to show

P,
L@ B} = Sdy? ip (0" @ Fy).
In sum, we have
k
(1)) =~ HO(ng, STnd 2 i, (0% @ F)),

and we just need to study the Mq-action on it. Currently, we are only
able to compute the above space for Q = () by using Shapiro’s lemma,
and we will explain the reason below.

The Reason to Consider the Case Q2 =)

In the above step 3, we meet the two main obstacles for further study:

1. First we need to find the explicit Mg-action on the tensor product
(1)1 @ U (£).

However, this is not a tensor product of Mq-representations for some
of the Q (including © itself), as one can see the t2 = g Nw ™ Mpw is
not stable under the Mq-conjugation. This will make the Mq-action
on [(I2)]") @ U (£2) very complicated. Fortunately, when Q = (}, the
) = wynwApw is My-stable and the tensor product (I))" "o U (£ )
is indeed a tensor product of My-representations.

2. Second we are only able to compute the space of invariant distributions

H(ng, ST 1 p (0 @ FY))



for the case = ). This is because the quotient PyNw ™! Pw\ Py is Ny-
transitive, and we can apply Shapiro’s lemma to compute the above
Oth invariant space. But in general the quotient Po N w™'Pw\Pq is
not Nq-transitive, and Shapiro’s lemma does not apply to the general
case.

For the above two reasons, we are only able to obtain results of irre-
ducibilities, by applying the above three steps, to the case when € is the
empty set. This case already includes the interesting cases of degenerate
principal series and minimal principal series.

To make the thesis clear and neat, in the main body of the thesis (Chapter
168, we choose ) to be the empty set, show the results in the above three
steps, and in Chapter [ we apply them to reproduce the Theorem 7.2a and
7.4 in [15]. We put the general case of Q in the C’hapter since we are
currently unable to apply our techniques to obtain useful results.

1.1.4 Main Body of the Thesis (Chapter

Currently, we are only able to prove results on irreducibility, by using our
general results in the special case when € is the empty set. In the main body
of the thesis (Chapter, we will only consider the case = (). We simply
drop all superscript €2, and use the notations G>uw, Gsw, Gus I>w; Isw, Lw-
We will study the dual-quotients (Isq,/Isy)" for all w € [We\W], and show
the irreducibility of I by showing:

Homp (V' (I/Is¢)") = C
Homp, (V', (I>w/I>w)') = {0}, Yw #e,w e [Wo\W]

under certain conditions on o (or 7). The three general steps shown in the
last subsection correspond to the chapters |6, [7]and[8 And in the Chapter (9,
we use the results in the three steps (three chapters) to reproduce analogous
results of Theorem 7.2a and 7.4 in [15].

Transverse Derivatives (Chapter 6)

The first step is to write elements in the dual-quotient (Isy/Isq) as
transverse derivatives. The space (Isy/Isy) is exactly the kernel of the
following restriction map of scalar distributions:

Resy : IS, = 1L,

i.e. the elements in (I>y/Isy) are exactly the scalar distributions on I,
that vanish on the subspace I~,,. Similar to the classical results on Euclidean
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spaces, we will show such distributions are given by transverse derivatives
of distributions on G, (see for detailed explanation):

Theorem (Theorem [6.1)). The natural map
I, ® U(n,) — Ker(Resy)

given by U(ny,)-derivatives of distributions on L, is an isomorphism (of
My-representations). Here n, = w™fipw N7y is the transverse tangent
space of Gy in G>y.

The idea to consider transverse derivatives is not new, and is adopted in
many previous works, e.g. [15], [31]. However the expression of distributions
as transverse derivatives in these reference are on narrow neighbourhoods
and are not explicit enough. In particular, their expressions give no clue on
how to find the distributions D from its restrictions. The expression in the
Theorem is in a neat algebraic form. More importantly, our expressions
are global on each open G, which will make the globalization of local
distributions easier than the previous works.

Torsion Subspaces (Chapter 7))

The second crucial idea is to consider the ny-torsion subspace
[(Iz0/T50) 1™ = [}, @ U (n,)]°)

on the dual-quotient (I, /Is.)’, where ny is the nilpotent radical of the
standard minimal parabolic subalgebra. We will explain the reason to con-
sider the torsion subspace at the beginning of Chapter [7. Briefly speaking,
in many cases (including the minimal principal series), the image of a map
® € Homp, (V', (I>w/I>w)’) has its image in the ny-torsion subspace.

The space (I>y/Isw) =~ Ker(Resy,) ~ I, @ U(ny,) is actually a U(g)-
module thus also a U(ng)-module. The I, is also a U(ng)-module, however
the tensor product I, ® U(n,,) is not a tensor product of ng-modules. This
makes the ng-torsion subspace on I/, ® U(n;,) very hard to compute. Sur-
prisingly, we have the following main theorem of Chapter [7:

Theorem (Theorem [7.1). The ny-torsion subspace on
(Isy/Isw) =~ Ker(Resy) ~ I,, @ U(n,)

s given by
(11, @ Um0 = (1] 0 Ung).



This Chapter is the most subtle and technical part of the entire thesis.
The above main theorem of Chapter|7 is prove by a combination of geometric
and algebraic tricks. It is also one of the innovative part, since no other
references have studied the torsion subspaces.

Application of Shapiro’s Lemma (Chapter

The ny-torsion subspace
[(Izw/Iw) M = [1,)7 @ U (ny)

is My-stable where My is the Levi factor of the minimal parabolic Fy. More-
over, the right-hand-side is a tensor product of My-representations. To study
the My-structure on the torsion subspace [(Isy/Isy)/]"°], we need to study
the Mgy-action on the component [I’, ][] or more precisely on the annihi-
lators [I,]™"] for all k € Zsg. This is the main object in Chapter 8, and it
consists of the following steps:

(1) The annihilator-invariant trick: we will show (see (8.1))):
(1)) o HO(ng, (L ® Fi)')
where F}, is the finite dimensional quotient ng-module U (ng)/(ng*).

(2) We will show the I,, = SIndgwa is isomorphic to the following Schwartz

induction (Lemma
I, ~ SInd

Np o
Nynw=1Pw™

where 0¥ = o o Adw is the twisted representation of NyNw™1Pw on V.
(3) The tensor product trick: let (1, Fi) be the finite dimensional (con-

jugation) representation of Ny on Fj. By combining the above two steps,
we will show the following isomorphism (Lemma |8.20)):

I,&F), = (SInd?

N,
N@mwflpwgw)(ng =~ SInd 21 p (0 @1k NyAw—1 Pw)-

N@ﬂw

(4) Combining all the above steps, the kth annihilator [I/,]"" is isomorphic
to

0 N,
H (n@7 [SInngﬁw_le(Uw ® nk’N@ﬂuﬁle)]/)‘
We will apply the Shapiro’s Lemma to this ng-invariant space and
show it is isomorphic to

HO(ng nw™tpw, V' @ F)
with the ng Nw™'pw acts on V' ® F} by the representation o @ .
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5) We will show the M acts on the
( 0
[I{U][”V)k] ~ H'(ng nw™pw, V' @ F))
by the representation o ® Mk @ Y Where 7y, is a character as in (8.22).

In sum, the main result in this chapter is to find the explicit My-action
on the annihilators [I{U][“V)k], namely the Lemma .

Application of the Main Results (Chapter [9)

We can combine the main results in Chapter 6], [7, [8, to give a new proof
of Theorem 7.2a and Theorem 7.4 in [15] for linear algebraic Lie groups.

Let (7,V) be a irreducible unitary representation (not necessarily finite
dimensional), and 0 = 7 ® (5113/ . The I = SInd%o (equivalently the normal-
ized induction Ind%7) is irreducible if and only if Homg (I, ) = C.

First we can show:

Theorem (Theorem. Leto = 7'®(5]13/2 be as above. Then the intertwin-
ing distributions with supports contained in P are all obtained from scalar
intertwining operators by Frobenius reciprocity.

From this theorem, we see for unitary (normalized) parabolic inductions,
the non-trivial intertwining distributions have their supports containing non-
identity double cosets. In particular, for the reducible unitary parabolic in-
ductions, the interesting phenomenon occurs on non-identity double cosets.

By the above theorem, to show the irreducibility of I, we just need to
show Homp, (V', (I>w/I>w)") = {0} for all w € [We\W] and w # e.

If (,V) is finite dimensional, then the V' and V' are ng-torsion. Then
we have

Homp, (V/, (Isw/Tow)') = Homagy (V/, [(Tw/Tsw) ]
By combining the main theorems in Chapter [6 and [7, we see
HomP(Z) (V,a (IZw/I>w)/) = Home(V’, [I;u][n@.] ® U(n:u))

Also since V"’ is finite dimensional, there are positive integers k and n (large
enough) such that

Homyy, (V/, [1,,]1") & U (n,,)) = Homag, (V/, (1,7 @ Uy (ny,)).

11



By the Lemma we see the My acts on the [I]"] @ U, (n7) by the
representation o% ® 1M, ® vy ® Uy, (ny,), which is further expressed as

70 Qw55 i © y © Un(ny).

Meanwhile, the My acts on V' by the representation ?®51§1/ 2, By comparing
these two My-actions, we obtain the following analogue of Theorem 7.4 and
Theorem 7.2a in [15]:

Theorem (Theorem . If the representation T is regular in Bruhat’s
sense (see Definition , then the above two My-actions are not equal for
allw # e, k> 0,n >0, hence

Homp, (V', (Isw/I>w)') = {0}, VYw e [Wo\W],w #e.
Therefore the parabolic induction I is irreducible.

Theorem (Theorem 9.15). If P = Py is the minimal parabolic subgroup,
and for oll w € W the representation ™V is not equivalent to T, then the
above two My-actions are not equal for all w € Wyw # e,k > 0,n > 0,
hence

Homp, (V', I>w/Isw)) = {0}, Yw e W,w #e.
Therefore the I is irreducible.

The Last Chapter of the Thesis

In the Chapter we will sketch the proof of the general results men-
tioned in [1.1.3] i.e. the generalization of the Theorem Theorem
and some of the results in Chapter |[8. We also discuss some topics we are
currently working on.

1.2 History and Motivation

The parabolic inductions are of great importance in representation the-
ory, in the following sense:

e It is an important method to construct new (infinite dimensional) rep-
resentations from representations of smaller groups.

e The subrepresentation theorem, i.e. all irreducible representations oc-
curs as a sub or quotient representations in certain parabolic induc-
tions. In some sense, they essentially contains all information about
representations of a group.

12



e In the character theory, the characters of parabolic inductions form a
“dual basis” of the characters of irreducible representations.

We summarize some previous study on irreducibility of parabolic induc-
tions, which motivate our work in this dissertation.

1.2.1 The Work of Bruhat [15]

In [15], Bruhat defined the induced representations of Lie groups, and
studied the intertwining forms between two induced representations follow-
ing the scheme of Mackey. More precisely, in the above thesis he developed
the theory of quasi-invariant distributions on Lie groups, and applied it
to the study of intertwining numbers between two induced representations.
Then he applied the results to show certain sufficient conditions of irre-
ducibilities for the principal series (non-degenerate and degenerate), induced
from parabolic subgroups of connected semisimple Lie groups.

In a word, the work of Bruhat gives us a method to estimate the in-
tertwining numbers, i.e. it gives upper bound of the intertwining numbers
between two induced representations ([15] p160 Theorem 6.1 and p171 The-
orem 6.3). In particular, it can partially answer the following questions
(under strong conditions):

e When is a unitary induction irreducible? ([15] p177 Theorem 6.5)
e When are two induced representations disjoint?
However, it has the following constraint:

e The intertwining forms introduced in [15] is different from intertwin-
ing operators (see the following subsubsection), and the intertwining
operators are of more interests to us.

e The dual of a unitary induction is isomorphic to the induction of the
dual. However, for non-unitary representations of a subgroup, this
may not be true. Hence Bruhat’s method does not apply to the irre-
ducibility of non-unitary inductions.

e The most important aspect is, the work in [15] only gives estimation
of intertwining forms, and it cannot answer what exactly are the in-
tertwining forms (operators).

These cannot deny the importance of [15], because it is the starting work
on induced representations of Lie groups and their irreducibilities. The cru-
cial ideas, such as reducing the problem into a distribution analysis, and
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the idea to study double cosets separately (also the initial form of “Bruhat
decomposition”), are adopted in most of the subsequent works. In the fol-
lowing part of this subsection, we will give a brief review of [15].

Remark 1.1. In the entire subsection [1.2.1, we assume all representation
spaces are, at least, locally convexr Hausdorff topological vector spaces. And
later in the thesis we will work on the so-called Harish-Chandra representa-
tions, and explain why it is sufficient to deal with such representations. Of
course for unitary representations there is no ambiguity since representation
spaces are all Hilbert spaces.

Intertwining Operators and Intertwining Forms (Paragraphe 1-6)

The main object studied in [15] is the intertwining forms rather than
intertwining operators:

Definition 1.2 ([15] p156). Let G be a Lie group, and for i = 1,2 let (m;, U;)
be two representations of G.

e A continuous linear map T : U; — U, is called an intertwining
operator (from U; to Us), if ma(g)oT = Tom(g) for all g € G. Let

J(Ur,Usy) = the space of intertwining operators Uy — Us
I(Uy,Us) = the dimension of J(Uy, Us)

e A separately continuous bilinear form B : U; x Uy — C is called an
intertwining form (between U; and U»), if B(mi(g)u, m2(g)v) =
B(u,v) for all u € Uj,v € Us. Let

i(Uy,Usy) = the space of intertwining forms between Uy, Us
i(U1, Usa) = the dimension of i(Uy, Us)

The ¢(Uy, Us) is called the intertwining number between w1, 5.
If Uy, Uy are unitary representations, then one has ([15] p156)
TJ(Ul, UQ) = j(UQ, Ul), and I(Ul, U2) = I(Uz, Ul).

However for non-unitary representations, the above equalities are false. (see
[15] p156 comment 24.) To overcome this non-symmetric property of inter-
twining operators, Bruhat introduce the above notion of intertwining forms
and numbers, which is obviously symmetric:

i(Ul, UQ) = i(UQ, Ul) and i(Ul, Ug) = i(UQ,Ul),
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for general representations U;,Us (not only for unitary representations).
And Bruhat studied the space of intertwining forms instead of intertwining
operators in his thesis.

Remark 1.3. For unitary representation (m,U) of G, the 7 is irreducible if
and only if I(U,U) = 1. However if (7,U) is a general representation, then
I(U,U) = 1 only implies 7 is indecomposable, but it may not be irreducible.
In [15], Bruhat studied the irreducibilities only for unitary inductions. As
we can see below, for unitary representations, there is no essential difference
between intertwining operators and forms.

Remark 1.4. For i = 1,2, let (m;,U;) be two representations of G, and
let (72, Usz) be the contragredient representations of Us. Then one has the
isomorphism between vector spaces

(U1, Ua) ~ 3(Uy, Us)
and their dimensions are thus equal:
i(U1,Us) = I(U1, Uy).

Remark 1.5. Let (0, V) be a unitary representation of a subgroup P of G,
and let Ind%o be the normalized induction of ¢, and we know the Ind%o is
also unitary. The Ind%o is irreducible, if and only if I(Ind%e, Ind%o) = 1.
By the above discussion, it is irreducible if and only if i(Ind%e, IndGo) = 1.

As a basic property of unitary inductions, one has IndIGga ~ Indga, hence
the irreducibility of Ind%o is equivalent to

i(Ind%o, Ind%5) = 1.

Hence the irreducibility problem of unitary parabolic inductions is included
as a special case of the study of intertwining forms between two parabolic
inductions. And Bruhat showed the irreducibilities of Indga by showing the
upper bound of i(Ind%o, Ind%5) is 1.

Minimal Principal Series (Paragraphe 7, §1 —5)

Bruhat proved the following theorem for principal series (induced from
minimal parabolic subgroups):

Theorem ([15] p193 Theorem 7.2). Let G be a connected semisimple Lie
group, Py be a minimal parabolic subgroup of G with Langlands decomposi-
tion P@ = OM@A@N@.
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(1) Let (o,V) be an irreducible unitary finite dimensional representation of
Py (which has to be trivial on Ny and is extended from a irreducible finite
dimensional representation of °MyAy). If for all non-identity element
w € W of the Weyl group, the representation o and wo of °MyAy
are not equivalent, then the (normalized) parabolic induction IndIGpwa s
irreducible.

(2) Let (01,V1), (02, V2) be two irreducible finite dimensional representations
of Py, then the parabolic inductions Ind%al and Ind% o9 are equivalent,
if and only if there exists a w € W such that the ° MyAgy-representations
o1 and wos are equivalent.

We will prove the analogue of part (1) for algebraic Lie groups in Chapter
9.

Degenerate Principal Series (Paragraphe 7, §6)

Let Pg be a real parabolic subgroup of G corresponding to a subset
© of the base of restricted roots, with Langlands decomposition Py =
°MgAeNg. Let (7,V) be an irreducible unitary finite dimensional rep-
resentation of Pg, then it is of the form

T:TOM@®X@®1

where 7o)/, is the restriction of 7 to °Mg (it is a irreducible unitary repre-
sentation of °Mg on V'), ye is the restriction of 7 to the split component
Ag (it is a unitary character of Ag) and 1 means the trivial representation
of the unipotent radical Ng.

The restriction of 7 to the Ay is in general not a single character, but a
finite set of characters of Ay. Let

Spec(Ag, 7) = the Ag-spectrum on (7, V).

Then this is a finite set of unitary characters of Ay. Let x € Spec(Ay, 7)
be an arbitrary element, then every character in Spec(Ay, 7) are of the form
wy for some w € Wg.

Definition 1.6 (Regularity of Spec(Ap, 7)). Consider the following con-
dition
(Reg-1): wx #x, YweW —Wg (1.1)
If a character y € Spec(Ay, 7) satisfies the above condition (Reg-1), then we
say x is regular.
It is easy to see if one character in Spec(Ay, 7) is regular, then all char-
acters in Spec(Ay, T) are regular.
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Bruhat has shown the regularity is a sufficient condition for irreducibility:

Theorem ([15] p203 Theorem 7.4). Let (7,V) be an irreducible unitary
finite dimensional representation of Pg, and x € Spec(Ay,T) be a Ay-
character occurring on 7. If x is reqular (in the sense of Definition [1.6)),
then the (normalized) parabolic induction IndgGT is irreducible.

We will reproduce this theorem for algebraic Lie groups in Chapter [9}

1.2.2 Some Other Related Works

We introduce some related works on irreducibilities of unitary parabolic
inductions. Most of them are on inductions of finite dimensional unitary
representations (unitary characters or induction from minimal parabolic
subgroups). Our short-term goal is to reproduce these works as much as
possible, then we have the confidence to attack the infinite dimensional

(1, V).

The Work of Wallach on Minimal Principal Series

We introduce work of N. Wallach on minimal principal series of split
groups.

The connected complex semisimple Lie groups are all complex algebraic
groups, and by restriction of scalar we can study them as real points groups
of connect semisimple algebraic groups defined over R.

Let G be a connected complex semisimple Lie group, with B a Borel
subgroup (minimal parabolic). Assume 7T is a maximal complex torus of
G, such that B = TN where N is the unipotent radical of B. The T
is isomorphic to a complex torus, hence its irreducible representations are
characters. Wallach has proved the following strong result:

Theorem (Theorem 4.1 on page 112 of [40]). Let G be a connected complex
semisimple Lie group, with B a minimal parabolic subgroup. Let B = TN
be its Levi decomposition, and x be a unitary character of T'. Then the
normalized (Hilbert) parabolic induction Ind$y is irreducible.

Let G = SL,, and G = SL(n,R). Let B be the subgroup of upper
triangular matrices in GG, T' be the subgroup of diagonal matrices in B, N
be the unipotent radical of B. The T" decomposes into

T=SxA
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where

S = {diag(mi,...,my) : m; = £1,mimgy---m, = 1}
A = {diag(ai,...,an) : a; > 0,a1a2---a, =1}

Let m = (my,...,my,) be a generic element in S, and let ¢y be the trivial
character on S: €y(m) = 1,¥Ym € S. For i = 1,2,...,n — 1, let ¢; be the
character ¢;(m) = m;. And let €, = €1€2---€,—1. Then every nontrivial
unitary characters of S are of the form ¢;, ---¢;, for some 1 < i1 < i <
<t <n-—1.

Theorem (Theorem 5.1 on page 113 of [40]). Let G = SL(n,R) and let P
be the minimal parabolic subgroup of upper triangular matrices.

e Ifn is odd, then for any unitary character x of T, the unitary (Hilbert)
principal series Indgx 18 1rreducible.

o Ifn is even, and let £ = €;, --- €, for some 1 <i3 < ...<ip, <n—1
and r # n/2, and let v be a unitary character of A, then the unitary
principal series Ind$% (€ @ v) is irreducible.

o Ifn is even, and let £ = €;, ---€;, for some 1 <43 <...<i, <n—1
and r =n/2, and let v be a unitary character of A, then the unitary
principal series Ind% (¢ @ v) is reducible, and is a direct sum of two
irreducible constituents.

Remark 1.7. The results on complex groups are not reachable now. How-
ever we are working on the group SL(n,R) and trying to reproduce the
above Theorem on SL(3,C), and find the intertwining operators studied in
[37].

Degenerate Principal Series for Symplectic Groups

There are numerous works on the irreducibilities of degenerate principal
series. Some of them use pure algebraic method, by computing the K-types
on the inducted representations. But algebraic methods cannot tell us what
the intertwining operator is.

Among the works on degenerate principal series, the works in [25] and
[22], [21] catch our attention.

Let

G =Sp(2n+2,C)={g € GL(2n +2,C) : 'gJg = J}

18



where J is the matrix with all anti-diagonal entries equal to 1, and all other
entries equal to 0. Let M be the subgroup

0 0
A 0 |:aeC* AeSp2n,C)}
0

a—l

M= {

o O e

Then M is the Levi factor of the maximal parabolic subgroup P. Let x be
a unitary character of the torus

0
0 | :aeC*},

a

A={

o O R
S N O

and we extend it trivially to the entire M. The unitary induction IndIGJX
form the unitary degenerate principal series when y run through all unitary
characters of A. K. Gross has proved the following result

Theorem (Theorem 7 on page 422 of [25]). If x is not the trivial character
of A, the Indgx 1s irreducible. If x is the trivial character, then Indgx 18
reducible with two irreducible constituents.

Similar for the complex symplectic groups, T. Farmer has proved an
analogous result. Let G = Sp(2n+2,R) and replace all the above subgroups
P, M, A by subgroups with real matrices, then one has

Theorem (Theorem on page 411 of [22]). If the x is a non-trivial charac-
ter, then IndIG;X 1s irreducible. If x is the trivial character, then IndIG;X 18
reductble with two constituents.

Remark 1.8. Actually both Gross and Farmer have computed the commut-
ing algebra Homg (Ind%y, Ind%y), and shown they are generated by certain
Mellin transformations on the groups. This motivate us to reproduce these
intertwining operators by using our tools of Schwartz analysis.

Parabolic Inductions of Unipotent Representations

We do not have many examples on the irreducibilities of parabolic in-
ductions of infinite dimensional representations. Among them, we want to
mention the work of Barbasch and Vogan ([4]).

Let G be a complex semisimple Lie group, and g be its Lie algebra.
Let O be a nilpotent orbit in g, and assume it is special with its dual
orbit YO even. Let A(O) be the Lusztig quotient group defined in (4.4c) of
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[4]. The irreducible representations of the finite group A(O) parameterize a
finite packet of irreducible representations of GG, called special unipotent
representations (see Theorem III on page 46 of [4]). For each irreducible
representation 7 of A(O), let X, be the corresponding special unipotent
representations.

Assume the orbit O is induced from a nilpotent orbit O of a Levi
subalgebra m (thus the O is special), and assume LO is even. Then the
Lusztig quotient A(O) has a subgroup Zm(O). This group is not defined
thoroughly in [4], and it is claim to be the same as the group considered in
the book [32] of Lusztig.

In the last section of [3], the authors claim the following result

Theorem. Let O, m, Zm(O) be as above. Then for each irreducible rep-
resentation ™ of Zm(O), there is an irreducible representation X7 of the
Levi subgroup M, such that the parabolic induction Inng;:‘ has all its irre-
ducible subquotients isomorphic to a representation X, in the special unipo-
tent packet corresponding to O. For each irreducible representation n of the
Lusztig quotient A(O), the corresponding special unipotent representation
X, occurs with multiplicity

[77‘2“‘(0) : .
The representations X are characterized as follows:
(1) they have the infinitesimal characters (wAo, o) (where Ao is defined
in (1.15b) in [4)]).

(2) their left and right annihilators (in U(g)) are mazximal among all irre-
ducible representations with the same infinitesimal characters.

This theorem is prove by matching the characters of the representations,
and there is no clue how to find the intertwining operators. It is even
unknown whether the representations X are unitary.

For classical groups, Barbasch has shown in [3] that the index of A™(O)
in A(O) is either 1 or 2, hence the induced representation IndX™ has at
most two irreducible factors in the composition series.

1.3 Reading Guide and Key Points of the
Chapter 2, [3) and

The entire thesis is divided into two parts: the foundation part consists
of Chapter and 4. The main part consists of Chapter |5, [6] 9. The
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main part is already summarized at the beginning of the thesis. Here we
write a short reading guide for the foundation part.

We recall necessary notions and results, and omit all details by giving
precise references. The Chapter recall some basic knowledge which
may be well-known to the reader, while the stuff in Chapter 4] are some not
well-known works from [1], [2] and [20], and our own works.

1.3.1 Chapter

The Chapter [2| is short review on three topics: algebraic Lie groups,
topological vector spaces and representations of Lie groups. The section
and are well-known and we keep them in the shortest form. The
notions of NF/DNF-spaces are not so well-known and the reader need to
pay attention to the section

e The Lie groups studied in the thesis are real point groups of con-
nected reductive linear algebraic groups defined over R. The
section is a short summary of the structure theory on algebraic
groups and their real point groups. We mainly follow the book [10] of
Borel.

e We will mainly work on a particular class of topological vector spaces:
nuclear TVS or more precisely NF/DNF-spaces. All terms and results
could be found in Treves’ [36], and for the properties of NF/DNF-
spaces, we follow the appendix in [18]. The NF/DNF-spaces are very
similar to finite dimensional vector spaces, they behave well under al-
gebraic construction (e.g. strong dual and tensor products are exact),
and these good algebraic properties in crucial to build the distribution
theory in Chapter

e The representations studied in the thesis are Harish-Chandra rep-
resentations. The section is a short review of the notion of
Harish-Chandra representations introduced in [17]. We also give a
quick review of the notions of smooth inductions, Hilbert inductions
and Frobenius reciprocity.

1.3.2 Chapter
The Chapter |3| consists of three parts:

e In 3.1 and we recall basic notions in real algebraic geometry. We
follow the [6] in section and the [1], [2] in section [3.2|
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The section |3.1]is a quick review of affine real algebraic varieties. Typ-
ical examples of affine real algebraic varieties are G(R) for algebraic
group G and double cosets on G(R) of algebraic subgroups.

In 3.2, we recall the notions of (affine) Nash manifolds, on which the
theory of Schwartz functions is built in [1]. We basically follow the
definitions from [1]. The nonsingular affine real algebraic varieties is
the most important class of affine Nash manifolds, and we will only
consider affine real algebraic varieties in the thesis.

e In we study the double coset decomposition on the G(R). The
important concepts are anti-actions, closure order, and the notations

G>i, G>;.

e In [3.4) we study the torsion subspace of tensor product module over
a Lie algebra. This is a pure algebraic section, and it could be read
independently. The reader can skip the last four subsections (from

to|3.4.7)), and they will not affect the reading.

Let b be a complex Lie algebra, and Mj, My be two (left) h-modules
and M1 ® M be their tensor product modules, we prove the following
results:

— MY T MO (Mg @ M),
— If one of them, say Ms is finite dimensional and h-torsion, i.e.
M[Qh - Mo, then the above inclusion is equality:

M[lh'} ®./\/l[2h.} = (M ®M2)[h.].

These results sounds elementary but still not found in reference. We
include them for the reader to see how much harder the Chapter |7 is.

1.3.3 Chapter

Some parts of this chapter is also innovative, and not in any reference,
but it is not hard to derive all results in this chapter from the knowledge in
[1], [2] and [20].

The Chapter [4 has two parts:

e In section and 4.4, we recall the work of Aizenbud-

Gourevitch in [1] and [2]. In these sections, the geometric objects
are affine Nash manifolds.
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— In |4.2, we recall the notion of Schwartz R-valued functions on
affine Nash manifolds, and crucial properties on the spaces of
Schwartz functions (e.g. NF-space, cosheaf structure etc). The
notions and results are generalized to C-valued Schwartz func-
tions without difficulty. We will only consider complex valued
Schwartz functions (or even vector valued Schwartz functions in
complex TVS), and the analogous properties are summarized in

Lemma [4.21].

— In we generalize the definitions of scalar valued Schwartz
functions to E-valued Schwartz functions where F is a NF-space.
The E-valued Schwartz function spaces have similar properties as
scalar valued case, and we summarize the analogous properties

as Proposition [4.30

— In we study the strong dual spaces of Schwartz function
spaces and call elements in them Schwartz distributions. The
crucial properties of Schwartz distribution spaces are summarized
in Lemma [4.32, Lemma Lemma And the sheaf prop-
erty of Schwartz distributions lead to the following crucial result:
the space of Schwartz distributions supported in a closed Nash
submanifold is independent of the neighbourhood (Lemma.
This result plays an important role in Chapter [6.

e In section and we will work on nonsingular affine real alge-
braic varieties. Such varieties is a special class of affine Nash mani-
folds that we will only study in the thesis. On nonsingular affine real
algebraic varieties, the Schwartz functions defined in [1] coincide with
the Schwartz functions defined in [20]. Currently B. Elazar and A.
Shaviv have generalized the work of [1] to non-affine/non-smooth real
algebraic varieties.

—In we first restrict the cosheaf of Schwartz functions and
sheaf of Schwartz distributions to the Zariski topology on non-
singular affine real algebraic varieties, and call them pseudo-
cosheaf/pseudo-sheaf on the Zariski topology. We show that a
Schwartz distribution has a well-defined support under the Zariski
topology. When the spaces of Schwartz functions are built on al-
gebraic groups, these spaces have the right regular actions on
right stable subvarieties.

— In we combine the notion of (local) Schwartz inductions in-
troduced in [20], with the properties of Schwartz functions devel-
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oped in [1]. More precisely, the (local) Schwartz induction spaces
are defined to be the images of Schwartz function spaces under
certain mean value integration map. In particular, the Schwartz
induction spaces are NF-spaces and behave well under the Zariski
P-topology. Therefore we can develop a set of crucial properties
similar to the Proposition on Schwartz functions, and the
distribution analysis on Schwartz inductions is very much similar
to the analysis on Schwartz functions. Note that the Schwartz in-
duction from parabolic subgroups are exactly smooth inductions
since the base quotient manifold is compact.

1.4 Convention on Notation

We give a short index of notations frequently used in the thesis.

Algebraic Groups and Lie Groups

We will fix the notations of algebraic groups and Lie groups in In
the entire thesis, we follow the “notation-choosing rules” in Remark
From Chapter [6, we use the following notations of subgroups

Ny = w 'Npw

N =w "Npwn Ny
= N, N Ny

N, =w "Npw NNy
= Ny N Ny

Topological Vector Spaces
Let V, V1, Va be topological vector spaces (TVS for short)

V' = the strong topological dual of a TVS V
V* = the algebraic dual of V
L(V,Va) = the space of continuous linear maps from V; to V3

Vi ® Vi = the completed tensor product of V; and V5

Representation Theory

Let (0,V) be a continuous representation of a Lie group G, then we
denote by (7, V') the contragredient (dual) representation.
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For two representations (o1, V1), (02, V2) of a Lie group, we denote by
Homg (V1, Vo) = Homg(01,02)

the space of intertwining operators from (o1, V1) to (o2, Va).
Let P be a real parabolic subgroup of G (see[2.1)), and (7, V') be a Hilbert
representation of P, then
C*Ind$r = the smooth parabolic induction (Definition 2.30)
Ind$7 = the normalized Hilbert parabolic induction (Definition 2.33)
SInd%r = the Schwartz induction (Definition 4.57)

Lie Algebras and Modules (Section and Chapter |7)

All real Lie algebras are denoted by fraktur letters with a subscript
0, e.g.go, and its complexification is denoted by the same letter with the
subscript removed, e.g. g.

For a complex Lie algebra b, let

U(
(b
U, (h) = the finite dimensional subspace of U(h)

spanned by i-products of elements in h,i < n

h) = the universal enveloping algebra
k

) = the two-sided ideal generated by k-products of element in b

Let M be a left h-module (left U(h)-module), we let

MD*) = the annihilator of the ideal (b*),Vk > 0
MO = | M

k>0
= the (left) h-torsion submodule of M

Similarly for 9 be a right h-module (right U(h)-module), we let

My = the annihilator of the ideal (h*),Vk > 0
Mye) = the (right) h-torsion submodule of M

Lie Algebra Elements as Vector Fields (Chapter [7)

Let G be a Lie group, and go be its abstract (real) Lie algebra. An
element X € go could be regarded as a left invariant vector field on G,
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denoted by X%, and as a right invariant vector field on G, denoted by X%,
For a point g € G, let XgL (resp. Xf) be the tangent vector of X% (resp.

X ) in the tangent space T, yG at g. We only need these notations in Chapter
[7l.

Double Cosets on GG

Let G be a connected reductive linear algebraic groups defined over R,
let Pg,Pq be two standard parabolic R-subgroups corresponding to sub-
sets O, of the base. Let Wg, Wq be the corresponding parabolic Weyl
subgroups. We use the following notations (from [16]):

W/ Wal = {w € W|wo c 5+
Wo\W] ={wecWw'ecxzt}
(We\W/Wq] = [W/Wa] N [We\W]

The [We\W/Wgq)] is the set of minimal representatives (see[3.3), and it is in
one-to-one correspondence with the (Pg, Po)-double cosets in G.

By abuse of notation, we use w to denote both the element in W and a
fixed representative of it in G. For every w € [Wo\W/Wq], we denote by
G?U the double coset PowPq. Under the closure order defined in we let

G, = 11 PoxPy
PowPqoCPgxPq
Q Q Q
G>w = GZw - Gw
The Ggw and G¢,, are Zariski open in G, while the G$! is closed in Ggw.
In particular, when Q =0 (empty set), we simply drop all superscript.

Schwartz Function Spaces and Schwartz Inductions

Let X be a nonsingular real affine algebraic variety (see , or more
generally an affine Nash manifold (see , let E be a nuclear Fréchet space.
Then we denote by

S(X,R) = the space of R-valued Schwartz functions on X
S(X, C) = the space of C-valued Schwartz functions on X
S(X, E) = the space of E-valued Schwartz functions on X
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Let P be a real parabolic subgroup of G, ¢ be a nuclear Fréchet rep-
resentation of P, which is of moderated growth, let Y be a left P-stable
subvariety of G, then we let

SIndbo = the local Schwartz induction space  (Definition 4.64).

In particular, for P = Pg, and 2 C O, we use the following simplified
notations for local Schwartz inductions:

I§ = SIndgga
Q G2
12, = Sind,*"o
Q
12, = Snd> o

As before, when Q = () (empty set), we omit the superscript 2, and for each
w e [We\W], we let

I,=1°
Iy =12,
I>w = Igw
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Chapter 2

Basic Setting

Summary of This Chapter

In this chapter, we unify the terminology and notations, and give precise
reference for the key results without giving proof.

e In we recall the basic notions and results on linear algebraic
groups. The Lie groups studied in this thesis are real points of con-
nected reductive linear algebraic groups defined over R.

e In[2.2, we recall the basic notions of nuclear Fréchet (NF)-spaces and
their strong dual (DNF-spaces). These topological vector spaces form
a good category similar to the category of finite dimensional vector
spaces, and they behave well under algebraic constructions, e.g. the
strong dual and tensor product functors are exact, and tensor products
commute with strict direct limit. These good properties are crucial in
the study of Schwartz functions/inductions and distributions (which
will be introduced in Chapter .

e In we recall the definition of Harish-Chandra representations in-
troduced in [17], and the main object of the thesis—smooth parabolic
inductions.

2.1 Groups Studied in the Thesis

The groups we will study in this thesis are groups of real points of con-
nected reductive linear algebraic groups defined over R.

For algebraic groups, we follow the terms and notations from the follow-
ing book and papers of Borel: [7], [8], [11], [10]. In particular, all algebraic
groups are treated in the classical sense, and regarded as complex algebraic
varieties. In terms of group schemes, the algebraic groups studied in this the-
sis are R-group schemes, and we identify them with their C-rational points,
and study the groups of R-rational points of them.
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e The is on the relative theory of reductive linear algebraic groups
defined over R. We recall the relative root datum, the structure of
parabolic R-subgroups and relative Bruhat decompositions on such
groups.

e The is on Lie groups. The real points groups of connected reduc-
tive linear algebraic groups are of Harish-Chandra class. The algebraic
structure theory coincide with the Lie group structure theory on such
groups.

2.1.1 Algebraic Groups in this Thesis

Let G be a connected reductive linear algebraic group defined over R.
Let G(R) be the group of R-rational points of G, then G(R) has a smooth
Lie group structure.

We denote the Lie group G(R) by G, and let

go = LieG

be its (real) Lie algebra. Let g® be the algebraic Lie algebra of the G, then
go is a real form of gC.

Remark 2.1. Throughout the entire thesis, we stick to the following rules
of notations: for an algebraic group (defined over R) denoted by a boldface
letter, (e.g. H),

e its (complex) algebraic Lie algebra is denoted by fraktur letter with
superscript C (e.g. h%);

e its Lie group of real points is denoted by the same uppercase letter
(e.g. H);

e the Lie algebra of the real point Lie group is denoted by fraktur letter
with a subscript 0 (e.g. ho);

e the complexification of fg is denoted by the same fraktur letter without
subscript (e.g. b).
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Relative Roots, Relative Weyl Group
Let

S = a maximal R-split torus of G
Y. = the set of S-roots
(relative roots)
Ng(S) = the normalizer of S
Zg(S) = the centralizer of S
W = Na(S)/Za(S)
= the relative Weyl group
For each a € 3, let gg be the a-root subspace on g€. In general (unlike the
absolute theory), the gC is neither one dimensional, nor a Lie subalgebra.
If 2o ¢ @, then g$ is a Lie subalgebra of g€. If 2a € ®, then g$ + g(Qca is a
subalgebra of g€. Let
Qreqg ={a € ®:2a ¢ d}

be the subset of reduced roots. For each a € ®,4, let (a) = {ka € ®|k €
Zy} and

5 if v € @
ofy =% o oc (2.1)
9o t 920 if o ¢ Deq
Then one has the Lie algebra decomposition ([10] p231 §21.7):
¢ = LieZg(S) © P oS = LicZa(S) & P af.- (2.2)

acd €D, g

For each a € ®, there exists a unique closed connected unipotent R-
subgroup U,y normalized by Zg(S) with Lie algebra g%:a) ([10] p232 Propo-
sition 21.9). It is the unipotent subgroup directly spanned by absolute root
subgroups Ug such that g8 € PC restricted to S equals to a.

Standard Parabolic R-subgroups

We fix a minimal parabolic R-subgroup Py containing S, it determines
the following datum on the relative root system:
¥t = the relative roots occurring in the Lie algebra p@(c
A = the base of ¥ determined by ©©
¥ =-xt
S={sq:ae€ A}

30



The X7 is a positive system of ¥ which determines the base A, and the S
is a generator set of W.

The parabolic R-subgroups containing Py are called standard parabolic
R-subgroups, and they are in one-to-one correspondence with subsets of A.
For each subset © C A, let

Then the Pg = Py - Wg - Py is a standard parabolic R-subgroup with Levi
R-factor Mg, unipotent radical Ng, and Levi decomposition Mg X Ng.
The Wg is the relative Weyl group W (Mg, S) of Mg.

In particular when © = (), the parabolic R-subgroup of G corresponding
to ) C A is exactly the Py we fixed at the beginning, and this is why we
use the subscript (). And the Sy =S, Wy = {e} (identity).

The Relative Bruhat decomposition

Let G(R),Py(R), Nc(S)(R) be the groups of R-rational points on G, Py
and Ng(S), and S = {s, : @ € A} be the set of reflections of R-simple roots.
Then the quadruple

(G(R),Py(R), Ng(S)(R), 5)

is a Tits system ([10] p236 Theorem 21.15).

Let ©,9 be two subsets of A, and Pg, P the corresponding standard
parabolic R-subgroups, and Wg, W be the corresponding (parabolic) sub-
groups of W. By the same remark on p22 of [13], one has the double cosets
decomposition of G(R):

G(R) = II Po®uPo®). (2.3)
we[We \W/Wq]
Here we still adopt the notation of the representative sets on page 7 of
[16]:
(W/Wgq] = {w e WwQ Cc ¥}
Wo\W] = {we Ww'e c st}
[We\W/Wa] = [W/Wa] N [We\W]
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2.1.2 (G as a Lie Group

Let G be a connected reductive linear algebraic group defined over R,
and G = G(R) be the Lie group corresponding to the group of real rational
points. We assume G has nonzero semisimple R-rank, i.e. the R-rank of
DG is nonzero, to make sure G has proper parabolic R-subgroups. For G
and its R-subgroups, we follow the notation-choosing rules in Remark [2.1|

The G has the following properties:

1. G has finite number of connected components (under the Euclidean
topology).

2. Its Lie algebra gg = LieG is reductive.

3. Let G° be its identity component, then the derived subgroup D(G°)
has finite center and is closed in G°.

4. The G is of inner type, i.e. AdG C Intg where g ~ LieG.

Hence the G is a Lie group of Harish-Chandra class in the sense of [28§]
pl05-106. Also, the G is a real reductive Lie group in the sense of [12].

Cartan Decompositions and Restricted Roots

Since G has finitely many components, every compact subgroup is con-
tained in a maximal one. Every maximal compact subgroup meets all con-
nected components, and they are conjugated under G°. There exists a
global Cartan decomposition on G: G is diffeomorphic to a product
K xV where K is an arbitrary maximal compact subgroup and V is a vec-
tor subgroup. The corresponding involution © : k- v — k- v ™! is called a
global Cartan involution of G ([33] section 3).

The differential § = d© of the global Cartan involution is called the local
Cartan involution on the Lie algebra gg, which gives the local Cartan
decomposition

go = 9g0(0,1) ® go(6,—1)

where go(6,+1) are the +1-eigenspaces of the involution . The eigenspace
go(6, +1) is exactly the Lie algebra €y of K.

For the —1-eigenspace, a subspace of go(f, —1) is a subalgebra of gq if
and only if it is abelian. All maximal abelian subalgebra of go(6,—1) are
conjugate under K°.

Let ap be a maximal abelian subalgebra of go(¢, —1). The adjoint action
of ag on go gives weight space decomposition. For A € afj (real dual), one
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has the weight space gox = {X € go|[Z, X] = M(Z)X,VZ € ap}. The X that
gox # {0} are called ap-roots or restricted roots on gg. Let

(g0, ap) = the set of ag-roots on go

W (g0, a0) = Nio(ao)/Zre(ao)
= the restricted Weyl group

Then the X(gg,ap) form a root system in the vector space it spans with
W (go, ap) as its Weyl group.

Restricted Root System vs Relative Root System

As in by fixing a maximal R-split torus S of G, one has the rela-
tive root system ¥ = X(G,S) and the relative Weyl group W = W(G, S)
determined by S.

As above, by fixing a Cartan involution ©® on G (6 on gp), and a max-
imal abelian subalgebra ag in go(f, —1), one has the restricted root system
Y (go, ap) and the restricted Weyl group W (g, ap) determined by ay.

We can choose the S, © and ag to be compatible. More precisely, let .S
be the Lie group of the S(R). The Lie algebra so of S (which is also the
Lie algebra of A) is conjugate to the ag we fixed above. In particular, we
can choose S and ay such that the s = ag. In this case, the Ay = expag is
exactly the identity component S°.

The restriction of the differential o — da — daq, thus gives a bijection
between the relative root system and restricted root system:

2(G,S) — X(go; o) (2.4)
a — dalq,

By abuse of notation, we use the same « to express both the algebraic root
in ¥(G,S) and the corresponding restricted root in ¥(go, ag). The above
bijection also induces an isomorphism between the relative and restricted

Weyl groups: W (G, S) ~ W (g, ap).

Real Parabolic Subgroups.

A subgroup of G is called a (real) parabolic subgroup of G if it is the
real points of a parabolic R-subgroup of G. In particular, we call P = P(R)
a minimal (real) parabolic subgroup of G, if the P is minimal parabolic
R-subgroup of G.
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Asin we have fixed a minimal parabolic R-subgroup of G contain-
ing S, denoted by Py, then the Py = Py(R) is a minimal parabolic subgroup
of G. Similar to the algebraic parabolic subgroups, we call a (real) parabolic
subgroup P of G standard, if the corresponding P is standard, i.e. con-
taining the Py. Thus by fixing the minimal parabolic R-subgroup Py, the
standard parabolic R-subgroups of G are in one-to-one correspondence with
the standard (real) parabolic subgroups of G, and the correspondence is
P — P(R). And the standard (real) parabolic subgroups of G are also
parameterized by subsets of A.

For a standard parabolic R-subgroup P = Pg, its unipotent radical
Np = Ng and a Levi R-factor Mp = Mg are given in[2.1.1l The two factors
are defined over R, and the semi-direct product induces the semi-direct
product decomposition on P(R): Pg(R) = Mg(R) x Ng(R). Following the
notation-choosing rules in Remark we have the Lie group semi-direct
product:

P@ = M@ X N@.

And we call this decomposition the Levi decomposition of Pg, and call
the Mg a Levi factor of Pg and Ng the unipotent radical of Pg.

The Langlands Decomposition of Pg

The R-torus Sg = ([),co Kera)® is a subtorus of S. The Lie group
identity component Ag = Sg(R)? is a subgroup of 4y = S(R)?. (Note
that S = Sy). It is connected, simply connected and isomorphic to direct
products of Rsg. It is abelian and the its exponential map is a smooth

diffeomorphism.
The Ag has a unique complement inside the group Mg, namely the
°Mg = m Ker|x/,
x€X(Me)

here X(Mg) = Hompni(Me,R*) is the group of continuous homomor-
phisms from Mg to R*. The °Mg is in general not connected, but is a
real reductive Lie group or a group of Harish-Chandra class. If © is the
empty set, the °Mg is a compact group.

And the Mg is a direct product of the two subgroups:

M@ = A@ X OM@.

The decomposition
P@ZOM@ XA@ KN@
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is called the Langlands decomposition of the real parabolic subgroup Pg.

The Ao and °Mg are not real point groups of algebraic groups. But we
still follow the notation-choosing rules in Remark and let agg = LieAg
(real Lie algebra) and ag be its complexification.

2.2 NF-Spaces and DNF-Spaces

We recall some crucial properties of nuclear Fréchet spaces and their
dual. For basic terms and results, we follow the book [36]. Most of the
materials about NF-spaces and DNF-spaces are from the short survey in
the Appendix A of [18].

2.2.1 Basic Notions on Topological Vector Spaces

In this thesis, the term topological vector space(s) is abbreviated as
TVS. If not otherwise stated, all TVS are assumed to be locally conver and
Hausdorff.

e A TVS is Fréchet ([36] p85), if it is locally convex, metrizable and
complete.

e A locally convex Hausdorff TVS FE is nuclear, if for every continuous
seminorm p on F, there is a continuous seminorm ¢ such that p < ¢
and the canonical map £, — E, is nuclear ([36] p479 Definition 47.3).

Definition 2.2. A nuclear Fréchet TVS is called an NF-space for short,
and the strong dual of an NF-space (with the strong topology) is called a
DNF-space.

The strong dual of a NF-space is also nuclear ([36] p523 Proposition
50.6), but almost never Fréchet.
Homomorphisms and Topological Exact Sequences of TVS

Let E, F be two TVS, and ¢ : E — F be a continuous linear map. As
in linear algebra, it factor through the linear map between vector spaces:

oo : E/Ker(¢) — F.

which is called the map associated with ¢. With the quotient topology on
E/Ker(¢), the ¢ is continuous. It has a naive linear inverse ¢y ' : ¢(E) —
E/Ker(¢) since ¢g is a linear isomorphism onto the ¢(FE), but this inverse
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o ! need not to be continuous. The o ' is continuous if and only if ¢ is
an open map, or equivalently the quotient topology on ¢(F) from ¢ is the
same as the induced topology from F'.

Definition 2.3 ([36] p35 Definition 4.1). A continuous linear map ¢ : £ —
F is called a homomorphism of TVS, (or strict morphism) if its asso-
ciated map ¢q is open.

Lemma 2.4 ([36] p170 Theorem 17.1). Let E,F be two metrizable and
complete TVS. Then every surjective continuous linear map ¢ : . — F is a
homomorphism.

Lemma 2.5 ([34] p77 Corollary 1). Let E, F be two Fréchet spaces and ¢ :
E — F be an injective continuous linear map. Then ¢ is a homomorphism
if and only if its image ¢(E) is closed in F.

Definition 2.6. Let E7, Es, E53 be three TVS, then the sequence
0—>F —FEy— E3—0

is called an (short) exact sequence of TVS if all maps are continuous
linear map and it is an exact sequence in the category of vector spaces.

Furthermore, it is called a (short) topological exact sequence of
TVS, if all maps are homomorphisms of TVS. Equivalently this means
FE1 — Es and Fy — E3 are homomorphisms of TVS, since the other two are
automatically homomorphisms.

Lemma 2.7. Any short exact sequence of Fréchet spaces (in the category
of vector spaces) is automatically topological exact, i.e. all maps are homo-
morphisms.

Proof. Let E1, Fo, E3 be three Fréchet spaces, and let
0—>F —FEy— E3—0

be an exact sequence in the category of vector spaces. Then by Lemma 2.4,
the Ey — Ej3 is a homomorphism. Also since Im{E; — E2} = Ker{Fy —
Es} which is a closed subspace of Es, by Lemma the F1 — E» is also a
homomorphism. ]

2.2.2 Properties of NF-Spaces and DNF-Spaces

The category of NF-spaces (or DNF-spaces) with homomorphisms be-
tween them form a good category, which is similar to the category of finite
dimensional vector spaces. We are especially interested in the dual exact
sequences, and topological tensor products.
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Strong Dual and Transpose Maps

Lemma 2.8 ([18] p186 Lemma A.2). Let (C*®,ds) be a complex of NF-spaces
(resp. DNF-spaces), i.e. one has a complex

dp—1 dn dp+1
N L N [ o e e N

each space C™ is a NF-space (resp. DNF-space), and each differential d,, is
a homomorphism of TVS. Then the strong dual complex

dt ¢ d
o (omtyr oy (omy Doty (omety

is a complex of DNF-spaces, i.e. all strong dual spaces (C™) are DNF-
spaces, and all transpose maps d., are homomorphisms of TVS. Moreover
we have the isomorphism

HP(C'*) = HP(C*).
In partiular, we have

Lemma 2.9. Let
0—>E1E>E2£>E3—>0

be a topological exact sequence of NF-spaces (resp. DNF-spaces), then its
strong dual

;Y o N
0= by —Ey — E —0

is a topological exact sequence of DNF-spaces (resp. NF-spaces).

Topological Tensor Products

Let E be a nuclear TVS, and F' be an arbitrary locally convex Hausdorff
TVS. Then the inductive topology and the projective topology on E ® F'
are the same:

E®. F=E®;F

hence they have the same completions:
E @e F - E @71— F.

When one of the TVS in the tensor product is nuclear, we will not
distinguish the inductive and projective tensor products, and simply denote
the tensor product by F ® F, and its completion by E® F.
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Lemma 2.10. Let E, F be two locally convexr Hausdorff TVS.

o If E.F are both nuclear, then so is E® F. (/36] p514 Proposition
50.1)

o If E.F are both NF-spaces, then so is E ® F. (]26] Ch I, §1, no.3
Prop 5)

e If E, F are both DNF-spaces, then so is E® F. (/26] Ch I, §1, no.3
Prop 5)([26] Ch I, §1, no.3 Prop 5)

Lemma 2.11. Let E, F be two Fréchet spaces. If E is nuclear, then

e the canonical map B'®F' — (E®F) extends to an isomorphism ([36]
p524 Proposition 50.7)

~

FoF = (EQFY (2.5)

e the canonical map E' @ F' — L(E, F) extends to an isomorphism ([36]

p525 (50.17))
EF'®F = L(E,F) (2.6)

Lemma 2.12 ([18] p187 Lemma A.3). Let F' be an NF-space (resp. DNF-
space), let
0—>F —FEy,— E3—0

be a topological exact sequence of NF-spaces (resp. DNF-spaces). Then
0B RF 5 E®F > E30F -0

1$ a topological exact sequence.

Direct Limits and Tensor Products

Let {F; : i € I} be an inductive system of nuclear spaces, and let F' =
@ie  Fi be its inductive limit in the category of locally convex spaces. If
I is countable and F' is Hausdorff, then F' is nuclear by [26] Ch II §2 no.2
Corollary 1. Moreover, if F; are DNF-spaces, then so is F' = hgiel F;.

Lemma 2.13 ([18] p187 Lemma A.4). Let E be a DNF-space, and {F; :
i € I} be a inductive system of DNF-spaces. Assume I is countable and

F= @ie[ﬂ is Hausdorff. Then

E®F =1lim(E® F,). (2.7)
i€l
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2.3 Representations Studied in the Thesis

We introduce the category of representations studied in the thesis, i.e.
the Harish-Chandra representations.

Throughout this section, let G = G(R) be the Lie group of real rational
points of a linear algebraic group G defined over R.

2.3.1 Basic Notions on Representations

In literatures, people add various of restrictions on the representation
spaces. For example, unitary representations are on Hilbert spaces. We will
study the intertwining operators and irreducibility, which is a very general
problem. Thus it is natural to start from spaces with minimal confinement.

Continuous Representations
A TVSis

e locally convex ([36] p58 Definition 7.2), if its topology is defined by
a family of seminorms.

e Hausdorff, if it is separated (7%) in the ordinary sense , i.e. every
two points are separated by two disjoint open subsets.

e quasi-complete ([14] II1.6 Definition 6), if it is locally convex and
every closed and bounded subset is complete.

This is the basic assumptions on TVS. In this thesis, if not otherwise stated,
all TVS are assumed to be locally convexr Hausdorff and quasi-complete.

Definition 2.14. A continuous representation (7, V) of G (V satisfying
the above conditions), is a group representation on the TVS V such that
the map

GxV =V, (g,v)—7(g)v

is continuous (under the product topology).

Example 2.15. The left and right regular representation of G on the space
C>*(G,C) or CX(G,C).

Remark 2.16. The early works on Lie group representations usually have
physics backgrounds, and the representations under concern are mostly uni-
tary (Hilbert) representations, e.g. the work [5] of Bargmann. A lot of
subsequent references define general representations on Hilbert spaces, for

39



example the extensive works by D. Vogan including the standard reference
[38], and “textbooks” like [41] and [30].

Harish-Chandra is one of the founders of algebraic study of Lie group rep-
resentations. His early works in 1950’s are on Banach representations, e.g.
the “Representations of semisimple Lie groups [I-VI”. The groups in his early
works are connected semisimple Lie groups. The work of representations on
normed spaces traces back to [23] and [24]. In [27], Harish-Chandra started
to work on representations on locally convex TVS (p5 §2) as in [15], and in
[28], he generalized the groups under study to “groups of Harish-Chandra
class”.

By tracing back the reference chain, the French school seems to be the
origin of studying representation theory on general TVS, by regarding Lie
groups as locally compact topological groups (e.g.[15], [9] and [12]. The
conditions “locally convex, Hausdorff and quasi-complete” on TVS originate
from these references. The monograph [42] also adopt the general definition
of representations on TVS, but in addition he assumed the representation
space to be complete.

Smooth Vectors and K-Finite Vectors

Definition 2.17. Let (m, V') be a continuous representation of G. A vector
v € V is called a smooth vector, if the map

G—=V, g—mn(gv

is a smooth V-valued function on G. We denote the subspace of smooth
vectors on V by

Ve,
A continuous representation (m, V) is called a smooth representation if
V=V

Let K C G be a maximal compact subgroup, and (7, V') be a continuous
representation of G.

Definition 2.18. A vector v € V is called a K-finite vector, if it is
contained in a finite dimensional K-stable subspace of V. We denote by

VK
the subspace of K-finite vectors on V.

All maximal compact subgroups of G are conjugate, hence the above
notion of “K-finiteness” is independent of the choice of K.
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Representations of Moderate Growth

We fix an embedding G C GL,, defined over R. Therefore the real point
group G = G(R) C GL(n,R) is a group of real matrices, with the action on
the vector space R”.

Definition 2.19 ([39] 1.6). Let the matrix group GL(n,R) act on R" ¢ R"
by
g+ (w1,22) = (g-21,'97" - a2),

and let |g| be the operator norm of the above g as an operator on R™ & R".
We define the norm || - || on G = G(R) C GL(n,R) by

lgl| :== gl

Definition 2.20 ([17] p391). A continuous representation (m, V') of G is of
moderate growth, if

(T1) the V is a Fréchet space, and assume its topology is defined by the
family B of seminorms;

(T2) for each seminorm p € P, there is another seminorm p’ € P and a
positive integer IV such that

p(r(g)v) < [lgll™/'(v)
for all g € G,v € V (the N doesn’t depend on g and v).

Remark 2.21. If we choose a different embedding G C GL,,, we obtain
another norm on G. The new norm is “equivalent” to the original one, in
the sense that they are bounded by powers of each other. Hence the above
notion “moderate growth” is independent of the choice of the embedding

G C GL,.

Remark 2.22. The above norm ||-|| : G(R) — R is bounded by an algebraic
functions. Hence the above notion of “moderate growth” is equivalent to
the notion “croissance modérée” in Definition 1.4.1 on page 272 of [20)].

Actually a wide class of representations (including all finite dimensional
continuous representations) are of “moderate growth”:

Lemma 2.23 ([39] p293 §2.2 Lemma). Every Banach representation is of
moderate growth.
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2.3.2 Harish-Chandra Modules
The Notion of (g, H)-Module

Let g be the complexified Lie algebra of G, and H C G be a closed
subgroup of G.

Definition 2.24 ([17] p393). A vector space V is called a (g, H)-module,
if one has an action of H on V and an g on V, satisfying the following
conditions:

(C1) Every vector is H-finite and H-continuous, i.e. it is contained in
a finite dimensional subspace on which H acts continuously hence
smoothly. (In particular, one can differentiate the H-action and ob-
tain an h-action.)

(C2) The two actions of the complexified Lie algebra h of H—one through
subalgebra of g, the other one through differentiation of the H-action,
are the same.

(C3) The H and g-actions are compatible in the following sense:
h-(X-v)=Adh(X) - (h-v)
foralhe HH X e g,veV.
If H is compact, then (C1) is equivalent to

(C1’) As a H-representation, V is a direct sum of irreducible finite dimen-
sional continuous H-representations.

The Underlying (g, K)-Module

We are particularly interested in the case when H = K is a maximal
compact subgroup. If (7, V') is a continuous representation, then the inter-
section VSNV E of smooth vectors and K-finite vectors is a dense subspace
of V, and stable under g and K-actions, and this intersection satisfies the
above conditions (C1)(C2)(C3).

Definition 2.25 ([17] p393). The subspace V™ N VX of a continuous rep-
resentation (7, V') is called the underlying (g, K')-module of (7, V). Con-
versely, let V' be a (g, K)-module. A continuous representation (m, Vi) of G
is called a G-extension of V if V™ N VX is isomorphic to V as g-module
and K -representation.

Two representations are called infinitesimally equivalent, if their un-
derlying (g, K)-modules are isomorphic as (g, K )-modules.
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Definition 2.26 ([17] p393). Let V be a (g, K)-module, it is called a
Harish-Chandra module, if it satisfies the following conditions:

(H1) Any irreducible K-representation occurs in V' with finite multiplicity.
(Also called admissible in many literatures.)

H2) V is annihilated by some ideal of finite codimension in Z(g).

H4) V has finite length.

)
H3) V is finitely generated over U(g).
)
The (H2)(H3)(H4) are equivalent by [17] p408 Lemma 5.3.)

(
(
(
(

2.3.3 Harish-Chandra Representations

Definition 2.27 ([17] p394). A continuous representation (m, V') of G is
called a Harish-Chandra representation, if it satisfies the following con-
ditions:

e (m,V) is a smooth representation, i.e. V™ = V.

e (m,V) is of moderate growth, in particular it is a Fréchet representa-
tion.

e Its (g, K)-module, i.e. VS N V¥ is a Harish-Chandra module.

Remark 2.28. In [17], it is shown that every finitely generated Harish-
Chandra module has a “globalization”, i.e. a Harish-Chandra representa-
tion on a nuclear space which has its associated Harish-Chandra module is
isomorphic to the given Harish-Chandra module. Therefore, up to infinitesi-
mal equivalence, we will only study nuclear Harish-Chandra representations
in this thesis.

We will see the following two families of representations are Harish-
Chandra representations with nuclear representation space:

e Finite dimensional continuous representations;
e Smooth parabolic inductions of nuclear Harish-Chandra representa-
tions (see the next subsection).

2.3.4 Smooth Inductions

In this subsection, we introduce the main object—the smooth parabolic
inductions of Harish-Chandra representations. Let G be a real point group
of connected reductive linear algebraic group defined over R, P be a standard
real parabolic subgroup of G.
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The Space C®Ind%o

Let (0,V) be a smooth Fréchet representation of the subgroup P, we
define the following space:

C>IndGo := {f € C®(G, V)| f(pg) = oc(p)f(9),Vp € P,g € G}  (2.8)

i.e. the space of smooth functions on G taking values in V', and satisfying
the “o-rule”. The G acts on this space by the right regular action: Vg €
G, f € C®Ind%o

Ry(H)d) = (g-Nd) = f(dg), V4 ed. (2.9)

The Topology on C’OOInd]GDU

The elements in the real Lie algebra gg act as smooth left invariant vector
fields on G. For each f € C*°(G,V) and X € g, we define the Ry f to be

(Rxf)(9) = lim g eXP(Ut()) — f(9)

= Lloflgexp(tX)).  (210)

The Rx f is still in C*°(G, V). Moreover, if f is in the subspace CwIndga,
then Rx f also satisfies the o-rule, hence Rx f € Coolndga. By extension of
scalar, we have the g-action hence the algebra action of U(g) on COOInng,
and we use the same notation Rx for all X € U(g). In other words, the
C>*Ind%o is a g-module.

Suppose the topology on V' is given by a family of semi-norms {[-|,: p €
PB}. For each element X € g and seminorm p on V, we define the following
seminorm on C*®Ind%o:

[f1lx,p == sup [Rx f (k)]
keK
These semi-norms give the C"X’Indga a locally convex Hausdorff topology.

The Smooth Inductions

Under the above topology, the right regular G-action on C*°(G,V, o) is
a smooth representation. And we have:

Lemma 2.29 ([17] p402 Proposition 4.1). If the (o,V) is of moderate
growth, then so is the C®°Ind%o (under right reqular G-action). If (o,V) is
a Harish-Chandra representation, then so is C*Ind%o.

Definition 2.30. The CmIndga with right regular G-action is called the
smooth parabolic induction of (¢,V) from P to G.
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2.3.5 Frobenius Reciprocity

We formulate the Frobenius reciprocity (Lemma [2.31)), in terms of the
smooth inductions defined in the last subsection. Let G, P be as in the
last subsection, and let (o, V') be a Harish-Chandra representation of P and
C>Ind%o be the smooth parabolic induction.

Let e € G be the identity and let

Q. : C®Ind%o — V
f= f(e)

be the delta function at e (evaluation at e). Then €. is a continuous linear
map from C’OOIndga to V, and it is P-equivariant:

Qe(Rpf) = o(p)Qe(f),
hence Q, € Homp(C®Ind%a, V).

Lemma 2.31 (Frobenius reciprocity, [17] Lemma 4.2). Let C*®Ind%o
be the smooth induction of (o,V) from P to G, let (1,U) be a smooth rep-
resentation of G. Then the following map is a linear isomorphism:

Homg (U, C*Ind%o) = Homp(U, V) (2.11)
T QeoT

Remark 2.32. It is easy to write down the inverse map of (2.11). For a
® € Homp(U, V), we let Tp : U — C®Ind%o be the map defined as follows:

To(u)(g) :=P(g-u), YueUgegdG.

It is easy to verify that Tp(u) € C®Ind%o, Ty € Homg (U, C*Ind%o) and
® — Tp is the inverse of (2.11]).

2.3.6 (Hilbert) Normalized Parabolic Inductions

In most references, people realized the parabolic inductions on a Hilbert
space, called normalized parabolic inductions.

Let G, P be as above, and let (7, V') be a representation of P on a Hilbert
space V. Then let H; be the space of smooth functions f € C*(G,V)
satisfying

f(pg) = ()6 * (1) F(9),¥p € P.g € G,
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and we define a pre-Hilbert inner product on H, by

1 fo) = /K (k). folk))-di

where (,), is the Hilbert inner product on the Hilbert space V. Then let
Ind]GgT be the completion of H, with respect to the above pre-Hilbert inner
product. Then right regular G-action on H, extends to the entire Indgr
and makes it a Hilbert representation of G.

Definition 2.33. The IndgT with the right regular G-action, is called the
normalized (Hilbert) parabolic induction of 7 (from P to G).

Remark 2.34. If (7,V) is a unitary representation, the Ind%r is also a
unitary representation. This is the reason to add the factor (5113/ % in the
definition.

There are different ways to define the normalized Hilbert parabolic in-
ductions in various of references, and they are all infinitesimally equivalent
to the above definition.

The relation between the normalized Hilbert parabolic induction and
smooth parabolic induction is as follows:

Lemma 2.35. Let 7 be a Hilbert representation of P, and let 0 =7 ® 5},/2.
Then the Coolndga and IndgT are infinitesimally equivalent.

Remark 2.36. The C*Ind%o and Ind$r are both admissible, hence their
G-invariant closed subspaces are in one-to-one correspondence with the
(g, K)-submodules of their (isomorphic) underlying (g, K )-modules. There-
fore, the Cwlndgo and IndIG::T are irreducible/reducible simultaneously.
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Chapter 3

Preliminary

Summary of This Chapter

This assorted chapter lays the foundations for the following chapters,
especially for the Chapter

The first part consists of section and in which we introduce
certain necessary geometric notions, for the definition of Schwartz functions
in the next chapter. To define the Schwartz functions, one need a scale to
measure if the functions decrease “rapidly”. As for the classical Schwartz
functions on R™, the rapidity of decreasing is measured by derivatives with
polynomial coefficients. However on general smooth manifolds, there is no
intrinsic “algebraic functions”. If we look at the special class of manifolds—
the Nash manifolds (or nonsingular real algebraic varieties), we do have the
intrinsic notion of Nash functions (or polynomial functions), which gives us
a scale to define the Schwartz functions on such manifolds.

Section [3.5 and|[3.4] could be read independently.

e Section provides a minimal set of knowledge of (affine) real al-
gebraic variety. All terms and results are quoted from Chapter 3 of
[6].

o In we review the notion of affine Nash manifolds, following [1] and
[2].

e In we recall the double coset structures on the group G = G(R).
Also pay attention to the term “anti-action”, since we will mainly work
with spaces with right translations.

e Section is pure algebraic. We recall some basic notions on tor-
sion submodules, and study the torsion subspace on tensor product
modules.
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3.1 Real Algebraic Varieties

We recall the notion of real algebraic varieties, following the Chapter 3
of [6]. The notions in this section are from the subject “real algebraic geom-
etry”, not from the ordinary algebraic geometry. “Real algebraic varieties”
in this thesis have different meaning from “algebraic varieties defined over
R”.

3.1.1 Algebraic Subsets of R"

Let R™ be the n-dimensional real affine space, and let R[X] (also de-
noted by R[Xy,...,X,]) be the (real coefficients) polynomial ring of n-
variables. We denote a general point in R™ by x, or the coordinate form
x = (x1,...,x,) if necessary.

e An algebraic subset of R" ([6] p23 Definition 2.1.1), is a subset of
the form
Z(S):={z eR": f(x) =0,Vf € S}

where S C R[X] is a subset.

e For a subset Y C R", we denote by
IY):={feR[X]: f=0on Y}

the set of polynomials vanishing on entire Y. This is an ideal of R[X],
called the vanishing ideal of Y.

e The Zariski topology on R" is the topology whose closed subsets
are algebraic subsets of R". On an algebraic subset V' C R", the
induced topology from the Zariski topology on R" is called the Zariski
topology on V. The Euclidean topology on R"™ and algebraic subset
V' C R™ are finer than the Zariski topologies on them. The Zariski
topology is not Hausdorff, but is still Noetherian and in particular
quasi-compact (every open cover has a finite subcover).

The following fact is one of the main differences between real algebraic
subsets and general algebraic sets on arbitrary fields:

Lemma 3.1 ([6] p24 Proposition 2.1.3). Every real algebraic subset of R™
is of the form Z(f) for a single polynomial f.
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3.1.2 Affine Real Algebraic Variety
Let V C R™ be an algebraic subset.

e The quotient ring P(V) = R[X1,...,X,]/I(V) is called the ring of
polynomial functions on V', and elements in it are called polyno-
mial functions on V. ([6] p62)

e Let U C V be an Zariski open subset of V. A regular function on
U, is a real valued function on U, which could be written as a quotient
f/g, for some f,g € P(V), such that g is nonzero at every point of
U. The regular functions on U form a ring denoted by R(U). ([6] p62
Definition 3.2.1)

e The correspondence Ry : U — R(U) is a sheaf of rings over the
Zariski topology on V', called the sheaf of regular functions. ([6]
p62 Corollary 3.2.4)

e An affine real algebraic variety is a pair (X,Rx), consisting of
a topological space X isomorphic to an algebraic subset V with its
Zariski topology, and a sheaf of rings R x isomorphic to the sheaf of
regular functions Ry . ([6] p63 Definition 3.2.9)

Zariski closed subsets of an affine real algebraic variety is still an affine
real algebraic variety. By the Lemma [3.1, a Zariski open subset of an affine
real algebraic variety is also an affine real algebraic variety:

Lemma 3.2 ([6] p63 Proposition 3.2.10). Let (V,Ry) be an affine real
algebraic variety. Let U C V' be a Zariski open subset. Then the (U, Ry |ur)
18 an affine real algebraic variety.

This Lemma tells us any Zariski locally closed subset of an affine real
algebraic variety has a natural structure of affine real algebraic variety.

Remark 3.3. We can continue to define general real algebraic varieties
by gluing affine real algebraic varieties ([6] p64 Definition 3.2.11). But we
prefer to stop here to save space, since all real algebraic varieties studied in
this thesis are locally closed hence affine real algebraic varieties.

The affine real algebraic varieties form a special class of affine Nash
manifolds, which will be introduced in the next section.
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3.2 Basic Notions on Nash Manifolds

This section is a short introduction to some basic notions in real algebraic
geometry.

In the thesis (especially the next chapter), we will frequently quote re-
sults from [1] and [2], which are built on Nash manifolds. Thus to make the
thesis self-contained but not too long, we write this short section.

The real algebraic geometry is not a branch of algebraic geometry, since
the objects under study are not pure algebraic. However from this sec-
tion the reader could see that the pattern to define terms in real algebraic
geometry is similar to that of algebraic geometry.

3.2.1 Semi-algebraic Sets and Maps

For each positive integer n, let R™ be the n-dimensional real affine space,
and we endow it with the Euclidean topology and canonical smooth struc-
ture. Let x1,...,xz, be the coordinates on R", and R[x, ..., z,] be the ring
of real polynomials on R".

Definition 3.4. A subset X C R" is called a semi-algebraic subset of
R™, if it is a finite union of subsets of the form

{x e R": fi(x) > 0,gj(x) =0},

for some polynomials f;,g; € R[z1,...,2,],i=1,...,1,7=1,...,s.

Let X C R™ Y C R" be two semi-algebraic subsets. A map f: X - Y
is called a semi-algebraic map if its graph {(z, f(z)) : v € X} C R™ x
R™ = R™*™ is a semi-algebraic subset in R™",

The finite unions, finite intersections and complements of semi-algebraic
subsets are semi-algebraic. Images of semi-algebraic subsets under semi-
algebraic maps are semi-algebraic. The Euclidean closures of semi-algebraic
subsets are semi-algebraic.

Example 3.5. We give some examples of semi-algebraic subsets.

1. In R, for all —o00 < a < b < o0, the intervals (a,b), [a,b], [a,b), (a, b]
are semi-algebraic subsets in R. Actually all semi-algebraic subsets of
R are (finite) unions of such intervals.

2. An algebraic subset of R™ (see is semi-algebraic. For example the
“cross” in real plane:

{(z,y) : 2% —y? =0} C R2.
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3. Here are some more examples in R?: the quadrant {(z,y): z > 0,y >
0}; the unit cube {(z,y) : 0 < x < 1,0 < y < 1}; a branch of hyperbola
{(z,1/z) : x > 0}.

4. The (algebraic) Lie group GL(n,R) = {g € M,(R) : det g # 0}, and
its connected component GL(n,R)* = {g € M, (R) : detg > 0}. In
general, for an algebraic group G defined over R, its real point group
G(R) or a finite union of its Lie group components, are semi-algebraic.

Example 3.6. We give some examples of semi-algebraic maps.

1. Polynomials in R[zy,...,x,]| are semi-algebraic maps from R" to R.

2. The absolute value function |- | : R — R,z — |z| is semi-algebraic.
The rational power function R — R, z — 2™/ ig semi-algebraic (when
it is well-defined).

3. Let fi,..., fr be semi-algebraic maps from R™ to R, then the functions
max{ f1,..., fr} and min{f1,..., fx} are semi-algebraic maps.

3.2.2 Nash Submanifolds of R"

Definition 3.7 ([2] Definition 2.3.3 and 2.3.5). A semi-algebraic subset
X C R" is called a Nash submanifold of R", if it is also a smooth regular
submanifold of R™.

Let X C R™ be a Nash submanifold of R” and ¥ C R™ be a Nash
submanifold of R™. A map f: X — Y is called a Nash map if it is smooth
and semi-algebraic.

Example 3.8. The semi-algebraic subset {(x,y) : 22 — y? = 0} is not a

regular submanifold of R? (the origin is a singular point), hence it is not a
Nash submanifold of R2.

Another example is the closed quadrant {(z,y) : z > 0,y > 0}. It is a
semi-algebraic subset of R?, but not a regular submanifold (the origin is a
corner), hence not a Nash submanifold of R?.

Remark 3.9 ([2] Example 2.3.9). Let M C R™ be a Nash submanifold of
R™, then it has the induced topology from the Euclidean topology on R™.
Let

Sy :={U C M : U is open in M and semi-algebraic in R™}

be the collection of subsets of M that is (Euclidean) open in M and semi-
algebraic in R™. Then &), is a sub-family of the induced topology on M,
and we have
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e The () and M are in &yy.
e Gy is closed under finite union.
e &)y is closed under finite intersection.

Remark 3.10 ([2] Definition 2.3.1 and Example 2.3.9). Still let M C R™
be a Nash submaniofld of R™, and let G; be the collection in the above
remark. Let U € Gy, then U is open in M and semi-algebraic in R™, hence
it is a regular submanifold of R™ and thus also a Nash submanifold of R™.
A real valued function f : U — R is called a Nash function on U, if it is
a Nash map in the sense of Definition Let

Ny (U) = {Nash functions on U}

be the set of Nash functions on U. Then it is a R-algebra. Conventionally
we let Mas(0) = {0}. For two subsets Uy, Us € &)y such that Uy C Us, one
can restrict a Nash function from Us; to U; and the restricted function is
also a Nash function on Uj.

3.2.3 Restricted Topology, Sheaf and Cosheaf

We recall the notions of restricted topology, sheaves and cosheaves on
them. These notions are introduced in [1] §3.2, appendix A.4 and [2] §2.2.

Definition 3.11 ([2] Definition 2.2.1). Let M be a set. A family & of
subsets of M is called a restricted topology on M, if & contains the
empty set and M, and is closed under finite unions and finite intersections.
A subset in & is called a restricted open subset of M, and the complements
of restricted open subsets are called restricted closed subsets of M.

A restricted topological space is a pair (M, &) consisting of a set
M and a restricted topology & on it. By abuse of terms, we also call
M a restricted topological space if there is no ambiguity on the restricted
topology.

A map between two restricted topological spaces is called restricted
continuous if every restricted open subset has restricted open preimage.

A restricted topology is not a topology, since one cannot take infinite
unions on it.

Example 3.12. Let M C R™ be a Nash submanifold of R™. Then the
family &, in Remark consisting of semi-algebraic and Euclidean open
subsets of M, is a restricted topology.
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Let (M, S) be a restricted topological space. The & is a partially ordered
set hence is also a category, one can define the sheaves and cosheaves on
restricted topologies as for sheaves/cosheaves on ordinary topological spaces.
The definition is very similar to that of the ordinary sheaves/cosheaves,
except that one can only take finite (restricted) open covers.

Definition 3.13 ([2] Definition 2.2.4 and 2.2.5). Let C be an abelian cate-
gory (e.g. the category of abelian groups/vector spaces/TVS). A presheaf
on M (with value in C) is a contravariant functor from & to C.

More precisely, let F be a presheaf on M, then

e For each U € &, one has an object F(U) € C, and in particular
F(0) = {0}.

e For each pair of Uy, Uy € & with U; C Us, one has a restriction
map resgf : F(Uz) — F(Ur) which is a morphism in C. And for three
restricted open subsets Uy, Us, Us € & with U; C Us C Us one has

resgf = resgf o resgz.
An element f € F(U) is called a section on U. A morphism between two
presheaves on M is a natural transformation between these two contravariant
functors.

A presheaf F on M (with value in C) is called a sheaf, if it satisfies the
following local conditions:

e Let U € G be a restricted open subset of M, and {U;}¥_, be a finite
restricted open cover of U, i.e. Uy,..., U, € G and U = UleUi. Then
a f € F(U) is zero if and only if resgi(f) =0foralli=1,... k.

e Let U € & and {U;}¥_, be a finite restricted open cover of U. Let f; €
F(U;) be a section on U; for each 7. If resg:mUj (f)) = resgszj(fj) for
all 1 <1i,j <k, then there exists a f € F(U) such that f; = resgi(f).

Definition 3.14 ([2] Definition 2.2.6 and 2.2.7). Let C be an abelian cat-
egory (e.g. the category of abelian groups/vector spaces/TVS). A pre-

cosheaf on M with value in C is a covariant functor from & to C.
More precisely, let F be a pre-cosheaf on M with value in C, then

e For each U € &, one has a object F(U) € C. In particular F(()

{0}
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e For each pair of restricted open subsets Uy, Uy € © with U; C Us, one
has an extension map eng : F(Uy) — F(Uz) which is a morphism in
the category C. And for three restricted open subsets Uy C Us C Us,
one has

exg? = exg;’ ) eng.
An element f € F(U) is called a section on U. A morphism between two
presheaves on M is a natural transformation between these two covariant
functors.

A pre-cosheaf F on M (with value in C) is called a coshealf, if it satisfies

the following local conditions:

e Let U be a restricted open subset of M and {U;}¥_; be a finite re-
stricted open cover of U. Then for each f € F(U), there exists a
fi € F(U;) such that f = Zle exgi( fi). In other words, every section
on U is a sum of extensions of local sections.

e Let U be a restricted open subset and {U;}¥_| be a finite restricted
open cover of U. Foreachi =1,...,k, let f; € F(U;) be alocal section.
Then the Zle exgi(fi) = 0 in F(U) if and only if there are f;; €
.7-'(UUZﬂUj) foreach i,j € {1,...,k} such that f; = Z?Zl[exgzmjj(fij)—
eXU;mUi(fji)]-

Example 3.15. Let M C R™ be a Nash submanifold and let Gj; be the
restricted topology defined in Remark For each U € Gy, let Ny (U) be

the ring of Nash functions defined in Remark [3.10, then it is easy to check
the Ny : U — Ny (U) is a sheaf on the restricted topology & yy.

Definition 3.16 (]2] Definition 2.2.9). Let (M, &) be a restricted topolog-
ical space and let F be a sheaf over &. Let f € F(M) be a global section,
and Z C M be a restricted closed subset. Then f is supported in 7 if
resdt (f) =0, i.e. f restricts to zero on the complement of Z.

Note that on restricted topology, one cannot take infinite intersections of
restricted closed subsets. Hence there is no “closure” in restricted topology,
and in general one cannot define “the support” of a section by taking closures
as in ordinary topological spaces.

3.2.4 Affine Nash Manifolds and Abstract Nash Manifolds

Similar to the definition of affine algebraic varieties and general varieties,
we need an intrinsic way to define Nash manifolds without embedding them
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into R™. We first have the following definition which is similar to the ringed
spaces in algebraic geometry.

Definition 3.17 ([2] Definition 2.3.8). An R-space is a pair (M, O)) con-
sists of a restricted topological space M (with a restricted topology Spy)
and a sheaf of R-algebras over the restricted topology &, and the sheaf
Oy is a subsheaf of the sheaf Ry, of real valued functions on M.

A morphism between two R-spaces (M,Opr) and (N,Op) is a pair
(f, f*) consists of a restricted continuous map f : M — N and a sheaf

morphism f* : f*Ry — Rz of restricted sheaves, which maps the subsheaf
ffOn to Oys.

Example 3.18. Let M C R™ be a Nash submanifold of R™, and &,; be
the restricted topology defined in Remark 3.9, and AMVjs be the sheaf of Nash
functions defined in Remark [3.10L Then the (M, N/) is an R-space.

Definition 3.19 ([2] Definition 2.3.10). An affine Nash manifold is an
R-space which is isomorphic (as R-space) to the R-space of a closed Nash
submanifold of some R™.

Example 3.20. Any real nonsingular R-affine algebraic variety has a nat-
ural structure of affine Nash manifold.

Definition 3.21 (]2] Definition 2.3.16). A Nash manifold is an R-space
(M, Op) which has a finite cover {M;}¥_, by restricted open subsets of
M, such that each R-space (M;, Onr|ps;) is isomorphic (as R-space) to an
affine Nash manifold. A morphism between two Nash manifolds are just
morphisms of R-spaces between them.

All Nash manifolds studied in the thesis are affine Nash manifolds, thus
we stop the introduction here.

3.3 Bruhat Decompositions

3.3.1 Some Terms on Group Actions

Let G be an abstract group, E be a set. Let AutE be the group of
permutations on F.

e A G-action on F, is a group homomorphism ¢ : G — AutFE, i.e.
V1,92 € G, 0(g9192) = 0(g1) 0 7(g2)-

e A G-(anti)action on FE, is a group anti-homomorphism o : G —
AutE, ie. Yg1,92 € G, 0(g192) = o(g2) o o(g1)-
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Let G be an abstract group, and H be a subgroup of G.
e The left H-translation on G is the H-action h + [, given by
lp:g— hg, VgeQ.

The orbit space of the left H-translation on G is denoted by H\G, it
is exactly the set of right H-costs in G.

e The right H-translation on G is the H-action h — rp, given by
rn:g— gh, VgeG.

The orbit space of the right H-translation on G is denoted by G/H,
it is exactly the set of left H-cosets in G.

Let Hq, Hs be two subgroup of G.
e The left Hi-translation on G/Hs, is given by
gHy — hgH>, Yh € Hy,gHs € G/Hs.
The orbit space of this action is denoted by H;\(G/H2).
e The right H)-translation on H;\G, is given by
Hyg— High, Yhe€ Hy,Hig € Hi\G.
The orbit space of this anti-action is denoted by (H1\G)/Ha.

e The (H;, Hy)-conjugation on G, is the H; x Ha-action on G given
by
g highyt, Vg€ G,hy € Hy,hy € Ha.

The orbit space of this conjugation on G is denoted by H1\G/Ho, it
is exactly the space of (Hy, Hz)-double cosets in G.

The following easy fact is well-known:

Lemma 3.22. The following three orbit spaces are in one-to-one correspon-
dence:

o The orbit space Hi\(G/H2) of left Hi-translation on G/H,.
e The orbit space (H1\G)/Hsy of right Ha-translation on H1\G.

e The orbit space H1\G/Hy of the (Hy, Ha)-conjugation on G.
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3.3.2 Bruhat Decomposition
Let

G = a connected reductive linear algebraic group defined over R
S = a fixed maximal R-split torus of G
3. = the relative root system determined by S
W = the relative Weyl group of the root system
Py = a fixed minimal parabolic R-subgroup containing S
A = the base of ¥ determined by Py
S = the set of simple reflections determined by A
Y1 = the positive system spanned by A

Let ©, be two subsets of A, and Pg,Pq be the two standard parabolic
R-subgroups corresponding to them, and Wg, Wq be the two parabolic sub-
group of W generated by simple reflections in O, ) respectively. For each
w € W, one can choose and fix a representative in Ng(S)(R). By abuse of
notation, we denote this fixed representative by the same notation w.

The Bruhat Decomposition

The (G(R),Py(R),Ng(S)(R), S) is a Tits system, with real point groups
of parabolic R-subgroups as its parabolic subgroups. By the Remark on page
22 of [13], we have

Lemma 3.23. The (Po(R),Pq(R))-double cosets on G(R) are in one-to-
one correspondence with the double quotient Wo\W/Wq. Explicitly, the
correspondence is given by
Po(R)\G(R)/Pq(R) «» Wo\W/Wq
P@(R)wPQ(R) <~ W@wWQ
(Note that we have chosen and fixed a representative for each w € W from

Ng(S)(R) € G(R), and by abuse of notation we denote this representative
in G(R) by the same w.)

The Double Quotient Wo\W /W,

Among the elements in a double coset, one can choose a representative
with minimal length:
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Lemma 3.24 (Proposition 1.1.13 in [16]). In each (Wg, Wq)-double coset
of W, there is a unique element w characterized by the following equivalent
conditions:

o w has minimal length in the double coset WowWgq.
o w has the minimal length in Wow and wWq.
e w 'O C Xt and wQ C Bt

We call the element w satisfying the above conditions the minimal repre-
sentative of the double coset WowWq. The set of minimal representa-
tives in We\W/Wq is denoted by

We\W/Wq] ={weW: w0 coh wlcxt}

Remark 3.25. In general, for a Coexeter group W and two standard
parabolic subgroup Wg, Wq. There is a unique minimal element and a
unique maximal (under the Bruhat order of W) element in each double
coset. The minimal element is exactly the element with minimal length as
in the above Lemma. (See [19] Theorem 1.2)

There are two partial orders on the set Wg\W/Wq, of double cosets: one
by the Bruhat order on their maximal elements, and another one by the
Bruhat order on their minimal elements. It is shown in [29] Theorem 1, that
these two orders on We\W/Wgq coincide.

Double Cosets on GG

Let G be the Lie group G(R), and similarly P = Pg(R), P = Pq(R)
be the corresponding Lie groups. The Pg(R)wPq(R) is the same double
coset as PowPq in G. We can summarize the above discussion as

Lemma 3.26. The following four sets are in one-to-one correspondence
o The set of (Po(R),Pq(R))-double cosets on G(R);
e The set of (P, Pa)-double coset on G;
o The double quotient Wo\W/Wq;

e The set of minimal representatives [Wo\W/Wq].
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3.3.3 Closure Order on Double Cosets
Let

G = an algebraic group defined over R
P, Q = two closed R-subgroups of G

In the following part of this subsection, we assume G has finitely many
(P, Q)-double cosets. In this thesis, we will only consider the case when P, Q
are R-parabolic subgroups of a reductive linear algebraic group G defined over
R, hence it is safe to make this assumption.

The left P-translation and right Q-translation on G are algebraic ac-
tions/antiactions defined over R, so is the (P, Q)-conjugation on G. The
(P, Q)-double cosets on G are exactly the orbits under the such conjuga-
tions. By the Proposition in [10] (p53 §1.8), the double cosets are smooth
R-subvarieties of G, and they are open in their closures. The boundary
of each double coset is a disjoint union of double cosets of strictly lower
dimension.

Since all the groups and actions are defined over R, one has the similar
results on the real points. Let G, P,Q be the Lie groups of real points of
G, P, Q respectively. The real points of a (P, Q)-double coset is exactly the
corresponding (P, @)-double coset on GG. Under the Zariski topology on G,
a (P, Q)-double coset on G is also a real smooth subvariety (in the classical
sense), open in its Zariski closure, with its boundary a union of strictly lower
dimensions. Hence if two double cosets have the same Zariski closure, then
they are equal.

The Closure Order

Suppose the (P, @)-double cosets in G are parameterized by a finite set
I. Let G; be the double coset corresponding to ¢ € I. Then we have the

disjoint union
¢=]]a:
i€l
We define the relation < on the set of double cosets by

G; < Gj if and only if G; C CTJ

for two i,j € I. Here G; means the Zariski closure of Gj. The bijection
I «+ {G, :i € I} thus induces a relation on I.
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Lemma 3.27. The relation “<” is a partial order on {G; : i € I} (and also
onI).

Proof.iFirstiobviously G; C G;, hencei < i. Second if G; < Gj;and G; < Gy,
then G; = G, hence G; = G and @ = j. Third if G; < G; < G, for some
i,j,k € I, then G; C Gj C G, hence G; < G, O

Definition 3.28 (Closure Order). We call the above partial order < the
closure order on the set of (P, Q)-double cosets. We denote by G; < G
(ori < j)if G; < G; but G; # G (1 < 7,0 #j).

Open Unions of Double Cosets

For an i € I, let

Gzi = HG] (31)

1<j

G>Z’ = HGJ = Gzi — Gz

i<j

Lemma 3.29. The G>; and G~; are open in G under the Zariski topology.
The G; is closed in G>;.

Proof. (1) We show G'>; is open by showing the following claim:
Claim: For i € I, one has

G>i = (UpzGr)”
(“D”) First note the complement
GS; = UpyGr C Ukzi?k,

hence L
G>i D (UpsiGr)".

(“C”) Second if k # i, then Gp N G>; = (. Otherwise, we let G; C
G>; NGy, then k > j > 4 hence k > ¢ a contradiction. Hence ch D Gy
By taking the intersection over all k # i, one has

G>i C NMpgi(Gr)© = (Ui Gr)"

By the claim, the G'>; is a complement of a union of closed subsets, hence
is open.
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(2) We show G; is closed in G'>4, thus its complement G; in G>; is open
in G'>;, and also open in G. We show the following claim:
Claim: For i € I, one has

@ﬂGZi :GiﬂGZi = G;.

The second equality is trivial. The G; N G>; D G; N G>; is also trivial.
We just need to show G; N G>; CGiNG>;. Let G C GiN G>;, then j >4
and i > j, hence i = j. Therefore the only double coset in G; N G>; is G;
itself, hence

@ﬂGZi = G; ZGiﬂGZi.

Some Notations

Let P = Pg, and Pg be two standard parabolic R-subgroups of G. We
are particularly interested in the case when

QcCo.

Let P = Pg, Py be the corresponding groups of real points. In this case, the
Pq is a subgroup of Pg. The (Pg, Py)-double cosets on G are parameterized
by the minimal representative set [Wg\W/Wgq], and ordered by the closure
order under Zariski topology.

For each w € [We\W/Wq]|, we denote by

Gg = the double coset PwPq
Ggw — the Zariski open union of G
such that G¢ > G

:HG;?

r>w
G, = the Zariski open union of G
such that G¢ > G5t and G5! # G

ZHG.?

T>w,rFWw

For the particular case when Q = () (empty set), we omit the superscript,
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and use the following simplified notations:

Gw =G = Pupy
Gsw =GL,
G>w = G0>w

for all w € [We\W/Wy| = [We\W].

3.4

Algebraic Preliminary

This is a pure algebraic section. We study the torsion submodules on
tensor product modules over Lie algebras. The main result is Lemma [3.52)

In this section, let h be a complex Lie algebra and U(h) be its enveloping
algebra. Let (h*) be the two-sided ideal of U(h) generated by k-products of
elements in b.

In[3.4.1}, for a left h-module M, we recall the definition of the left anni-
hilators MD*] of the ideal (h*) for each k, and the torsion submodule
MD®l The annihilator sequence {M[hk] : k > 0} has no gap and is a
strictly ascending sequence (see Lemma .

In we define the similar notions as in for right h-modules.

In we show a product formula (3.2) on the tensor product module
M1 ® Ms of two left h-modules My, M.

In for two left h-modules M, My, we show the tensor product
of their torsion submodules is included in the torsion submodule of

their tensor product (Lemma 3.43)):
M@ MPT C (My @ Mo)P.

In general, the reversed inclusion is not true, see the example at the
end of this subsection.

In we study a h-torsion module M, i.e. M = MD*l. We define
the depth function
dep : M — ZZO

of elements in M, and let dep(M) be its image. We show some basic
properties of dep in Lemma [3.46, and show the dep(M) is either Z>
or a finite consecutive subset of the form {0,1,..., N} in Lemma 3.47.
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e In |3.4.6, we study a finite dimensional h-torsion module M. We show
M has a good basis 1} i.e. the annihilator MD*] is spanned by
vectors with depth < k for all k € dep(M).

e In we assume M is a finite dimensional h-torsion module, and
My is an arbitrary left h-module. We show the main theorem of this
section (Lemma |3.52)):

(M1 @ M)0T = MPT @ MPT = My @ MDY,

3.4.1 Left Torsion Submodule

In this subsection, let

h = a complex Lie algebra
U(h) = the enveloping algebra of b
M = a left h-module
(equivalently a left U(h)-module)

Definition 3.30. For k € Z~¢, let

(h%) - =b"U(b)
:{Xl'...'Xk-u2VX1,...,XkEb,VUGU([’))}

be the right ideal of U(h) generated by k-products of elements in h. Con-
ventionally, we let (h°) = U(h).

Lemma 3.31. The (h*) is a two-sided ideal for each k € Z~q, and one has
the following inclusions:

) >mHYo>0mHD>... o0 >E") ...
Definition 3.32. For each k£ > 0, let

MO = Annp((57))
={meM:H* -m=0}
={meM: X, ... -Xp-m=0,YX1,..., X € b}

be the left annihilator of the ideal (h*) in M. By convention, we let
MDB% = {0},
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Lemma 3.33. The MU' is a left U(h)-submodule of M and one has the
inclusions:

— M (b'] 0% - [b¥] O — A
{0 =MV c MOV Tc MO T co..c MY T M c...M
One also has the following easy fact:

(6 - MO pq0"]
for all k > 1.

Definition 3.34. Let
MD*T .= U MM

kEZZO

be the union of all the left annihilators M"]. We call this the left h-torsion
subspace of M. The module M is called left h-torsion if MOl = M.

Lemma 3.35. The MU° is a left bh-submodule of M since it is a direct
limit of h-submodules. The annihilators {M[hk] ik >0} form an exhaustive
filtration of MD°].

Lemma 3.36. The correspondence M — MUl is a functor from the cate-
gory of h-modules to itself.

This functor is left exact, i.e. if My, My are two left h-modules, with an
injective homomorphism of h-modules My — Ma, then this homomorphism
restricts to a h-homomorphism

MO S ),

and we have

MPT = My

Remark 3.37. Note that M is just HO(h, M) = {m e M : X -m =
0,VX € b}.

What happens if MU'l = {0}? Assume this, and let Ym € MD?, je.
X1Xo-m =0 for all X1, Xs € h. We fix X5 and let X; run through b, then
we see Xo-m € MDD = {0}, i.e. Xo-m =0. Now let X, run through b, we
see m € MU'l = {0}. In sum, MI*T = mMD'T = M1 = {0}. By iteration,
we have all annihilators M1 = {0}

This works for all k, and we have the following lemma.
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Lemma 3.38. Let M be a left h-module, and let M pe the left annihilator
of (b%) for all k € Z>q. If there is a k > 0, such that MDFT = M[hkﬂ], then

bk+2} .

M = " = Al
i1.e. the annihilator sequence stops ascending.

Proof. Suppose MO = M for some k > 0. Let m € M[hk+2], then
VX1q,... ,Xk+1, Xk+2 € bh, we have Xy --- Xk+1 . Xk+2 -m = 0. Hence Xk+2 .
m € MO By the assumption, we also have Xp 9 -m € MO Since
Xj1o is arbitrary, we see m € MO Hence MY = pI0M = g7,
By iteration, all the following annihilators equal to MDY, O

Remark 3.39. Let M be a b-torsion module, then there are only two
possibilities:

1. The annihilator sequence is an infinite strictly ascending sequence:
- pmD° b! h? b s
{0} = MO G MBI G MO G G MO G MG
and all annihilators M"] ; M are proper subspaces.

2. The annihilator sequence is a finite sequence “without jump”, and there
is an N > 0 such that

{0} = M0 - Ml G...G MO = pm,

3.4.2 Right Torsion Submodule

Similar to the left torsion submodule, we have the right torsion submod-
ule of a right h-module. Let

I = a right h-module.
We still let (h*) be the ideal defined in Definition m
Definition 3.40. For each k € Z~q, let

fm[hk] ZAHHSm(([Jk))
= {m e M|m - (4") = 0}
:{mESﬁ’leXk:O,VXl,,XkE[]}
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be the right annihilator of the ideal (h*) in 9. Conventionally, we have
Let

Moy = |J Moy
ICEZZO

be the union of all right annihilators. We call this union the right h-torsion
subspace of M. We say M is right h-torsion, if Mpe; = M.

Similar to the left picture, we have
Lemma 3.41. Let 9N be a right h-module.
1. We have the following inclusions:
{0} = Moy C My C ... Mypry € Mpgen) C ... C M,
and each Mgk is a right h-submodule of M.
2. For k > 1, we have
Myyey - (0) C Myyey.

3. The {My) : k > 0} form an exhaustive filtration on Mye), and Mpe)
is a right h-submodule of M.

3.4.3 Tensor Product Module

Let M1, M5 be two left h-modules, and let M; ® My be their tensor
product module. In this subsection we show a multiplication formula
on the tensor product module M; ® Ma.

Let my € My, mo € Ms be arbitrary elements. Then an element X € b
acts on mp ® mg € M1 ® My as

X-(m1®m2):X-m1®m2—|—m1®X-m2.
For a positive integer k, let
1kl ={1,2,...,k}

be the ordered set of the first kth positive integers. Let Xi,..., Xy be
arbitrary k elements in h. For a subset S C [1, k], we label the elements in

S as
S = {il,ig,...,is} with 11 <9 < ... <14
And we use the following notation to denote the ordered product in U(h):
Xg=Xi, - Xip -+ Xi, €U(D).

By convention, we let Xp = 1.
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Lemma 3.42. For arbitrary m; € Mi,mg € My and elements X1, ..., Xy
i b, we have the following multiplication formula

Xl-X2~--Xk-(m1®m2): Z (Xg-m1)®(XSc-m2). (32)
SC|1,k]

The S¢ C [1,k] is the complement of S in [1,k]. The right hand side is a
sum of 2F terms when S run through all subsets of [1, k.

Proof. We proceed by induction on k. For k£ = 1, the formula is trivial. The
[1,1] = {1} has only two subsets () and [1,1] itself. The right hand side of

(3.2) is
(Xg-m1) ® (X1 - ma) + (X - ma) @ (Xp - ma)

which is exactly m1 ® X7 - mg + X1 - m1 @ mo.
Assume the formula is true for kK = n — 1. Then for kK = n, we have

X1+ Xg- - Xp(m1 @ mo)
=X1-( Z (Xs-m1) ® (Xge - mg)) (induction hypothesis)

Scl2,n]
= ) (X1-Xg-m1) @ (Xge-ma) + > (Xg-m1) @ (X - Xge - my)
SC[2,n] Sc[2,n]
= ) (Xs-m1) @ (Xge-ma)+ > (Xg-m1) @ (Xge - ma)
Scl1,n] SCl1,n]
1€S lese
= Z (X5~m1)®(XSc-m2)
Scl1,n]

3.4.4 Torsion Submodule of Tensor Products—I

Let M1, Ms be two left h-modules, and M;® M5 be their tensor product
module. We discuss the relation between their left h-torsion subspaces.

Let ./\/l[lh.},/\/l[;.] and (M ® M3)°] be the left h-torsion subspaces of
M1, My, M1 @ Ms respectively. We first have the following easy fact:

Lemma 3.43. The tensor product of torsion subspaces is contained in the
torsion subspace of tensor product:

MPT e BT o (My @ M) (3.3)
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i.e. M[lh.] ® M[Qh.] is a left h-submodule of (M1 ®@ My)®l. More precisely,
we have

MY @ MY < (M @ M) (3.4)
for all kv, ke € Z>o.

Proof. The module structures are clear, and we just need to show the

stronger inclusion . Let mp € ./\/l[lhkl} and me € M[Qhkz], ie. mq is
killed by ki-products of elements in h and me is killed by ke-products of
elements in b.

Let £ = ki1 + ko, and let Xq,..., X be arbitrary elements in §. By
Lemma, 3.42, we have the product formula

X1-Xo-ooo- X (mp ®@mg) = Z (Xs-m1) ® (Xge - ma).
ScC|1,k]

For each S C [1, k] on the right hand side, either |S| > ki or |S¢| > ko is
true. Otherwise we have k = |S| 4 |S¢| < k1 + k2 = k, a contradiction!
Hence for each S C [1, k], either Xg-mj = 0 or Xge - my = 0. Hence the
right hand side is always zero.
Since the X1, ..., X} are arbitrary, we see m1 ® myo is in the annihilator
Annpg e, ((57)) = (M1 @ Ma)0') € (M @ M),
O

In general, the torsion subspace (M ® M)l is larger than the tensor
product M[lh 'e M[Qh }, see the following example.

Example 3.44. Let
h={z:2zeC}

be the one dimensional abelian Lie algebra. Let
V=C={y:yeC}
be a one dimensional h-module, with the h-action given by
-y =2y,
i.e. the scalar multiplication on C. Then one can see
V'l = {yeC:ay=0VzeC}={0}
and similarly

Vil = {ye C:zixe... 25y =0,Vzy,..., 2 € C} = {0}.
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Hence one has
vl = {o}.

Let

A

V=C={z:2€C}
be the dual h-module of V', with the h-action given by
T-z=—xz.
Then by the same argument one can see
VO —0,vk>0

and V0*l = {0}. X
The tensor product V ® V is a one dimensional trivial h-module, i.e.
Yy, z € C, we have

- (y®z) =y z+y® (—xz) =0.

Hence X o X
Venl=wver)hl=vev,

which is larger than V*l @ V] = {0}.

3.4.5 Depth and Torsion Modules

Let h be a complex Lie algebra and M be a left h-module. In this
subsection, we assume M is h-torsion, i.e.

M = MDD,
The filtration by annihilators
{0} = MOTc mMBT L MmO e MO e

is an exhaustive filtration of M, i.e. for all m € M, there exists a k such
k
that m e M,

Definition 3.45. For a h-torsion left h-module M, we define the depth
function on M by

dep(m) = min{k : m € M[bk]}, Vm e M. (3.5)

69



Namely, the depth of m € M is the minimal non-negative integer k such
that m is annihilated by (h¥). The dep : M — Z> is a function on M with
values in non-negative integers, and we denote its image by

dep(M) = {dep(m) : m € M}

i.e. the set of depth of elements in M.

We have the following easy facts:
Lemma 3.46. Let m € M, then
(1) dep(m) = 0 if and only if m = 0.
(2) dep(m) = 1 if and only if m € H°(h, M) but m # 0.
(3) MU' = {m € M : dep(m) < k}.
(4) For k>0, the {m € M : dep(m) = k} = MD"T — pm0*™1],

(5) For arbitrary X € b, we have dep(X - m) < dep(m), i.e. X strictly
reduce the depth.

(6) For c € C, we have

_ Jdep(m) ifc#0
dep(em) = {0 if e =0
(7) Let mq, mg € M, then
dep(my + mg) < max{dep(m1),dep(ma)}. (3.6)

Proof. (1)(2)(3)(4)(6) are obvious by definition. We show (5) and (7).
(5): Let k = dep(m) and X € h be an arbitrary element. By definition
we have (h*) - m = {0}. Then

(1) - (X -m) C (b%) - m = {0},
hence X - m € MO, Again by definition of dep, we have
dep(X - m) :min{i:X-mEM[hi]} <k-1<k,

i.e. dep(X -m) < k = dep(m).
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(7): Let k1 = dep(my), ko = dep(mz), k = max{k;, k2}. Then

my € M[hkl] C M[hk]
mo € M[ka] C M[hk]

Hence my +msg € M[hk], and by definition
dep(m1 + ma) < k = max{ky, ka} = max{dep(m1),dep(mz)}.

O]

Lemma 3.47. The depth function dep : M — Z>q is either onto or with
finite consecutive image. More precisely, the image dep(M) is either Z>g
or of the form {0,1,...,k} form some k > 0.

Proof. This follows immediately from Remark [3.39. O

In sum, the dep(M) is a well-ordered set, we can perform inductions on
the depth of the module M.

3.4.6 Finite Dimensional Torsion Modules

In this subsection, we look at the special case when M is a finite dimen-
sional h-torsion module. First we have

Lemma 3.48. Let M be a finite dimensional h-torsion module. Then the
depth function dep on M is bounded, hence dep(M) is a finite consecutive
subset of Z>g.

Proof. This follows immediately from Lemma [3.47 0

Lemma 3.49. Let M be a finite dimensional h-torsion module, and let
dep(M) ={0,1,...,N},
then
(1) The annihilator sequence of M is
{0} = mD’] - Ml G...G MY = M

and for all k > N, the M1 = M.
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(2) For any m € M and k € dep(M), we have dep(m) = k if and only if
m e MO a1

Proof. Part (1) follows from the above lemma. Part (2) is just a reformula-
tion of (4) of Lemma O

Let {m1,...,mq} be a basis of M (d = dim M). For each k € dep(M),
we consider the subspace

span{m, : 1 <i < d,dep(m;) < k}

spanned by all basis vectors with depth less than or equal to k. Obviously
this space is contained in MD*) by (6) (7) of Lemma

Definition 3.50. Let M be a finite dimensional h-torsion module, and
dep(M) = {0,1,...,N}. A basis {mq,...,mg} of M is called a good
basis, if

MO = span{m; : 1 < i < d,dep(m;) < k}

for all k € dep(M).

Lemma 3.51. Let M be a finite dimensional h-torsion module. Then it
has a good basis.

Proof. We construct a good basis. Let dep(M) = {0,1,...,N}. Let
dy = dim M)

be the dimension of the kth annihilator, we have 0 = dp < d; < dy < ... <
dy = dim M (strictly increasing).

First let {m1,...,mg,} be an arbitrary basis of MD']. Since they are
basis vectors, they are non-zero, hence dep(m;) = 1 for all 1 < i < dj.
Obviously

MO = span{myi,...,mq, }.

Since M'] is a finite dimensional (proper) subspace of Mb?] (also finite
dimensional), one can extend the basis {mi,...,mgq, } of MO to a basis
{ma,...,mg,, Mg, 4+1,..., Mgy} of MD? Obviously, the do — di new basis
vectors {mg,+1,..., Mg, } are in the complement ML — ML hence all
their depth equal to 2 by (4) of Lemma Obviously we have

MO = span{myi,...,mg,}.

By iteration, for each k < N, assume we have constructed a basis
{mi,...,mgq,} of M“’k], such that {my,...,mg,} is a basis of the subspace
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M and dep(mg;, ,4+1) = ... = dep(myg,) =i for all ¢ < k. Then we can

extend the basis {m1,...,mgq,} of M to a basis
{ml, N ,mdk,mkorl, e ,mdkH}
of MO™™] The dy4+1 — dp new vectors {mg, 41,...,Mq,,, } are obviously in

the complement MO '] and all their depth equal to k + 1 by (4)
of Lemma

This iteration terminate when k¥ = N, and we then obtain a basis
{m1,...,mgq, } which is obviously a good basis. O

3.4.7 Torsion Submodule of Tensor Products—II

In this subsection, we show the reversed inclusion of Lemma Let b
be a complex Lie algebra, M1, Ms be two left h-modules and M; ® My be
their tensor product module.

Moreover, we assume M; is

e h-torsion, i.e. My = M[lh.];
e finite dimensional.
‘We have

Lemma 3.52. Let M1 be a finite dimensional h-torsion module, and Mo
be an arbitrary left h-module. Then

(M ® M) = M (P = My 0 MY

We have seen one inclusion in Lemma we just need to show the
reversed inclusion

(M @ Ma)bT c Mm@ MmD7.

Let dep(My) = {0,1,..., N}. Then the {M""): 0 < k < N} is a finite
filtration which is strictly ascending. Let djp = dim./\/l[lhk],Vk € dep(M,)

and let {u1,...,uq4,} be a good basis of M; (Definition 3.50), and we label
them with non-decreasing depth:

dep(u;) =k, dp—1+1<i<dy

forall k=1,..., N.
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The submodules {/\/l[lbk} ®Msz : 0 <k < N} form a finite exhaustive
filtration of M; ® My, and the submodules {(M[lhk] QM) 0<k <N}
form a finite exhaustive filtration of (M; ® Ma)*l. We just need to show
the inclusion i . .

(M & M) € M o MY,
or more precisely the inclusions
] .
MY @ M) € MY @ MY,
for each [ > 0, by (finite) induction (iteration) on k.

Proof. For k = 0, /\/l[lho] = {0} and (M[lho} ® M3)b*l = {0} which is obvi-
ously contained in M[lh.] ® M[QW.

For k = 1, recall that the M[lhl] has basis {uj,...,uq }, and every

1
element in ./\/l[lh l'o My is uniquely written as

dy
g U; @ v;
i=1

for some v; € Mg, 1 <i < d;. And it is zero if and only if all v; are zero. If
moreover the element Z;’ll u; @ v; is in

(MY @ M)

then for any Xi,...,X; € b, one has
dy
Xl---Xl-(Zui(@vi):O.
i=1
By Lemma |3.42) one has
d1 dl
Xl“'Xl'(ZUi®Ui):ZXl"'Xl'(Ui®Ui)
i=1 i=1
d1
= Z Z Xsu; ® Xgev;

i=1 SC[1,]]
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In the last term, if S # (), then Xgu; = 0 since u; € M[lhl]. Hence only
S = () contributes to the last sum, and we have

di

dy
XX (Zul Qi) = Zuz ® Xp1vi
i=1 =1

d1
i=1

If this sum is zero, then X7 --- X;-v; =0forall 1 <i <d;. Thusv; € Mgﬂ
since the Xi,..., X; are arbitrary. Hence the original element

d1

Zui R v; € M[lhl] & Mgﬂ.

i=1
We thus have shown

M @ Ma) € MPT o MY € MPT o MY,
thus we have . . .
(M@ Mo)0T € M o My,
(Induction Hypothesis) Assume
k—1 ° . .
(M T M) € P o MY,

We need to show (M[lhk] ® MQ)M - M[lh.] ® M[Zh.], for all I > 0.
]

k
For general k, a generic element in /\/l[lb

di
Z U; @ v;
i=1

® M is uniquely written as

for some v; € My. If moreover it is in (M[lbk} ® MQ)[‘JZ], then

dy,
Xl"'Xl'(Zuz'@Ui):O
i=1
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for all X1,...,X; € h. By Lemma [3.42, we have
dp, dy,
X, --Xl-(ZuZ-@vi) :ZXl--'Xl'(ui@)vi)
i=1 j
= Z Z XSuz®XSEUz

=1 SC[1,]]
d
= Z ZXSui®XSCUi
Sc(1,l] =1
dk dk
= ZUZ ® X[l Ui + Z ZXsuZ ® Xgev;
i=1 Sc1)) i=1
S#D
dy, di—1
= Z u; @ X[1,vi + Z u; @ X[1,70i
i=d_1+1 i=1
+ Z ZXSUZ ® Xgev;
Scl1,]] i=1
S;é@

de-1, T [h* =] : A (%]
The second term » ;%" u; @ Xy yyv; is in M ® Ma since u; € M;

for all 7 < dg_1. The third term » g1y Z?il Xsu; @ Xgev; is also in
SH#D

./\/l[lhkil] ® Mg, since all Xgu; are in ./\/l[lhkil}. (Remember that w; € ./\/l[lhk}
and b strictly reduce the depth, hence Xgu; € M[lhkil] when S is nonempty.)

In sum, the last two terms are all in Mghkil] ® Mas, and the first term
Z?idk L U® X[l z]Uz' is linear independent from the M[bk_l} ® M. Hence
the Xq--- X; - ( 1 U; ® v;) is zero if and only if both

dg,
Z u; @ Xppvi =0
i=dp_1+1
and
dg—1
Zul®X“vZ+ > ZXSUZ(@XScUZ =0.
Sc[1,l] =1
S£(
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The Z;‘iidk_ﬁl u; @ X[y vi = 0 implies X}y qv; = Xy -+ - Xj-v; = 0 for all

i such that dp,_1+1 < i < dj. Hence the v; € Mgﬂ forall dp_1+1 < i < dp,

and
dy,

Z u; QU; € M[lhk} ® M[Qh.]. (3.7)
i=dp_1+1
Then
dk k k
S weve MPToMPT (M @ My
i=dg_1+1

(replacing M by ./\/l[lhk} in Lemma 3.43)). Hence

di_1 d; dy,
k ° °

Z U; QU; = Zui®vi— Z U; QU; € (M[lh ]®M2)[b ] - (M1®M2)[h ]
i=1 i=1 i=dp_1+1
Also note that (good basis)

dk—1 -

Zui®vi€M[1h ]®M2.

i=1
Hence

di—1

S wi v e (MY @ M) n (M © Ma)PT = (M T @ M) b,
i=1

By the induction hypothesis, we have

di_1
S v e MY o MY (3.8)
i=1
Combining (3.7) with (3.8), we have
dp. .
Zui@)vi € M[lh ) ®M[2h ].
i=1

Hence . l . .
(M @ Mo € M & MY
for all I > 0, and

k ° o .
(M @ M) € P o MY
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Chapter 4

Schwartz Functions,
Schwartz Inductions and
Schwartz Distributions

Summary of This Chapter

In this chapter, we build the toolbox of Schwartz analysis for the study of
intertwining operators (distributions). This chapter consists of three parts,
the first part mainly follows the work [1] and [2], the second part is on some
fundamental facts, and the third part is innovative and it combines the work
of Aizenbud-Gourevitch with the notion of Schwartz inductions introduced
in [20].

e The first part consists of section 4.1 (some notions), 4.2, 4.3/ and 4.4}
in which we recall the theory of Schwartz functions and distributions
on affine Nash manifolds, developed in [1] and [2]. The key points of
these four sections are

— Schwartz R-valued, C-valued, E-valued functions, (the spaces
S(M,R), S(M), S(M, E)).

— Crucial properties of Schwartz functions: Lemma |4.21, Proposi-
tion 4.30L

— Schwartz distributions (Definition 4.31), restrictions of distribu-
tions (Definition |4.34) and crucial properties (Lemma 4.32, 4.35),
1.36).

— The term “supported in”, and the result: the space of Schwartz
distributions supported in a closed Nash submanifold is indepen-
dent of neighbourhoods (Lemma [4.38, Lemma [4.39)).

e The second part is section 4.5, where we apply the notions and results
in the first part to the nonsingular affine real algebraic varieties or
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even real points of algebraic groups, which is a special class of affine
Nash manifolds. The key points of this section are

e The

The Zariski topology on a nonsingular affine real algebraic vari-
ety is included in the restricted topology. Therefore by restrict-
ing to Zariski topology, one has the pseudo-cosheaf of Schwartz
functions on Zariski topology and pseudo-sheaf of Schwartz dis-
tributions on Zariski topology.

The Zariski topology is quasi-compact, hence a Schwartz distri-
bution on a nonsingular affine real algebraic variety has a well-
defined support, which is a Zariski closed subset.

Let G be a real algebraic group, ¥ C G be a subvariety stable
under right translation of an algebraic subgroup H. Then the
Schwartz function space S(Y, E) is preserved under right regular
H-action and is a smooth H-representation.

third part is section in which we combine the notion of

Schwartz inductions in [20] with the above theory of Schwartz func-
tions/distributions, to build a distribution theory on the local Schwartz
inductions. The key points of this part are

Schwartz inductions SInd%o and local Schwartz inductions (Def-

inition 4.64). The Schwartz induction SInd%o is exactly the
smooth induction C*°Ind$%c when the quotient manifold P\G is
compact.

Properties of local Schwartz inductions: NF-space (Lemma 4.65)),
open extensions (Lemma [4.67)), closed restrictions (Lemma 4.69).

Zariski P-topology, SInd,o is a pseudo-cosheaf on Zariski P-
topology (Lemma 4.73]).

Distributions on Schwartz inductions (Definition , pseudo-
sheaf property (Lemma [4.79), independency of neighbourhoods

(Lemma |4.80).

Right regular actions on Schwartz inductions.

Schwartz inductions on fibrations: Lemma[4.91] and Lemma 4.92.
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4.1 Some Notions

4.1.1 Nash Differential Operators

Let M be an affine Nash manifold, then it has a canonical structure of
smooth manifold. Let C°°(M, R) be the ring of smooth real valued functions
on M.

Definition 4.1 ([1] Definition 3.5.1). Let M be an affine Nash manifold, and
let Homp (C*°(M, R), C*°(M,R)) be the ring of R-linear homomorphisms on
the R-algebra C*°(M,R). Let

Diﬁ-Nash (M)

be the subring (R-subalgebra) of Homg(C*(M,R),C*(M,R)) generated
by the ring N (M) of Nash functions and Nash vector fields. We call it the
ring of Nash differential operators on M.

Remark 4.2. Each restricted open subset U C M is also an affine Nash
manifold, and one can define the ring DiffY®"(U7) of Nash differential oper-
ators on U. Since Nash functions and Nash vector fields form sheaves on the
restricted topology, one can define the natural restriction of a Nash differen-
tial operator in Diff Vash (M) to U, and obtain a Nash differential operator in
DiffVash (). This restriction makes the correspondence U ~— Diff V" (1) a
sheaf on the restricted topology. We call it the sheaf of Nash differential
operators on M, and denote it by Diff V" . U — DiffN“Sh(U).

4.1.2 Affine Real Algebraic Varieties as Affine Nash
Manifolds

Let X be a nonsingular affine real algebraic variety ([6] p67 Definition
3.3.9). It has a canonical structure of affine Nash manifold ([1] Example
3.3.4). More precisely, we can embed X into an affine space R" as a real
algebraic set. Under the Euclidean topology on R™, the X has a canonical
structure of real analytic space. Since the X is nonsingular as real algebraic
variety, the real analytic space is actually a smooth manifold (and also a
closed regular submanifold of R™). It is obviously semi-algebraic since it is
algebraic. Hence X has a canonical structure of affine Nash manifold. The
three structures of affine real algebraic variety, smooth manifold, and affine
Nash manifold are all intrinsic and independent of the embedding X C R™.
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Let

T2 — the Zariski topology on X
THes — the restricted topology on X
TEue — the Euclidean topology on X

The 729 and TF% are topologies on X, while the 7€ is only a restricted
topology on X (Definition . We will call subsets in these “topologies”
Zariski open, restricted open, Euclidean open subsets respectively. It
is obvious that

TZar C TRes C TEUC-

Let

Rx = the sheaf of regular functions on (X, 72%")
Nx = the (restricted) sheaf of Nash functions on (X, 77)
C*°(—,R) = the sheaf of real-valued smooth functions on (X, 7%°)

These are sheaves on the Zariski topology, restricted topology and Euclidean
topology respectively.

Let U € T#% be a Zariski open subset of X, it is also a restricted open
subset and Euclidean open subset. We have the inclusions of rings:

PU) € Rx(U) € Nx(U) € C®(U,R).

Here the four rings are rings of polynomial functions on U, regular functions
on U, Nash functions on U and smooth functions on U. All these rings are
rings of R-valued functions.

Similar to the Nash differential operators in Definition [4.1], we have

Definition 4.3 ([1] Definition 3.5.1). Let X be a nonsingular affine real
algebraic variety, which is also regarded as a smooth manifold and affine
Nash manifold. Let C*°(X,R) be the ring of real-valued smooth functions
on X. Let

Diff 4 (X)

be the subring of Homg (C*°(M,R), C*°(M,R)) generated by the ring P(X)
of polynomial functions and algebraic vector fields. We call this ring the
ring of algebraic differential operators on X.
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4.2 Schwartz Functions on Affine Nash Manifolds

4.2.1 Definition of Schwartz Functions

In this subsection, we recall the notion Schwartz R-valued functions de-
fined in [1].

Schwartz Functions on Affine Nash Manifolds
Let M be an affine Nash manifold.

Definition 4.4 ([1] Definition 4.1.1). A smooth function f € C*°(M,R)
is called a Schwartz function on M, if for all Nash differential operator
D € DiffNesh (M), the function Df is bounded on M, i.e.

sup |(Df)(z)| < oo, VD e DiffVash (M),
zeM

We denote by
S(M,R)

the space of Schwartz functions on M.
For each D € Diff V" (M), we have a seminorm |- |p on S(M,R) given
by
|flp »= sup |[(Df)(z)].
xeM

The seminorms {| - |p : D € DiffV®" (M)} define a locally convex Hausdorff
topology on S(M,R) and make it into a topological vector space over R.

Lemma 4.5 ([1] Corollary 4.1.2 and [2] Corollary 2.6.2). The space S(M,R)
is a nuclear Fréchet space, under the topology defined by the seminorms
{|-|p: D € DiffNes" (M)},

Schwartz Functions on Nonsingular Affine Real Algebraic
Varieties

Let X be a nonsingular affine real algebraic variety, then it has a natural
structure of affine Nash manifold ([1] Example 3.3.4). We can define the
S(M,R) of Schwartz functions by regarding it as an affine Nash manifold.
However the Schwartz functions could be equivalently defined by algebraic
differential operators.
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Lemma 4.6 ([1] Lemma 3.5.5). Let X be a nonsingular affine real algebraic
variety. The ring DiffNaSh(X) of Nash differential operators on X is gen-
erated by the subring Diﬂ'Alg(X) of algebraic differential operators and the
subring N'(X) of Nash functions on X.

Lemma 4.7 ([1] Proposition 4.1.1 and Corollary 4.1.3). A function f €
C>®(X,R) isin S(M,R) if and only if D f is bounded on X for all algebraic
differential operators D € Diff4%(X). Hence Schwartz functions on X could
be defined as smooth functions with all algebraic derivatives bounded on X.

Remark 4.8. By the above Lemma, for the special case of affine real al-
gebraic varieties, the notion of Schwartz functions in [1] is the same as the
notion of Schwartz functions studied in [20].

4.2.2 Properties of Schwartz Functions

We summarize the crucial properties of Schwartz function spaces, for
details see [1].

Open Extensions of Schwartz Functions

Let M be an affine Nash manifold, and let U be a restricted open subset
(hence also an affine Nash manifold). Let S(M,R),S(U,R) be the corre-
sponding spaces of Schwartz functions.

Let f € S(U,R) be a Schwartz function on U, we define the naive ex-
tension exg/[f of f to M by

flx), ifzelU

(4.1)
0, ifreM—-U

st )= |
Lemma 4.9 ([1] Proposition 4.3.1, or [20] p265 Theorem 1.2.4(i)). The
naive extension ex f is in S(M,R). The map

S(U,R) — S(M,R) (4.2)

f|—>eX¥f

is an injective continuous linear map, called extension by zero from U
to M. Its image is exactly the subspace

{feS(M,R): Df =0 on M — U,VD e DiffVash(M)},

which is a closed subspace of S(M,R), hence the above extension map has
closed image and is a homomorphism of TVS.
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Partition of Unity

Lemma 4.10 ([1] Theorem 4.4.1, or [20] p268 Lemma 1.2.7). Let M be
an affine Nash manifold, and let {Ui}i?:l be a finite family of restricted
open subsets of M, covering M. Then there exist smooth functions a; €
C>®(M,R),i = 1,...,k such that suppa; C U; and Zleai =1on M.
Moreover, we can choose «; such that for any f € S(M,R), the ayf €
S(U;,R).

Remark 4.11. The «; in this Lemma could be chosen to be tempered
functions ([1] Definition 4.2.1), but we don’t need this notion.

Cosheaf Property

Let Uy, Uz be two restricted open subsets of M, and S(Up,R), S(Usz, R)
be the Schwartz function spaces over them. Assume U; C Us, then the Uy
is a restricted open subset of the affine Nash manifold Us, and we have the
extension map eng :S(UL,R) — S(Uz,R) as in Lemma This makes the
correspondence S(—,R) : U — S(U,R) into a pre-cosheaf on the restricted
topology on M. Actually we have

Lemma 4.12 ([1] Proposition 4.4.4). The S(—,R) : U — S(U,R) is a
cosheaf on the restricted topology of M.

Closed Restrictions of Schwartz Functions

In [1], the authors use the term “affine Nash submanifold Z C M”
without defining it. We make the following definition, which is sufficient for
our use.

Definition 4.13. Let M C R™ be a Nash submanifold of R"™ which is
closed under the Euclidean topology. A subset Z C M is called a closed
submanifold of the Nash submanifold M C R", if

e 7/ C R” is a Nash submanifold of R", and is closed in M under the
Fuclidean topology.

e the embedding Z — M is a Nash map and regular embedding of
manifolds.

With these two conditions, the inclusions Z — R" and Z < M are Nash
maps, Z is closed in M and R", and Z is indeed a regular submanifold of
M in the sense of smooth manifolds.
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Remark 4.14. In [1], the authors give a definition of general Nash manifold
through ringed space as in algebraic geometry. In particular, the notion of
“affine Nash manifold” (Definition [3.19|or [1] Definition 3.3.1) is defined as a
ringed space, without embedding into any R". However, we will only study
affine Nash manifolds, and could find an embedding of them into Euclidean
spaces.

Lemma 4.15 ([1] Theorem 4.6.1, or [20] p266 Theorem 1.2.4 (iii)). Let
M C R™ be a closed Nash submanifold of R"™, and Z C M is a closed
Nash submanifold in the sense of Definition [{.15. For a Schwartz function
f € S(M,R), let f|z be its restriction to Z. Then f|z € S(Z,R), and the
map
S(M,R) —» S(Z,R) (4.3)
feflz

s a continuous linear map. It is surjective, hence is a homomorphism of
TVS.
External Tensor Product

Let M7, M5 be two affine Nash manifolds, and their direct product M7 x
M5 has the natural structure of affine Nash manifold. We have

Lemma 4.16 ([2] Corollary 2.6.3, or [20] p268 Proposition 1.2.6(ii)). The
natural map

S(Ml,R) X S(MQ,R) — S(Ml X M2’R) (44)
i@ for{filf2:(z,y) = fi(z)f2(y)}

extends to an isomorphism of TVS:

S(Mp,R) ® S(My,R) = S(M; x My, R) (4.5)

4.2.3 Complex-Valued Schwartz Functions

Let M be an affine Nash manifold. We fix an R-basis {1,7} of C. Each
function f € C°(M) is written as f = (f1, fo) where fi is the real part and
f2 is the imaginary part. We have the canonical isomorphism

C*(M,R) g C — C*(M,C) (4.6)
f@z—{x— f(x)z}
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which is actually independent of the choice of the R-basis. This isomorphism
means a complex valued function is smooth if and only if its real and imagi-
nary parts are smooth. The ring Diff V" ()) of Nash differential operators
acts on C*°(M,R), hence also on the C*>°(M, C).

Definition 4.17. A function f € C*°(M,C) is a Schwartz (C-valued)
function on M, if for all D € DiffVe" (M), the Df is bounded on M. We
denote the space of Schwartz C-valued functions by

S(M).

We endow this space with the TVS structure induced by the semi-norms
|- Ip:
[f|p := sup [(Df) ()]
zeM

Let DiffVos"(M) @g C be the (complexified) algebra of complex Nash
differential operators. It acts on the C*®°(M,C) = C*°(M,R) ®g C in the
natural way. We have

Lemma 4.18. A function f € C*°(M,C) is in S(M) if and only if Df is
bounded on M for all D € DiffN®" (M) @ C.

Lemma 4.19. For the space S(M) of C-valued Schwartz functions, the
natural map

S(M,R) ®g C — S(M) (4.7)
fRz—={x— f(x)z}

is an isomorphism between TVS. In particular, the S(M) is a (complex)
nuclear Fréchet space.

Remark 4.20. By this crucial isomorphism, we can freely generalize the

properties of S(M,R) to S(M). Actually the maps (4.2), (4.3) and (4.4)

all extends to the spaces of C-valued Schwartz functions, since the functor
— ®pg C is exact on NF-spaces.

We have C-valued analogues of Lemma 4.10L 4.12, [4.15| and 416
We summarize them as the following Lemma:

Lemma 4.21. Let M be an affine Nash manifold, and for each restricted
open subset U C M, let S(U) be the space of C-valued Schwartz functions
on the affine Nash manifold U.
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(C—1) The space S(U) is a nuclear Fréchet space over C for each restricted
open subset U.

(C —2) For each pair Uy, Us of restricted open subsets of M such that Uy C
Us, the extension map (by zero)

ex? 1 S(Ur) — S(Us)

is an injective homomorphism of TVS, with image equal to the
closed subspace

{feSU):Df =0 on Us — Up,¥D € Diff V" (1)1

(C —3) For each finite restricted open cover {U;}¥_, of an affine Nash mani-
fold M, one can choose a smooth function a; € C*° (M, C) such that
suppa; C Ui,Zle a; =1 and oy f € S(U;) for all f € S(M).

(C —4) The correspondence U — S(U) with the above extension maps form
a cosheaf (of NF-spaces) on the restricted topology of M.

(C —5) For each closed affine Nash submanifold Z C M, the restriction
map
S(M) = S8(Z), [ flz

is a surjective homomorphism of TVS.

(C—6) Let My, My be two affine Nash manifolds, then the external tensor
product induces an isomorphism of TVS:

S(Ml) @S(Mg) 1) S(Ml X MQ).

4.3 Vector Valued Schwartz Functions

4.3.1 Vector Valued Schwartz Functions on Affine Nash
Manifolds

In this subsection, let

M = an affine Nash manifold
E = a nuclear Fréchet TVS over C

We introduce the notion of E-valued Schwartz functions on M.
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Definition of F-Valued Schwartz Functions

The E-valued Schwartz functions are defined in the similar way as R-
valued or C-valued Schwartz functions.

Definition 4.22. A smooth function f € C*(M, E) is called a Schwartz
E-valued function on M, if for all D € Diff V" (M), the derivative D f
is bounded on M. More precisely, let {| - |, : p € B} be the family of semi-
norms defining the Fréchet structure of E, then a function f € C*(M, E) is
a Schwartz F-valued function if for all semi-norm |-|,, and D € Diff¥Ne" (1),
one has

sup |(DJ)(@)], < .
zeEM

We denote by
S(M, E)

the space of Schwartz F-valued functions on M, and endow it with the
topology defined by seminorms {gp , : D € DiffN*"(M), p € P} where

qp,p(f) := sup [(Df)(x)|,-
reM

Lemma 4.23. The S(M, E) is a nuclear Fréchet space, under the topology
defined by seminorms {qp , : D € DiffN*"(M), p € PB}.

Lemma 4.24 ([20] p268 Proposition 1.2.6). The natrual map

SM)®FE — S(M,E) (4.8)
fouv—{zxw— f(z)v}

s a continuous linear map which extends to an isomorphism of TVS

S(IM)®E = S(M,E) (4.9)

Open Extensions of Schwartz E-Valued Functions

Let M be an affine Nash manifold, and U be a restricted open subset of
M. Then U is also an affine Nash manifold, and we have the spaces S(U)
and S(U, E) of Schwartz functions on U.

Given a f € S(U, E), let ex)U(f be the naive extension of f to M by zero:

M o flx), ifzelU
eXUf(x)’_{o, ifreM—U
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Lemma 4.25. The ex;s f is in S(X, E). And the map
expy : S(U,E) = S(X, E) (4.10)

f|—>ex§f

s an injective continuous linear map between TVS. Its image is the subspace

{f € S(M,E)|(Df)|p—v = 0,¥YD e DiffNash ()}

which is a closed subspace. Hence exg/[ is a homomorphism of TVS.

By Lemma the map ex? maps the subspace S(U) ® E of S(U, E)
continuously to the subspace S(M)® E, hence extends to a continuous linear
map on the completions S(U, E) — S(M, E). Obviously this extension is
exactly the exg[ .

Partition of Unity

Lemma 4.26. Let M be an affine Nash manifold, and {U;}%_; be a finite
restricted open cover of M. There exists a partition of unity, i.e. a smooth
function a; € C*°(M,R), suppe; C U; and Zle a; =1 on M. Moreover,
for each f € S(M, E), we have oi; f € S(U;, E).

We can use the same partition of unity as in Lemma 4.10.

Cosheaf Property of S(—, F)

Lemma 4.27. The correspondence S(—, E) : U — S(U, E) is a cosheaf of
NF-spaces on the restricted topology of M.

Given a finite restricted open cover U = U} U; of a restricted open
subset U, the sequence

n—1 n n
II I] swinuy) = [[sW) = sW) o0
i=1 j=i+1 i=1

is exact since S(—) is a cosheaf on the restricted topology. Since F is nuclear
Fréchet, the functor — ® E is exact. We obtain the exact sequence

n—1 n n
II 1] swinu;, E) = [[S(Ui, E) = S(U,E) - 0
i=1 j=i+1 i=1

by Lemma |4.24
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Closed Restrictions of Schwartz E-Valued Fnctions

Lemma 4.28. Let M be an affine Nash manifold, Z C M be a closed Nash
submanifold. The restriction map

S(M,FE)— S(Z,F) (4.11)
[ flz
s a surjective homomorphism of TVS.

The restriction f|z is obviously Schwartz. The above map is obtained
by tensoring the map S(M,C) — S(Z,C) in Lemma by the E. Since
E is nuclear, the — ® E is exact, and the above map is still surjective.

Externel Tensor Products

Lemma 4.29. Let My, My be two affine Nash manifolds, Ei, Eo be two
nuclear Fréchet spaces. The natural map

S(My, Ey) @ S(Ma, Ey) — S(M;y x My, E; ® Es) (4.12)
@ for {filkfo: (z1,72) = fi(21) ® fa(w2)}

1 continuous linear and extends to an isomorphism
S(My, E1) ® S(Ms, Ey) = S(My x My, By ® Es). (4.13)
By Lemma [4.24] we have the natural map
S(My) @ S(My) ® E; @ Ey — S(M; x My, E; ® E»)

which extends to an isomorphism on the completion.

4.3.2 Summary of Properties of Schwartz Functions

We summarize the crucial properties about Schwartz E-valued functions
in Lemma [4.23] [4.24], [4.25 [4.26], 4.27], [4.28] and [4.29], as the following propo-
sition. The Lemma is thus the special case of the following proposition
when E = C.

Proposition 4.30. Let M be an affine Nash manifold, E be a nuclear
Fréchet space, U be an arbitrary restricted open subset of M. Let S(M)
(resp. S(U)) be the space of C-valued Schwartz functions on M (resp. U),
and S(M, E) (resp. S(U,E)) be the space of E-valued Schwartz functions
on M (resp. U).
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(E — 1) For each restricted open U, the S(U, E) is a nuclear Fréchet TVS,
and the natural map S(U) @ E — S(U, E) extends to an isomor-
phism of TVS:

S(U)®E S S(U,E).

(E —2) For a restricted open subset U C M, the extension map (by zero)
S(U,E) — S(X,E) (4.14)
is an injective homomorphism of TVS.

(E —3) Let {U;}_, be a restricted open cover of M, then there exists a
partition of unity subordinate to the cover, i.e. there exist smooth
functions a; on M such that suppa; C U, Zle a; =1 and oy f €
S(Ui, E) for all f € S(M,E).

(E —4) The correspondence U — S(U, E) is a cosheaf of NF-spaces on the
restricted topology of M.

(E—5) Let Z C M be a closed Nash submanifold of M and S(Z, E) be the
space of E-valued Schwartz functions on Z. The restriction map

S(X,E) - S(Z,FE) (4.15)
is a surjective homomorphism of TVS.

(E —6) Let My, My be two smooth real algebraic manifolds, let Eq, Fy be
two nuclear Fréchet spaces, and S(X;, E;),i = 1,2 be the spaces of
FEi-valued Schwartz functions on M;. The natural map

S(Ml,El) (/55 S(MQ,EQ) l} S(Ml X MQ,El (/X\) Eg) (416)

is an isomorphism of TVS.

4.4 Schwartz Distributions

In this section, let

M = an affine Nash manifold
E. F = two nuclear Fréchet spaces
S(—, E) = the cosheaf of Schwartz E-valued functions
on the restricted topology of M
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Definition 4.31. A continuous linear map from S(M, E) to F is called a
Schwartz F-valued E-distribution on M, and we denote by

L(S(M,E),F)

the space of Schwartz F-valued E-distributions on M. It is exactly
the space of continuous linear maps from S(M, F) to F.

If F = C, we simply call an element ® € L(S(M, E),C) a Schwartz
FE-distribution on M, and the space of Schwartz E-distributions on M is
also denoted by

S(M,E) = L(S(M, E),C)

i.e. it is exactly the strong dual of S(M, E) with strong topology.

If further E = F = C, we simply call an element ® € L(S(M),C) a
Schwartz distribution on M, and the space of Schwartz distributions on
M is exactly strong dual space S(M)’.

By abuse of terms, we simply call them distributions, when there is no
ambiguity on the spaces E and F.

Since S(M, E) and F are both nuclear Fréchet, by (50.18) on page 525
of [36], we have

Lemma 4.32. The natural map S(M,E) @ F — L(S(M, E), F) extends to
an isomorphism of TVS:

S(M,E) ® F = L(S(M,E), F) (4.17)

In particular, the space L(S(M, E), F) is a tensor product of an NF-space
F with a DNF-space S(M, E)’, hence is a nuclear space.

Remark 4.33. Note that in general L(S(M, E), F') is not a Fréchet space.
For example, when F' = C, the distribution space is S(M, E)'—a dual of a
Fréchet space, which is almost never Fréchet unless it is finite dimensional
(e.g. M is a point, and F is finite dimensional, then the S(M, E) = E and
S(M,E) =FE")
4.4.1 Sheaf of Schwartz Distributions

We keep the M, E, F' as the beginning of this section.

Definition 4.34. Let Uy, Us be two restricted open subsets of M such that
Ui € Us. We have the open extension map as in Lemma |4.25

ex? : S(Uy, E) = S(Us, E).
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The F-transpose of this extension map gives the following continuous linear
map

res;? : L(S(Uy, E), F) — L(S(Uy, E), F) (4.18)

Dw— Do exg2
1
called the restriction map of Schwartz distributions from U, to Uj.

The restriction maps are homomorphisms of TVS, and they are all sur-
jective homomorphisms, i.e. all local Schwartz distributions are restrictions
of global Schwartz distributions.

The correspondence U — L(S(U, E), F) is a presheaf (of nuclear TVS)
on the restricted topology of M. Actually we have

Lemma 4.35. The correspondence U — L(S(U, E), F) is sheaf on the re-
stricted topology on M.

Proof. By Lemma we just need to show the case F' = C. The “sheaf-
sequence” is exact because it is the dual sequence of the “cosheaf-sequence”,
which is exact. 0

4.4.2 Extension of Schwartz Distributions from Closed
Nash Submanifolds

Let M, E, F be as the beginning of this section. Let Z C M be a closed
Nash submanifold. By Proposition we have the map

S(M,E) - S(Z,E), f— flz

which is a surjective homomorphism of TVS. Its F-transpose gives a homo-
morphism on the space of F-valued Schwartz E-distributions:

Lemma 4.36. The F-transpose map of the homomorphism S(M,E) —
S(Z,E) (surjective) is an injective homomorphism of TVS:

L(S(Z,E), F) — L(S(M, E), F) (4.19)

called the extension of Schwartz distributions from Z to M.
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4.4.3 Distributions Supported in Closed Subsets

Definition 4.37. A subset Z of a affine Nash manifold M is called a re-
stricted closed subset, if its complement M — Z is a restricted open
subset.

Let U C M be a restricted open subset, Z = M — U be its complement,
(a restricted closed subset of M) and D € L(S(M,FE),F) be a Schwartz
F-valued E-distribution. We say D is supported in Z, or D vanishes on
U, if res (D) = 0, i.e. the restriction of D to U is zero. The space of dis-
tributions supported in Z (vanishing on U) is exactly the kernel Ker(res?),
which is a closed subspace of L(S(M, E), F).

Lemma 4.38. Let Uy,Us be two restricted open subsets of M such that
Uy C Us, let Z be a restricted closed subset of Uy (the Uy — Z and Uy — Z
are restricted open subsets of M ). Then the restriction map

resgf : L(S(Uy, E), F) — L(S(UL,E), F)
sends Ker(resgifz) isomorphically to Ker(resgiiz),
The open embeddings

Ul‘—>U2

J I

U1 — 7 — UQ -7
induce open extension maps

S(U,E) — S(Us, E)

J J

SV, - 2,E) — S(Uz — 2, E)

The F-transpose of this diagram thus gives the following diagram of restric-
tion maps of distributions:
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Ker(resgi _7) Ker(resgz )

Us
I'eSUl

L(S(UL, E), F) ' [(S(Us, E), F)

U1 U2
I'eSU1 I"EESU2

L(S(U, - Z,E),F) +—— L(S(Us — Z,E), F)

Figure 4.1: Independent of Neighbourhoods

This Lemma says: the top horizontal arrow is an isomorphism of TVS.

Proof. (Injectivity): Let D € Ker(resU _,) be a Schwartz distribution on
Us vanishing on Uy — Z. If resUl( ) =0, then D satisfies

resgf (D) =0, resgz (D) =0.

Note that Uy U(Uy— Z) = Us, by the sheaf property of L(S(—, E), F), we see
D = 0 as a distribution on Us. Hence resgf maps Ker(resgi_ ) injectively
to Ker(resgi_z).

(Surjectivity): Let D € Ker(resg1 ) C L(S(Uy, E), F) be a Schwartz
distribution on U; vanishing on U; —Z. Consider the zero distribution Og,— 7
on the restricted open subset Uy — Z. Obviously we have

1resg1 4(D)=0= resgfig(OUQ_Z)

i.e. the D and Op,_z agree on the restricted open subset Uy —Z = UyN (U —
Z). By the sheaf property, they glue up to a distribution DonU 1U(Ux—2) =
Us. Obviously resg (D) = D, and resg;_ Z(E) = 0, hence we find a pre-
image D of D in Ker(resU ) O

As a corollary to the above Lemma, we have
Lemma 4.39. Let Uy, Uy be two restricted open subsets of M, and let Z C

M be a subset of Uy and Uy which is restricted open in both of them. Then

the two kernels Kelr(r(—:'s,g1 4) and Ker(resgz_z) are isomorphic.
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Proof. We just need to apply the above Lemma to Uy, Us and Uy N Us, and
the following three kernels are canonically isomorphic:

Ker(resgi_z) o~ Ker(resgig%_z) o~ Ker(resgz_z).

4.5 Application to Nonsingular Affine Real
Algebraic Varieties

We will apply the above theory of Schwartz functions and distributions,
to nonsingular affine real algebraic varieties, or more specifically the G =
G(R).

In [20], Fokko du Cloux has defined the Schwartz functions on ”semi-
algebraic varieties”. For the particular case of affine algebraic varieties, the
definition of Schwartz functions in [1] coincide with the definition in [20]
([1] p6 Remark 1.6.3). Hence we can identify the two notions of R-valued
Schwartz functions in [1] and [20].

Remark 4.40. After the Chapter 4]is written, we found out that B. Elazar
and A. Shaviv have generalized the work of Aizenbud-Gourevitch to (non-
affine) real algebraic varieties (arXiv 1701.07334[math.AG]).

4.5.1 Pseudo-Sheaf and Pseudo-Cosheaf

In this subsection, we introduce two terms: pseudo-sheaves and pseudo-
cosheaves, on topological spaces. In a word, they are just sheaves/cosheaves
with the open covers in the sheaf/cosheaf axioms replaced by finite open
covers.

Let

(X, T) = a topological space,

i.e. X is a set and T is a topology on X.

The topology T is a partial orderd set which could be regarded as a
category, with open subsets as objects, open inclusions as morphisms, the
empty set () as initial object and X as the final object.

Let C be an abelian category. One can define the notion of presheaves
and precosheaves on (X, 7) in the ordinary sense:

Definition 4.41. A presheaf on (X, 7) with value in C is a contravariant
functor from the category 7 to C. When there is no ambiguity on the
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topology and category C, we simply call them presheaves. More precisely,
let F be a presheaf, then

e Each open subset U € T is associated with an object F(U) € C, and
in particular F(()) = {0}.
e For each pair of open subset U; C Us, one has a morphism
resg? : F(Uz) = F(Un)
in C called the restriction from Us to U;. And for three open subsets
Uy C Uy C Us, the restriction morphisms satisfy

Uz Us _ Us
reSUl (¢] reSU2 = I'eSU1 .

A precosheaf on (X,7) with value in C is a covariant functor from
the category 7 to C. When there is no ambiguity on the topology and C,
we simply call them precosheaves. More precisely, let £ be a precosheaf,
then

e Each open subset U € T is associated with an object £(U) € C, and
in particular £(0) = {0}.

e For each pair of open subset U; C Uz, one has a morphism
ex? : E(Uh) — E(Uy)

in C called the extension from U; to Us. And for three open subsets
Uy C Uy C Us, the restriction morphisms satisfy

Us u, _ U1
eXU3 (¢] eXU2 = eXUS.

Definition 4.42. Let F be a presheaf on (X,7) with values in C. We say
F is a pseudo-sheaf, if it satisfies the following two axioms:

e Let U be an open subset and {U;}}_; be a finite open cover of U:
U= U, U Let f e F(U) be a section on U. If resy f = 0 for all
i=1,...,n, then f =0.

e Let U and {U;}; be as above (i.e. finite cover). For each i, let
fi € F(U;) be a section on U;. If resgszjfi = resgjﬁUjfj for all
1 <14,j <mn, then there is a f € F(U) such that f; = resgl_f.
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Equivalently, a presheaf F is a pseudo-sheaf, if for each open U and finite
open cover {U;}*; of U, the following sequence is exact in C:

n n—1 n
0 FU) S [[Fw) == I1 I Fw:nu). (4.20)
i=1 i=1 j=i+1
Here the map @, is
oy F(U) - [[F@) (4.21)
=1
fe resgﬁ )ie1
and the map P is
n n—1 n
o : [[Fw) =[] 1] Fwinwy) (4.22)
i=1 i=1 j=i+1

U; Uj -1
(fi)iz1 = ((reSUszjfi — Tesyin; fi)j=it1)ica

Definition 4.43. Let &£ be a precosheaf on (X, T) with values in C. We say
£ is a pseudo-cosheaf, if it satisfies the following two axioms:

e Let U be an open subset and {U;}; be a finite open cover of U:
U=U",U;. Let f € £(U) be asection on U. There exists a f; € £(U;)
for each i, such that

n
f=) exf fi
=1

e Let U and {U;}}_; be as above (i.e. finite cover). For each i, let
fi € E(U;) be a section on U;. If Y77 exgifi = 0, then there exists a
fij € E(U;NU;j) for all 1 <i < j <mn, such that

o 2 Us ) § U; )
fi= Xy,.nU; Jri + Xy.nu, fik
1<k<t i<k<n

for each 1 <17 <n.

Equivalently, a precosheaf £ is a pseudo-sheaf, if for each open U and
finite open cover {U;}?_; of U, the following sequence is exact in C:

n—1 n n
D P cwinuy) == Pewn) 2 eU) 0. (4.23)
k=1

i=1 j=i+1
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Here the map W, is

Uy W) - E(U) (4.24)

and the map ¥, is

n—1 n n
\Ifzt@ @ g(UZﬂUJ)%@g(Uk) (4.25)
i=1 j=it1 k=1

-1 U U
((fij)?:i—i—l)?:l = (= § eXUfmkaik + § eXU:mUj Jridki=1
1<i<k k<j<n

Remark 4.44. e Note that even for a presheaf F, the sequence (4.20))
is a complex, and for a precosheaf £, the sequence (4.23)) is a complex.

e We call them “pseudo”, since they only satisfies the axioms of sheaves
and cosheaves on finite covers.

4.5.2 Schwartz Functions and Distributions on Nonsingular
Affine Real Algebraic Varieties

Let X be a nonsingular affine real algebraic variety. As in[4.1.2 we have
seen that it has a natural structure of affine Nash manifold, and all Zariski
open subsets of X are restricted open, i.e. the Zariski topology is included
in the restricted topology:

T)? ar — T)?es ]

Note that the restricted topology 7}?85 is not a topology since infinite unions
of restricted open subsets need not be restricted open. However, the Zariski
topology ’7}?“’” is indeed a topology.

For two nuclear Fréchet spaces E, F', we have

S(—, E) = the cosheaf of Schwartz E-valued functions on X
L(S(—, E), F') = the sheaf of Schwartz F-valued E-distributions on X

These cosheaf and sheaf are on the restricted topology 75 of X, and we
can restrict them to the Zariski topology 7}?‘". With the terms “pseudo-
cosheaf” and “pseudo-sheaf” defined in |4.5.1, we have
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Lemma 4.45. e The cosheaf S(—, E) on T restricted to the Zariski
topology T2, is a pseudo-cosheaf on TZ.

o The sheaf L(S(—,E),F) on THe restricted to the Zariski topology
T)?ar7 is a pseudo-sheaf on T)?ar‘

Remark 4.46. In this thesis, we will only apply the Schwartz analysis to
nonsingular affine real algebraic varieties, i.e. the G = G(R) and its Zariski
open/closed subvarieties. We will restrict the cosheaf of Schwartz functions
and sheaf of Schwartz distributions to the Zariski topologies, and regard
them as pseudo-cosheaves/pseudo-sheaves.

4.5.3 Supports and Maximal Vanishing Subsets of
Distributions

As in let X be a nonsingular affine real algebraic variety, and we
define the cosheaves of Schwartz functions and sheaves of Schwartz distribu-
tions on it, by regarding it as an affine Nash manifold. As in Lemma [4.45),
we restrict the cosheaves of Schwartz functions and sheaves of Schwartz dis-
tributions to the Zariski topology of X and obtain the pseudo-cosheaves of
Schwartz functions and pseudo-sheaves of Schwartz distributions.

An advantage of restricting the sheaf of Schwartz distributions to the
Zariski topology is—such distributions do have supports on the Zariski
topology.

Remark 4.47. In classical distribution analysis, the support of a distribu-
tion D € C2°(M)" on a smooth manifold M, is defined to be the complement
of the maximal vanishing open subset of D (see [36] p255 Corollary 2 and
Definition 24.2). More precisely, let U C M be the maximal (Euclidean)
open subset of M such that (D, f) = 0 for all f € C°(U). Then the sup-
port of D denoted by suppD is defined to be the complement of U. Here
the maximal vanishing open subset of D is obtained by taking union of all
open subsets on which D vanishes. And by Corollary 2 on p255 of [36], the
distribution D vanishes on this union.

Note that on restricted topology, an infinite union of restricted open
subsets may not be a restricted open subset. Hence one cannot define “the
support” of a Schwartz distribution as in classical distribution analysis. And
we only have the notion “support in” as in Definition [4.37]

However, if we restrict the sheaf of Schwartz distributions to the Zariski
topology, we do have the notion of support of a Schwartz distribution, since
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the Zariski topology is indeed a topology on which one can take infinite
unions.

Definition 4.48. Let X be a nonsingular affine real algebraic variety, and
E, F be two nuclear Fréchet spaces. We regard S(—, E) as a pseudo-cosheaf
on X and L(S(—, E), F) as a pseudo-sheaf on X.

Let D € L(S(X,FE),F) be a Schwartz F-valued E-distribution on X.
Let

vanD = the union of all Zariski open subsets U C X

such that resis (D) = 0
suppD = (vanD)*

= the complement of vanD

We call vanD the maximal vanishing subset of D and suppD the sup-
port of D.

Lemma 4.49. For D € L(S(X,E), F), the vanD is a Zariski open subset
of X, and suppD 1is a Zariski closed subset of X. The vanD is the largest
Zariski open subset of X on which D wvanishes, i.e. the name “mazimal
vanishing subset” is reasonable.

Proof. The first part is trivial. We just need to show D indeed vanishes on
vanD.

By definition, vanD is the union of all Zariski open U such that D|y = 0.
Hence vanD is covered by {U € T£% : D|y = 0}. The Zariski topology
is quasi-compact, hence we can choose a finite subcover of vanD from the
family {U € TZ% : D|y = 0}, say {U;}™,. Hence D|y, =0 fori=1,...,m
and vanD = U™, U;. By the partition of unity property, we can find «;
smooth functions on Uj, such that suppa; C U; and )", a; = 1. Then for
an arbitrary f € S(vanD, F), we have

m m
<D7f> = <D7Zazf> = Z<I‘€S‘(§(D),Ozif> =0.
i=1 i=1
Hence Dlyanp = 0, i.e. D vanishes on vanD. O

4.5.4 Geometry on G = G(R)

We list some well-known facts about G = G(R), and its subspaces (sub-
varieties/submanifolds). Note that G = G(R) is a
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e Real affine algebraic variety;
e Smooth manifold (Lie group);

e Affine Nash manifold.

GG as a Real Algebraic Variety

The algebraic group G is defined over R, hence is R-closed. Since G is
affine, this means we can embed G into a general linear group GL,, C A" as
an closed subvariety, and the defining ideal of G is generated by polynomials
with real coefficients.

Lemma 4.50. For the group G = G(R), we have
e (G is an affine real algebraic variety.

e For any R-closed subgroup H of G, the H = H(R) is an affine real
algebraic variety, and Zariski closed subset in G.

o Let P,Q be two R-closed subgroups of G, and P =P(R),Q = Q(R).
Then every (P,Q)-double coset on G is locally closed under Zariski
topology, hence is an affine real algebraic variety.

e Let P, Q be as above, and assume there are finitely many (P, Q)-double
cosets on G parameterized by a finite set I. For each i € I, the Zariski
open subsets G>;, G; are affine real algebraic varieties.

G as a Smooth Manifold

We regard G = G(R) as a Lie group. Let G C GL, be an embedding
of the variety G into general linear group (define over R). This induces the
embedding on real points G = G(R) C GL(n,R) C R, which gives the
canonical smooth structure on G.

Lemma 4.51. For the group G = G(R) with the canonical structure of
smooth manifold, we have

e G = G(R) is a reqular submanifold of GL(n,R) (and R”Q).

e For R-closed subgroup H of G, the H = H(R) is a regular closed
submanifold of G (also of GL(n,R)).
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o For P,Q be two R-closed subgroup of G, and P = P(R),Q = Q(R).
The (P, Q)-double cosets on G are locally closed reqular submanifolds
of G.

o Let P, Q be as above, and assume there are finitely many (P, Q)-double
cosets on G parameterized by I. Then for each i € I, the Zariski open
subsets G>;, G are open under the manifold (Euclidean) topology and
they are open regqular submanifolds of G.

GG as an Affine Nash Manifold

Every nonsingular affine real algebraic variety has a canonical structure
of affine Nash manifold. Combining the above two subsections, we can study
G = G(R) as an affine Nash manifold.

Lemma 4.52. For G = G(R), we have

e The G C R" is a closed Nash submanifold, hence an affine Nash
manifold.

e ForH C G aR-closed subgroup, the H = H(R) is a closed affine Nash
submanifold of G.

o For P,Q two R-closed subgroups of G, and P = P(R),Q = Q(R),
each (P, Q)-double coset is a affine Nash manifold.

o For P, Q as above, assume there are finitely many (P, Q)-double cosets
on G, parameterized by the finite set I. Then for each i € I, the
G>;,G>; are affine Nash manifolds.

4.5.5 Right Regular Actions on Schwartz Function Spaces

In this subsection, we let G = G(R) be the real point group of a con-
nected reductive linear algebraic group G defined over R. It is a nonsingular
affine real algebraic variety and an affine Nash manifold. Let

FE = a nuclear Fréchet space
H = a R-closed subgroup of G
Y = a nonsingular R-subvariety of G

stable under the right H-translation
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Then H = H(R) is a Lie subgroup of G, Y = Y(R) is a real subvariety of
G stable under the right H-translation. And the H acts algebraically on Y
by the right translation.

The Y is nonsingular affine real algebraic variety, and it has the space
S(Y, E) of Schwartz E-valued functions on it.

Definition 4.53 (Right regular actions on Schwartz spaces). The
right regular H-action on the space S(Y, E) of Schwartz E-valued func-
tions on Y, is defined to be

[Rhf](y) = f(yh)a VhEH,yEY,fES(Y,E)-
Lemma 4.54. For the right regular H-action on S(Y, E), we have:

1. The S(Y, E) is a smooth H-representation. It is isomorphic to the
tensor product representation S(Y) ® E, where S(Y) is the space of
C-valued Schwartz functions on'Y with the right reqular H-action, E
18 considered as a trivial H-representation.

2. Let Uy,Us be two right H-stable Zariski open subsets of G, and Uy C
Uy. The inclusion map

S(Ul, E) — S(UQ, E)
18 H-equivariant, i.e. an H-intertwining operator.

3. Let U be a right H-stable Zariski open subset of G, O be a right H -
stable nonsingular Zariski closed subset of U. The restriction map

S(U,E) = S(O,E)
18 H-equivariant, i.e. an H-intertwining operator.

Example 4.55. For H = Py, Y = G or Gy, Gy, Yw € [We\W], the
spaces S(G, E),S(G>y, E) and S(Gsy, E) have the above right regular Py-
actions, and they are smooth Pj-representations. The following inclusion
maps are all Py-equivariant (intertwining operators):

S(Gsu, E) = S(G>w, E) — S(G, E).

Example 4.56. For H = P, Y = G or P, the S(G,FE) and S(P, E) are

smooth P-representations. The surjective restriction map
S(G,FE) - S(P,E)
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is P-equivariant.
For H = Py, Y = G> or PwPy, the S(G>y, E) and S(Pwhy, E) are
smooth Fjy-representations, and the surjective restriction map

S(szw, E) — S(PwP@, E)

is Py-equivariant.

4.6 Schwartz Inductions

In this section, we recall the notion of Schwartz inductions, and show
some properties on such spaces and their strong dual.

The Schwartz induction is first introduced in section 2 of [20]. We have
seen that notion of Schwartz functions defined in [20] is the same as the
Schwartz functions defined in [1], in case the manifolds under considera-
tion are nonsingular affine real algebraic varieties. Hence we could combine
the works in [20] and [1], to prove parallel a set of properties on Schwartz
inductions, as summarized in Proposition 4.30L

4.6.1 Schwartz Induction SInd%o
Let

G = a linear algebraic group defined over R
P = a R-(closed) subgroup of G
G = G(R) = the Lie group of real points of G
P =P(R) = the Lie group of real points of P
dp = a fixed right invariant measure on P
(0,V) = a Harish-Chandra representation of P
(In particular V is Fréchet and of moderate growth)
S(G,V) = the space of V-valued Schwartz functions on G

The oc-Mean Value and the Schwartz Induction

For a function f € S(G,V), we can define its o-mean value by

f7(9) !:/Pa(p)_lf(pg)dp, VgeG. (4.26)

This integration converges, since the f is Schwartz and o is of moderate
growth.
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The f? is a smooth V-valued function on G, satisfying the following
“g-rule”:
f7(pg) = a(p)f°(9), VpePVged.
In other words, the f7 is in the smooth induction space C*Ind%o.
The map S(G,V) — C®Ind%o, f — f7 is continuous linear and G-
equivariant when S(G, V) and C*®Ind%o are both endowed with right reg-
ular G-actions.

Definition 4.57 ([20] p273 Definition 2.1.2). We denote the image of the
map f— f7 in C'OOIndIGDU by

Snd% (o, V)

or simply SInd%o if there is no ambiguity. We endow the space SInd% (o, V)
with the quotient topology from S(G,V). The SInd% (s, V) is called the
Schwartz induction space of (o,V) (from P to G).

Since a quotient of a NF-space is still a NF-space, we have:

Lemma 4.58. The SInd%(c,V) is a nuclear Fréchet space, and it is a
smooth representation of G.

Schwartz Inductions vs. Smooth Inductions

By definition, the Schwartz induction space SIndga is a subspace of the
smooth induction space CmInd]Gga. By a partition of unity argument, we
see the space

CgolndJGga = smooth induction with compact support modulo P
is contained in SInd%e, hence one has the following inclusions:
C>®Ind%o C SInd%o ¢ C*Ind%o.

Actually, if the quotient manifold P\G is compact, the above inclusions
are equalities:

Lemma 4.59 ([20] p273 Remark 2.1.4). If the quotient manifold P\G is
compact, then the three spaces of inductions coincide:

C>®Ind%o = SInd%e = C*Ind%o.
In particular, the SIndg(a, V') is a Harish-Chandra representation.

We will mainly apply this Lemma to the case of parabolic inductions.
If P is a parabolic R-subgroup of G, then the P\G is complete, and the
manifold of real points P\G is compact by [11] pl46 Proposition 14.2.
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Schwartz Inductions are NOT Schwartz on G

The functions in the Schwartz inductions are not necessarily rapidly
decreasing on GG. We give some examples.

Example 4.60. Let G = (R, +) be the additive group of real numbers, and
let P = G. The irreducible representations of P = R are characters of the
form

x): R — C*

r— e

for some A € C. It is of moderate growth if and only if y) is unitary or
equivalently A € iR.

Suppose A € iR, we consider the Schwartz induction SIndIGJX A A func-
tion ¢ in it is a smooth function satisfying

o(r-z) =z +7) = xa(r)d(z) = eMp(x), Vre P=R,z€G=R.
In particular, for arbitrary r € R, we have ¢(r) = e’ ¢(0). We see

lim ¢(r) = ¢(0) lim eV

r—+00 r—+00
. o . \r
A, Py = $(0) L e

If the ¢ is Schwartz, then both limits should be zero. However if A # 0, the
limits on the right-hand-side do not exist (periodic function with image on
unit circle), if A = 0, the limits equal to ¢(0) which may not be zero.

Example 4.61. Let G = (R?, +) be the additive group of real plane (with
coordinates (z,y)), and let P = R, be the y-axis. The P is a closed subgroup
of G, with embedding y — (0,y). For a A\ € iR, let x) be a character of P
as the above example.

Let ¢ € SIndIGDX)\ be an arbitrary function in the Schwartz induction.
Then it is a smooth function on G = R? satisfying

o(r- (z,y)) = dla,y +1) = (. y).

In particular, ¢(0,7) = e*"¢(0,0), and we see the restriction of ¢ to R, is not
a Schwartz function. However, for every fixed y, the ¢(x,y) as a function of
z, is still rapidly decreasing.
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Example 4.62. In general, let G be the real point group of a connected
reductive linear algebraic group defined over R, P be the real point group
of a parabolic subgroup. Let o be the one dimensional trivial character of
P. Then SIIld]GgO' is not contained in S(G,C). Suppose not, and assume a
¢ € SInd%o is a Schwartz function on G, then its restriction to P is still a
Schwartz function (by (E-5) of Proposition [4.30). However,

¢(p) = a(p)¢(e) = é(e),Vp € P.
Hence ¢ restricted to P is a constant function, which is not Schwartz on P.

Remark 4.63. Although functions in SIndIGDU are not rapidly decreasing
on the entire G, we will see later that they are rapidly decreasing along the
“orthogonal direction” of P.

4.6.2 Local Schwartz Inductions

We generalize the above construction and define the local Schwartz in-
ductions. This notion is defined in 2.2.4 of [20]. We keep the setting as in
last subsection, and let

Y = a locally closed nonsingular subvariety of G

which is stable under left P-translation.

Since Y is a nonsingular locally closed subvariety of G, one has the space
S(Y, V) of Schwartz V-valued functions on Y, and one can define the o-mean
value function as in (4.26), i.e. fora f € S(Y,V),and y € Y let

W= [ oo )iy (.27
Then f¢ is a smooth V-valued function on Y, satisfying the o-rule:

f7y) =) f'(y), VpePycY.

Let

Co(Y,V,0) ={f € C*(G,V): f(py) =0o(p)f(y),Vpe Py Y}

be the space of smooth V-valued functions satisfying the o-rule. The corre-
spondence f +— f? is a continuous linear map from S(Y, V') to C*(Y,V,0).
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Definition 4.64. The image of the map S(Y, V) — C®(Y,V,0), f — f7 is
denoted by
SInd¥ (0, V)

or simply SInd}ga if there is no ambiguity, and we call it the local Schwartz
induction space of o from P to Y. We endow this space with the quotient
topology from S(Y, V'), and one has a surjective homomorphism of TVS:

S(Y,V) - SIndho (4.28)
f= [
Lemma 4.65. The SIndho is a nuclear Fréchet TVS.
4.6.3 Open Extensions and Closed Restrictions of Schwartz
Inductions
Similar to the Schwartz V-valued functions, we have the extension from
open subsets and restriction to closed subsets.
Open Extensions of Schwartz Inductions

Let U1, Uy be two Zariski open subvarieties of G, which are stable under
left P-translation, and assume Uy C Us.

The open embedding induces the injective homomorphism of TVS (ex-
tension of the cosheaf):

S, V) = 8(U2, V), [ ex?f.

Let ¢ € SIndgla, and let f € S(U1, V) be a Schwartz function such that
¢ = f?. Then the above embedding gives the function engf e S(Us, V)
(cosheaf extension). Then its o-mean value function (eng )7 isin SIndeJ.
We have

Lemma 4.66. The (engf)" is independent of the choice of f € S(U1,V),
and it is exactly the extension of ¢ by zero. More precisely, let

Uz _ (;5(:13), fo el
EXUI ($) B {0, ifac celU; —U;

Then (engf)g = Engqﬁ for all f € S(U1,V) such that f7 = ¢. Hence the
Enggb s 1n SIndgza.

109



Proof. (1) We first verify that the (exU f)? is independent of the choice of
f. Let fo € S(U1,V) satisfy (fo)” = 0 in SInd}'o. Let ex;? fo € S(Ua, V)
be its extension to Uz, and let (eng fo)? € SInd}UfU be its o-mean value

function.
By definition, for all € Us

(ex2 fo)7 (2) = /P o(p)ex2 fo(per)dp

If x € Uy, since U; is stable under left P-translation, the px € U; for all
pe P, and engfo(px) = fo(pz). Hence

(exU2 fo)7 () = / o(p~) folpa)dp = (fo)° () = 0.
P

If € Uy — Uy, then px € Uy — U; (the complement Us — Uj is also left
P-stable), and eng fo(px) = 0. Hence

(ex2 1) (2) = /P o(p")0dp = 0.

In sum, if (fo)? = 0, then (exU fo)? = 0. Hence the (eXU f)? is inde-
pendent of the choice of f.

(2) Second we check (engf)(’ = Engqb. Let f € S(U1, V) be a Schwartz
function satisfying f7 = ¢. Still for all z € Us, one has

(2017 (@) = [ o exts fpa)ip
P
If x € Uy, then px € Uy, Vp € P, and engf(px) = f(pz) and
(exf:07@) = [ o)1 pa)dp = 17(2) = 6(2) = Bxo(a).
If x € Uy — Uy, then px € Uy — Uy, Vp € P, and engf(px) =0 and

()7 (a) = [ oo™ )0dp =0 = Bxtzo(a).
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Lemma 4.67. The map

Stnd%'o — Snd%2e (4.29)
¢ — Bx(o

s a continuous linear map and an injective homomorphism of TVS. This
homomorphism makes the following diagram commute:

S(Ul,V) —> S(UQ,V)

} }

‘S’Indg1 o — SIndg2 o

Proof. The map is obviously linear, and the above diagram commute. It is
continuous because the topology on SIndgla is the quotient topology, and
the composition map

S(U1,V) = SInd¥'o — SInd% o

is continuous since the composition other way is continuous. It is injective
since the map is extension by zero. It is a homomorphism of TVS since it
has closed image and all spaces are Fréchet. O

Closed Restriction of Schwartz Inductions

Let U be a Zariski open subvariety of G, and O be a Zariski closed
subvariety of U (locally closed in ). Assume U and O are all stable under
left P-translation. Let SInd%o, SInd9e be their Schwartz induction spaces.

One has the surjective homomorphism of TVS

S\U,V)—S0,V), f~ flo

given by the restriction of Schwartz functions to O.

Let ¢ € SInd%o be an arbitrary element. Let f € S(U, V) be a Schwartz
function such that f7 = ¢, and let f|p € S(O,V) be its restriction to O.
Its o-mean value function (f|p)? is in SInd%s. We have

Lemma 4.68. The function (f|o)° € SInd@o is independent of the choice
of f € S(U,V). More precisely, let

¢lo = the restriction of ¢ to O.

Then ¢lo = (flo)? for all f € S(U,V) such that f = ¢. Hence the ¢|o is
in the Schwartz induction space SInd9o.
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Proof. We just need to check the (f|o)? = ¢lo. Let f € S(U,V) be a
Schwartz function such that f = ¢ in SIndga. For x € O, the

(flo)" (z) = /P o (o) flo) () dp.

Note that pz € O,Vp € P, hence [f|o](px) = f(px). The above integration
is exactly f?(z) for all x € O. Hence as functions on O, the (f|0)? is exactly
the restriction ¢|o. O

Lemma 4.69. The restriction map

Snd%e — Smd@o (4.30)
¢ — 9lo

s a continuous linear map and also a surjective homomorphism of TVS. It
makes the following diagram commute

S(U, V) —— S(0,V)
SInd¥%o —— SInd%o
Proof. Obviously the map is linear and the diagram commutes. The map
(4.30) is continuous since its composition with S(U, V) — SInd%e is contin-
uous. It is a homomorphism of TVS since it is a surjective map to a Fréchet
space hence always has closed image. ]
4.6.4 Pseudo-Cosheaf Property of Schwartz Inductions
Similar to the Schwartz function spaces, the Schwartz induction spaces
also form a pseudo-cosheaf on certain open subsets of G.
The Zariski P-Topology on GG
Let G, P be as the beginning of this section. The flag variety
P\G = P(R)\G(R) =~ (P\G)(R)
is a real projective algebraic variety, and the quotient morphism
7:G— P\G

is continuous under Zariski topologies of G and P\G. We can pull back the
Zariski topology on P\G to have a subtopology of the Zariski topology on
G.
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Definition 4.70. A subset of the form 7=(U) where U C P\G is a Zariski
open subset of P\G, is called a Zariski P-open subset of G. Let Téj be
the family of all Zariski P-open subsets of GG, and we call it the Zariski
P-topology on G.

We have the following easy facts:

Lemma 4.71. The TéD s a topology on G. In particular, the Zariski P-
topology is quasi-compact.

A Zariski open subset of G is Zariski P-open if and only if it is stable
under left P-translation.

Example 4.72. Let Py = Pq(R) be the real point group of a standard
parabolic R-subgroup Pq, of G. For each w € [Wg\W/Wq], the open subsets
Ggw, G%,, are Zariski P-open subsets of G (see for notations).

Let Np be the opposite unipotent radical of P, then the PN p and its
right translations are Zariski P-open subsets of G.

Pseudo-Cosheaf Property of Schwartz Induction

Let U € ch be a Zariski P-open subset. We have the space of S(U, V') of
Schwartz V-valued functions on U, and the local Schwartz induction space
SInd%o on U. We also have the o-mean value map

SU, V) = SIind%o, f— f°

which is a surjective homomorphism between NF-spaces.
Let U; C Us be two Zariski P-open subsets, we have discussed the open
extension map in Lemma

Eng : SIndgla — SIndgza

and seen it is an injective homomorphism of NF-spaces.

With the local Schwartz induction spaces and extension maps defined
above, the correspondence U — SIndga is a pre-cosheaf on the Zariski P-
topology of G. Moreover, by diagram-chasing, we see the coshear sequences
are exact, hence we have

Lemma 4.73. The correspondence SIndpo : U SIndga is a pseudo-
cosheaf of NF-spaces, on the Zariski P-topology of G.

Remark 4.74. If the representation o is a Nash-representation, the associ-
ated vector bundle ¢ xp G is a Nash bundle. The above cosheaf is exactly
the pull-back cosheaf of the pseudo-cosheaf of Schwartz sections of the as-
sociated vector bundle.
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Lemma 4.75. For each Zariski P-open subset U, the surjective homomor-
phism
S(U,V) — SInd%o

1s functorial, hence we have a morphism
S(—,V) = SIndpo (4.31)

of cosheaves of NF-spaces on the Zariski P-topology, which is a surjective
homomorphism on each Zariski P-open subset.

4.6.5 Distributions on Schwartz Induction Spaces

We keep the setting as last subsection, and let F' be an NF-space. Similar
to the pseudo-sheaf of distributions on Schwartz functions, we define the F'-
valued distributions on the Schwartz induction spaces, and show they form
a pseudo-sheaf on the Zariski P-topology on G.

Definition of Distributions on Schwartz Inductions

Definition 4.76. Let L(‘S’Indféa7 F) be the space of continuous linear maps
from SInd%e to F. The elements in it are called F-valued distributions
on SInd¥o.

Since SIndgG is a NF-space, we have

Lemma 4.77. The canonical map (SInd%e)’ @ F — L(SInd%o, F) extends
to an isomorphism of TVS:

(Snd%0)' ® F = L(Snd%e, F). (4.32)

Pseudo-Sheaf Property of Distributions on Schwartz Inductions

Let Uy, Uy € ch be two open subsets in the Zariski P-topology of G,
and U; C Us. We have the extension map Eng : SIndgla — SIndgza, and
let

Resy? : L(SInd%?0, F) — L(SInd%' o, F)

D+ D oExy?

be its F-transpose map. This map is a homomorphism of TVS, called the
restriction map of distributions.
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Remark 4.78. Keep in mind that we use the uppercase notation Ex, Res
to denote the extensions of Schwartz inductions and restrictions of distribu-
tions on Schwartz inductions, and lowercase notation ex,res to denote the
extensions of Schwartz functions and restrictions of Schwartz distributions.

The correspondence
L(SIndpo, F) : U +— L(SInd¥o, F)

(with the restriction maps Res) is a presheaf on the Zariski P-topology of
G. Moreover, we have

Lemma 4.79. The correspondence L(SIndpo, F) : U +— L(SInd%o, F) is a
pseudo-sheaf on the Zariski P-topology on G.

Proof. By Lemma we just need to show the case F' = C. The pseudo-
sheaf sequence is exact because it is the strong dual sequence of the pseudo-
cosheaf sequence, which is exact by Lemma |4.73 O

Distributions Supported in Zariski P-Closed Subsets

By the pseudo-sheaf property of L(SInd,o, F'), we have the following
results similar to the Lemma 4.38 and Lemma, [4.39]

Lemma 4.80. Let Uy, Us be two Zariski P-open subsets of G, such that Uy C
Us. Let Z be a nonsingular closed subvariety of Uy (hence also nonsingular
subvariety of G). Assume Z is stable under left P-translation. Then Uy —
Z,Us — Z are Zariski P-open subsets of G, and one has the restriction maps

Resgi_z : L(‘S’Indg1 o, F)— L(SIndIUDI*ZJ, F)
Resy?_, : L(SIndp?o, F) — L(SInd}? 7o, F)

and the restriction map Resgf sends the kemelKer(Resgz_Z) tsomorphically
to the kernel Ker(Resgi_Z).

Lemma 4.81. Let Uy,Us be two Zariski P-open subsets, and Z C G be a
nonsingular closed subvariety of both Uy and Us, and assume Z is stable
under left P-translation. Then the two kernel spaces Ker(Resgi_Z) and

Ker(Resgg_Z) are canonically isomorphic.

The proof of the above two Lemmas are exactly the same as Lemma [4.38
and Lemma [4.39.
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Extensions of Distributions from Closed Subvarieties

Let U be a open subvariety of G, and O C U be a nonsingular closed
subvariety of U, assume both U and O are left P-stable. We have the
surjective homomorphism SInd%o — SInd@o by Lemma The F-
transpose of this map gives a homomorphism between the distribution spaces
on Schwartz inductions, and we have

Lemma 4.82. The F-transpose of the map SIndga — SIndga s an injec-
tive homomorphism of TVS:

L(Smd%o, F) < L(Snd%e, F) (4.33)
Definition 4.83. We call the above map (4.33) the extension of distri-
butions from L(SInd%o, F) to L(SInd%o, F).

4.6.6 Group Actions on Local Schwartz Inductions

Suppose H is a closed algebraic subgroup of GG, and suppose the Y is left
P-stable and is an H-subvariety of G, i.e. it is a smooth subvariety of G,
and the embedding Y — G is H-equivariant under the right H-translations
on Y and G. Let SIndho be the local Schwartz induction of ¢ from P to
Y.

Definition 4.84 (Right regular action on local Schwartz inductions).
Let ¢ € SIndlga be an arbitrary element in the Schwartz induction. Let
h € H, and we define Rp¢ by

[Riodl(y) = ¢(yh), VyeY.

This is a group action of H on the vector space SIndga, called the right
regular H-action on SInd}o.

‘We have

Lemma 4.85. Under the right reqular H-action, the SInd%a is a smooth
H -representation. The map

S(Y,V) —» Slndho

1s H-equivariant hence an intertwining operator between H -representations.
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Group Actions are Compatible with Open Extensions

Let Uy, Us be two Zariski P-open H-subvarieties of G, i.e. they are open
subvarieties stable under right H-translation and the embeddings are H-
equivariant. Assume Uy, Uz, then as in Lemma [4.67], we have the extension
map from SIndgla to SIndeU.

Lemma 4.86. Under the right reqular H -actions on SIndgla and SIndeU,

the extension map

SIndgla — SIndgza
is an H-intertwining operator. Hence the following diagram

S(Ul, V) — S(UQ, V)

l l

SdP'o —— Snd%o

1s a diagram in the category of H-representations, with all four spaces en-
dowed with the right reqular H-actions.

Group Actions are Compatible with Closed Restrictions

Let U be a Zariski P-open subvariety of G, O be a Zariski P-closed sub-
variety of U. Assume they are all H-subvarieties of G. Let SInd%e, SInd@a
be the Schwartz inductions on them respectively, and they have the right
regular H-actions, and the restriction map between them is H-equivariant.

Lemma 4.87. Under the right reqular H -actions, the restriction map
Sind¥%e — SIndQo
s an H-intertwining operator. Then following diagram

S\U, V) — S(0,V)

l l

Sind%o —— SInd%o

s in the category of H-representations, with all four spaces endowed with
the right regular H-actions.
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4.6.7 Local Schwartz Inductions on Fibrations

We study the Schwartz induction spaces on subvarieties of G, which are
isomorphic to direct products of P and subvarieties of G.

In this subsection, we let P be the real point group of a parabolic R-
subgroup, and let Np be the unipotent radical of its opposite parabolic
subgroup.

Local Trivialization of 7 : G — P\G

Let 7 : G — P\G be the algebraic quotient map. The (G, P\G, ) is an
algebraic fibre bundle, and it is locally trivial on each Zariski open subset

Y, = m(PNpw)
of P\G. The inverse image
Ly i= 7T_1(Yw) = PNpw

is isomorphic to a direct product of varieties, i.e. the following map is an
isomorphism of variety:

Pxw 'Npw = Z, = PNpw

(p,n) = pwn

Direct Product Decomposition

Let Y C Y, be a nonsingular subvariety of Y,, C P\G, and let Z =
771(Y). We assume there is a subvariety O of G, and the multiplication
map on G induces an isomorphism of varieties:

Px0O > Z=n1Y)
(p, @) = px

Then this isomorphism is a P-equivariant isomorphism, with P x O and Z
endowed with the left P-translations. The O is isomorphic to the subvariety
{e} x O of Z.

Example 4.88. We will only consider the following two concrete examples
in this thesis:

e Let Y =Y, (and Z = Z, as above), the O is exactly the w™'N pw.
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o Let Y = m(Pwh), it is the Py-orbit on the P\G through the point
1y = m(Pw). Then Z = PwPy, and the O is the subgroup w™'N pwnN
Ny.

The isomorphism P x O = Z induces the following isomorphisms of
TVS:

S(P,V)®S8(0,C) = 8(Z,V)
S(P,C)®S8(0,V) = S8(Z,V)

(This follows from E-6 of Proposition [4.30l) We know the algebraic tensor
products S(P,V)®S8(0, C) is dense in S(P,V)®S(0, C), and the S(P,C)®
S(0,V) is dense in S(P,C)®S(0, V). We first study the images of functions

in these algebraic tensor products, under the o-mean value map.

Lemma 4.89. Let ¢ € S(P,V) and ¢ € S(O,C), and let

ORY: Z~Px0—=V
(p, ) = p(x)p(p)

Then ¢ @ € S(Z,V), and its image under the map S(Z,V) — SInd%o is

(¢ @) (pr) = ¥ ()67 (p) (4.34)
Proof. This is easy to verify:
(o @1)” o(q )¢ ®v¥)(q - pr)dg

= J o0
Z/PU (¢ ® ) (gpx)dg
/P

o )¢ (qp)]dq

Lemma 4.90. Let ¢ € S(P,C) and ¢ € S(O,V), and let

RV Z=Px0—=V
(p, ) = d(p)h(x)
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Then ¢ @ € S(Z,V), and its image under map S(Z,V) — SInd%o is

(6 © )7 (pz) = o(p) /P o(a)o(q ) (x)dg

Proof. Actually

00 () = [ ola™)(6® ¥)(apa)dy
_ / o(ap)o(q~ ) (x)dg
P
_ /P (ap)o(p)o(ap) " (x)dg
— o(p) / S(ap)o(ap) P (x)dg
P
— o(p) / b(qp)o(ap) () dagp
P

— o(p) /P (q)o(g) " (2)dg

The First Isomorphism

By Lemma we have the following map

Sindbo ® §(0,C) — SInd4o
7R = (@ )7

(4.35)

It is easy to see this map is well-defined, and is independent of the choice
of ¢ € S(P,V). Actually let ¢y € Ker{S(P,V) — SIndLc}, then for any
Y € 8(0,C), the ¢p ® v is in the kernel of map S(Z,V) — SInd%c by

Lemma Moreover, we have

Lemma 4.91. The above map ¢° @1 — (¢®@1)7 extends to an isomorphism

on the completion:
SIndbo ® S(0,C) = SInd%o

and the following diagram commutes:

(4.36)

120



S(P,V)®S8(0,C) —=— S(Z,V)

|

SlndBo & 8(0,C) Stnd%o

Proof. By Lemma the diagram commutes, hence the is surjec-
tive. If (¢ ® ¢)? = 0, then by Lemma [4.89] again, we see ()¢ (p) = 0 for
all p € P,x € O. This is means either ¢ = 0 or ¢ = 0, otherwise there exist
p € P,z € O such that ¢7(p) # 0,¢(z) # 0 thus ¢ (x)¢?(p) # 0. Hence the

map ¢ ® ¢ — (¢ ® )7 is injective, so is the map (4.36). O
The Second Isomorphism

For a F € SInd%o, it is a smooth function on Z. Let F|o be its restric-
tion to the submanifold O (remember O is embedded into Z as {e} x O),
then F|p is a smooth V-valued function on O.

Lemma 4.92. We have
(1) The F|o is a Schwartz function on O, i.e. Flo € S(O,V).
(2) The restriction map

SInd4o — S(0,V) (4.37)
F— F|O

is @ homomorphism of TVS.
(8) The restriction map s an isomorphism between TVS.

Proof. (1) We first consider F of the form (¢ ® ¢)? where ¢ € S(P, V) and
¥ € §(0,C). By Lemma we have

F(p,z) = ¥(z)¢(p), VYp€ P,z e€O.

Hence Flo(xz) = F(e,x) = (x)¢?(e). This is a scalar Schwartz function,
since ¢ (e) is a fixed vector in V, and 9 is a scalar valued Schwartz function.
Hence for F' = (¢ ® ¥)?, we have F|p € S(O,V).

Since the S(O, V) is complete, and functions of the form (¢ ® )7 are
dense in SIndZo, we see the map F — F|o has its image in S(O, V).

(2) All spaces are nuclear, hence we just need to show is continu-
ous. Actually it is continuous since its composition with S(Z, V) — SInd4a
is continuous on the dense subspace S(P,V) ® S(O,C).
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(3) We show the (4.37)) is an isomorphism. Obviously it is injective, since
a function in SInd%e is uniquely determined by its values on O ~ {e} x O.
We just need to show it is surjective.

For any ¥ € §(0,V), let v € C>°(P,C) be a bump function satisfying

/ v(p)dp = ~(e) = 1.
P
We construct a function F'on Z = P x O by
F(p,x) :=~(p)o(p)¥(z), Vpe PxeO.

This F' is in S(Z, V) since it is smooth with compact support. It is easy to
verify

Fo(p,x) = /PO(q‘l)F(qp, z)dg
- /P o(a~ )1 (ap)o(ap) ¥ (x)dg
=/'y(qp)0(p)‘11(x)dq
;
.y /P +(ap)da)] - o (p)¥ ()
| /P Y(g)dq) - o (p) ¥ (z)

=o(p)¥(z)
Then F?|p = ¥. Hence (4.37) is surjective. O

The Trivial Case SIndho

If P = @, a function in SIndga is uniquely determined by its value at
identity e:

Lemma 4.93. The delta function
Q. : SIndbo -V
¢ = o(e)
18 an isomorphism of TVS.

Proof. This is the special case of the above Lemma. Since P = G, the
quotient variety P\G = {x} is a singleton. Then Y = {x}, Z = G, and
O = {e}. The S(O,V) =V, and the map SIndbo — S(O,V),F + F|o is
exactly the delta function €. O
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Chapter 5
Intertwining Distributions

Summary of This Chapter

This is a conceptual chapter, in which we apply the tools of Schwartz
analysis developed in the last chapter, to study intertwining operators. We
embed the space Homg (1, J) of intertwining operators between two smooth
parabolic inductions I, J, to the space of equivariant Schwartz distributions
on the Schwartz induction spaces, and study such distributions by looking
at their restrictions to various Zariski open subsets (unions of double cosets)
of G.

In the first three sections, we will work on more general situation, since
our long term goal is to apply the theory to study all intertwining operators
between two arbitrary parabolic inductions. The main theme of the thesis is
the irreducibility of a single parabolic induction, and in the last two sections
we will look at the space of self-intertwining operators.

Part I—General Intertwining Distributions

In section 5.1} 5.2} [5.3], we work in general situation, and let

G = a connected reductive linear algebraic group defined over R
P, Q = two parabolic R-subgroups of G
G, P, Q = the corresponding Lie groups of real points of G, P, Q
(01, V1) = a nuclear Harish-Chandra representation of P
(02, V2) = a nuclear Harish-Chandra representation of @
I = C®Ind%o; = SInd%oy
J = C*Ind§os = SIndGo,
For two TVS E, E3, let
L(Eh EQ) = Homcont(Eh EQ)

= the space of continuous linear maps from F; to Ejs.
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We study the space Homg (7, J) of intertwining operators between the two
smooth inductions (Schwartz inductions) I and J.

In we embed the space Homg(1,J) of intertwining operators, into
the space L(I,V3) C L(S(G, Vi), Va) of Va-valued Schwartz distributions on
SInd%o (or S(G, V1)), and starting from this section we call elements in
Homeg (I, J) intertwining distributions.

In [5.2, we show the intertwining distributions in Homg (7, J) have sup-
ports equal to closed unions of (P, @Q)-double cosets. Since there are finitely
many double cosets on G, we find the first discreteness of intertwining op-
erators: they are sorted into finitely many families with different supports.
(One can also replace the @ by its algebraic subgroups H such that G has
finitely many (P, H)-double cosets.)

In we first introduce the “maximal double coset” in the support.
If an intertwining distribution D has “a” maximal double coset G, in its
support, then the restriction of D to the open subset G>, is a nonzero
element which vanishes on the smaller open subset G, i.e. this restriction
is a nonzero element in the kernel of the restriction map from G, to G-

Part II—Self-Intertwining Distributions and Irreducibilities

In section we work on the self-intertwining distributions, and
let

G (resp. S,Py) be a connected reductive linear algebraic group defined
over R (resp. a maximal R-split torus, a minimal parabolic R-subgroup
containing S).

e P = Pg be a standard parabolic R-subgroup containing Py (corre-
sponding to a subset © of the base). In this chapter we will not use
the particular set © and we drop the subscript © since there is no
ambiguity.

e Mp = Mg, Np = Ng be the standard R-Levi factor and unipotent
radical of P, My, N be the Levi R-factor and unipotent radical of Py;

o GG, Py, My, Ny, P, Mp, Np etc. be the Lie groups of R-rational points
corresponding to the above algebraic groups denoted by boldface let-
ters.

(0,V) be a nuclear Harish-Chandra representation of P.

e [ = C®Ind$%o = SInd%e be the smooth (Schwartz) induction.
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We apply the notions and results in Part I to the case when P = Q,0; =
o9, I = J, and study the space Homg(I,I) and the irreducibility of the
smooth induction I.

Section now consists of some notations and basic settings. Also we
recall the fact that the intertwining distributions corresponding to scalar
intertwining operators are supported in suppD (see Lemma .

In 5.5 we give the local descriptions of intertwining distributions based
on the maximal double cosets in their supports. We summarize two main
steps to show the Homg(Z,I) = C.

5.1 Intertwining Distributions

In this and the following two sections, we let G and G = G(R) be
the same as the beginning of this chapter. Let P, Q be two parabolic R-
subgroups of G, and let P = P(R),Q = Q(R) be their corresponding Lie
groups of real points. Let

(01, V1) = a Harish-Chandra representation of P

(02, Vo) = a Harish-Chandra representation of @

In particular, the Vi, V5 are nuclear Fréchet spaces and smooth representa-
tions of P, () respectively.

Let SIndIGgal, SIndgag be the Schwartz inductions of o1, o9 respectively.
Since the quotient manifolds P\G,Q\G are compact, the Schwartz induc-
tions agree with the smooth inductions. For simplicity, we use the following
notations for the Schwartz (smooth) inductions:

I= C“Indgal = SIndgal

J = C*Ind§os = SIndGo,

5.1.1 Intertwining Distributions

As in for a Schwartz Vi-valued function f € S(G, V1), its o1-mean

value function

/1 (g) = /P () (pe)dp, g€ G

is in the Schwartz induction space SIndgal, and the map S(G,V;) —
SInd%oy, f — f' is a surjective homomorphism of TVS. And Frobenius
reciprocity (Lemma tells us the map T + . o T is an isomorphism
between (finite dimensional) vector spaces.
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Given an intertwining operator 7' € Homg (I, J), we consider the com-
position map Dy : I — V5 of the three maps: (1) the mean value map
S(G, V1) = I, f — [ (2) the operator T : I — J; (3) the delta function
Qy: J — Vo

The Dy is a Va-valued Schwartz Vi-distribution on G, and it is obviously
@-equivariant, since ), is Q-equivariant, 7" and f — f°' are G-equivariant.

Since the o1-mean value map S(G, Vi) — [ is surjective, its adjoint map
is injective, and the correspondence T +— 2. o T is bijective, hence we have:

Lemma 5.1. The following linear map

Homg(1,J) — HOIHQ(S(G,Vl),VQ) C L(S(G, V1), Va) (5.1)
T — DT

18 one-to-one.

Thus we have embedded the finite dimensional space Homg(I, J), as a
subspace of L(S(G, V1), Va). From now on, we identify the space Homg(Z, J)
with its image in the L(S(G, V1), V2), and identify an intertwining operator
T with its corresponding distribution Dr.

Definition 5.2. Let D € Homg(Z, J).

e We call the Dy € L(S(G, V1), Va) a Vo-valued intertwining distri-
bution on S(G, V7).

e We call the Q.oT € L(I,V3) a Va-valued intertwining distribution
on [.

Remark 5.3. The above term “intertwining distribution” is an emphasis
of the fact that a distribution come from an intertwining operator.

e When the spaces under discussion are clear without ambiguity, we will
simply use the term intertwining distributions, without mentioning

the spaces S(G, V1), 1, Vs etc.

e In application we will also study the restrictions of intertwining distri-
butions on S(G, V1) or I to their subspaces, and we will also call these
restricted distributions intertwining distributions (abuse of terms).
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e By abuse of terms, we will also call elements in Homg(Z, J) inter-
twining distributions, instead of intertwining operators. The space of
intertwining distributions is exactly Homeg(I, J).

The finiteness of Homg (7, J) indicates that there should not be many
intertwining distributions, hence there should be a lot of restrictions on
such distributions. In the next section, we will see the first good property of

intertwining distributions on S(G, V1), i.e. their supports are good subsets
of G.

5.2 Supports of Intertwining Distributions

We keep the setting as in[5.1} and let D € Homg(I, J) C L(S(G, V1), Va)
be an intertwining distribution. As we have seen in section the D has a
well-defined support under the Zariski topology of G. Let suppD and vanD
be the support and maximal vanishing subset as in Definition In this
section, we show

Lemma 5.4. The support suppD and mazimal vanishing subset vanD of
D are stable under left P-translation and right Q-translation. In particular,
the suppD is a (Zariski closed) union of (P, Q)-double cosets in G, the vanD
is a (Zariski open) union of (P,Q)-double cosets in G.

Remark 5.5. Let P € P and Q' C Q be two parabolic R-subgroups
contained in P, Q respectively, and let P’, Q' be the corresponding Lie sub-

groups of R-rational points. Then the suppD and vanD are also unions of
(P',@Q")-double cosets in G.

Before studying the supports, we have the following trivial Lemma:

Lemma 5.6. Let D be an intertwining distribution. Then the following
statements are equivalent:

o D =0 or equivalently the corresponding intertwining operator is zero.

e suppD = ().

5.2.1 Some Topological Facts

Let H C G be an algebraic subgroup, i.e. there is an R-closed subgroup
H of G such that H = H(R).
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Definition 5.7. For a Zariski open subset U C (G, and an element g € G,
let Ug be the right translation of U by g, and gU be the left translation of
U by g. We call the
UH:= | Uh
heH
the right H-augmentation of U, and similarly call the

HU := U hU
heH

the left H-augmentation of U.
We have the following basic facts:
Lemma 5.8. Let U C G be a Zariski open subset.
1. For a g € G, the Ug and gU are Zariski open in G.

2. For an algebraic subgroup H C G, the UH and HU are Zariski open
subsets of G, since they are union of translations of U. Actually, the
UH is a finite union of Zariski open subsets of the form Uh for some
h € H, and HU is a finite union of open subsets of the form hU for
some h € H.

3. A subset S of G is left H-stable (i.e. hS =S for all h € H), if and
only if HS = S; the S is right H-stable (i.e. Sh =S for allh € H),
if and only if SH = S.

Proof. Part 1 and 2 are trivial. We show part 3 for the “left part”, the
“right part” is similar.

Suppose S is left H-stable, i.e. Vh € H, we have hS = S. Then hS C S
for all h € H, hence their union HS is contained in S, and S C HS is
obvious. Hence HS = §S.

Suppose HS = S, then for all h € H, hS C HS C S. By the same
argument h~1S C S, and translate both sides by h we have S C hS for all
h € H. Hence for all h, we have hS = S. [

5.2.2 The suppD and vanD are Right ()-Stable

Let D be an intertwining distribution. We show the vanD is stable under
right Q-translation, which implies suppD is also right )-stable since it is
the complement of vanD. More precisely, by part 3 of the above Lemma,
we need to show

(vanD)Q = vanD.
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The inclusion vanD C (vanD)(Q is obvious, hence we just need to show
(vanD)@ C vanD, or equivalently (vanD)q C vanD for all ¢ € ). By the
maximality of vanD, we just need to show D vanishes on (vanD)q. By
Lemma we know D vanishes on vanD, and we just need to apply the
following Lemma to U = vanD:

Lemma 5.9. Let U be a Zariski open subset of G, and D|y = 0. Then
Dl|yq =0 for allq € Q.

Proof. Suppose the intertwining distribution D € Homg(S(G, V1), V2) van-
ishes on U, namely (D,¢) = 0 for all ¢ € S(U,V;) C S(G, V7). We show
(D, f)y=0forall feSWUgq, V1) S(G, ).
Actually
f is in the subspace S(Uq, V1) C S(G, V1)

< f vanishes with all derivatives on G — Ugq

< R, f vanishes with all derivatives on G — U

SR, € S(UA) € S(G, )

Hence if f € S(Uq, V1), we know the right translation R,f is in S(U, V1)
and by the assumption on D, we have (D, R,f) = 0. Now we have
<D7 f> = <D7Rq71qu>
= o2(q (D, R,f) (D is Q-equivariant)
= 03(q71)0

Thus we have shown (D, f) = 0 for all f € S(Ugq, V1), hence D vanishes on
Ug. ]

5.2.3 The suppD and vanD are Left P-Stable

Let D be an intertwining distribution as above. We show the vanD
is left P-stable, which implies suppD is also left P-stable. Similar to the
above discussion, we just need to show P(vanD) C vanD, or equivalently
p(vanD) C vanD for all p € P.

Lemma 5.10. Let f € S(G, V1) be and arbitrary Schwartz Vi-valued func-
tion, and p € P be an arbitrary element. Let

(Lpf)(g) == f(p~'g9),Vg € G
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be the left translation of f by p. Let o1(p)f be the following composition
function

[1(p) f1(9) = a1 (p) f(9),
i.e. 01(p) acts on the vector f(g) € V1. Then we have
(1) The L,f is in S(G,V1).
(2) The o1(p)f is in S(G,V1).

(3) The a1-mean value function of Lyf (the image of L,f in STndSoy ) is

(Lpf)7* = dp(p)lor (™) A7,

i.e. it is the o1-mean value function of o1(p~1) f multiplied by a constant

dp(p)-

Proof. Part (1) is true because the left translation by p is an algebraic
isomorphism on G, and it induces an isomorphism on Schwartz function

spaces:
L, : 8(G, V1) = S(G, ).

Part (2) is true because the function o1(p)f is simply a composition of
the Schwartz function f with a single linear operator oy (p).

We verify part (3), let f € S(G,V1) and p € P be arbitrary elements.
Then

(Lpf)7 (9) = /P o1(q )Ly f1(g9)dg

—/ o1(¢ ") f(p~'qg)dg
;
- /P o1(q Vo1 (P () F (" ag)dg
_ /P o1 (7~L9) Vo1 (p~1) £ (v Lag)dg
:/Pa1(p')1[01(p1)f](p’g)d(pp’) (p =p'q)
— 5p(p) / o1 (@) Mo () (0 9)
P
= 5p () (p 1) 17 (9)
hence (Lpf)* = 8p(p)[os (=) 17" 0
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Similar to the proof of right @-stability of vanD, we show the following
Lemma which implies vanD is left P-stable:

Lemma 5.11. Suppose U is a Zariski open subset on which D wvanishes
(D|y = 0), then for an arbitrary p € P, we have D|yy = 0, namely D also
vanishes on the left translation pU .

Proof. We just need to show (D, f) = 0 for all f € S(pU, V1). Suppose
the intertwining distribution D come from an intertwining operator T &€
Homg (1, J).

First the isomorphism

Ly :S(G, Vi) 5 S(G, W)

maps the subspace S(pU, Vi) of S(G, V) isomorphically to the subspace
S(U, W), ie. feS(pU, V1) is equivalent to L,-1f € S(U,V1). Then for all
f € S(pU7 Vl)
(D, ) =(D,LyLy— [)
Qe o T, [LyL,-1 f]7"
Qe o T,6p(p)lor(p~ ") Ly-1 f171)
0p(p)(Qe o T, [o1(p™") Ly-1 £171)
5P(p) <D7 01 (p_l)Lp_1f>
op(p) -0

=
=

The last equality holds because L,-1f is in S(U,V1) and the composition
function o1(p~')L,-1f is also in S(U, V4), since it vanishes with all deriva-
tives on G — U. By the assumption D|y = 0, we know (D,o1(p™)L,-1 f) =
0.

Therefore we have shown (D, f) = 0 for all f € S(pU, V1), hence D
vanishes on pU. 0

Remark 5.12. We summarize the above results we have proved for the
support of intertwining distributions. We first note the following sequence
of inclusions:

Homg(I, J) = HomQ(I, VQ) C HOIIlQ(S(G, V1), VQ) C L(S(G, Vl), Vg).

A distribution D in the largest space L(S(G,V1),Va) has a well-defined
support as in Chapter/4. If D is in the subspace Homg(S(G, V1), V2), then its
support is right @-stable. If further D is in the Hom¢g(Z, J) = Homg(Z, Va),
i.e. it factor through the S(G, V1) — I, then its support is also left P-stable.
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5.3 Some Notions of Distribution Analysis on G

Let G, P,Q, (01,V1), (02,V2),1,J be the same as in In this section,
we introduce the notions of maximal double coset(s) in the supports, and
the diagonal actions on Schwartz distribution spaces. Each subsection could
be read independently.

5.3.1 Maximal Double Cosets in Supports

Let D € Homg(I, J) be an intertwining distribution G, then the suppD
is a closed union of (P, Q)-double cosets. Let H C @ be an algebraic sub-
group, i.e. assume there is a R-closed subgroup H C Q such that H = H(R).

In this subsection, we assume there are finitely many (P, H)-double coset
on G, and they are parameterized by a finite set W.

Since there are finitely many (P, H)-double cosets, as in the double
cosets form a partial ordered set, ordered by their Zariski closures. And we
can find a maximal (P, H)-double coset from the suppD if suppD # () (or
equivalently D # 0).

Remark 5.13. Note that the closure order on double cosets is only a partial
order. If a double coset is maximal in suppD, it doesn’t mean it is “greater”
than all other double cosets in suppD, but means it is “not smaller” than
any other double cosets in suppD.

We call it “a”, but not “the” maximal double coset, because there might
be more than one maximal double cosets in suppD since the order is only a
partial order.

For a w € W, we denote the corresponding (P, H)-double coset by Gy,.
We can define the Zariski open subsets G>y, G>q as in and G, =
G>w — Gy is closed in G>,,. We denote by

resé_ = the restriction map L(S(G V1), Vo) — L(S(G>y, V1), Vo
G>u p ) ’ >ws ’
resg>w = the restriction map L(S(G, V1), Va) = L(S(Gsw, V1), V2)

The following easy lemma gives an algebraic description of “a” maximal
double coset in suppD:

Lemma 5.14. Let D € Homg(S(G, V1), Va) be an intertwining distribution
and assume D # 0 to make sure it has nonempty support, then the following
8 statements are equivalent:

1. The Gy, is “a” mazimal double coset in suppD.
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2. The restriction Dlg.,, = resg>w(D) # 0 and the restriction Dl|g., =
resg>w(D) =0.

3. The D € Ker(resg>w) but D ¢ Ker(resg>w).

Proof. We show 1. < 2. since 2. < 3. is trivial.

(1. = 2.) Suppose G, is a maximal double coset in suppD.

First we have G,, C suppD, hence G>,, NsuppD D G, # 0. Hence
G>y € vanD and Dlg., # 0.

Second if D|q.,, #£ 0, then G, ¢ vanD hence G, NsuppD # 0. There
exists a Gy C Gy NsuppD (thus G, > G,,). Hence G, is not maximal,
contradiction!

(2. = 1.) Suppose D|g., # 0 and D|g., = 0. First we have G, C
vanD. -

Second we show G, C suppD. Suppose not, then G, C vanD, then
G>w = Gy UG5y CvanD, and D|g.,, = 0, contradiction!

Now we see the G,, is a double coset in suppD, and for all z > w, the
Gy C Gsy C vanD, ie. all orbits “greater” than GG, are not contained in
suppD. Hence G, is “a” maximal orbit in suppD.

O

Remark 5.15. For D # 0, since there is at least one maximal double

coset in suppD, the subsets Ker(resg>w) — Ker(resg>w) “cover” the subset

Homg(I,J) — {0} of L(S(G, V1), Va2). However this is not a partition, since
maximal double coset(s) may not be unique.

5.3.2 Diagonal Actions on Distribution Spaces—I

Let P,Q, (01, V1), (02, V2) be as the beginning of this section. As in4.5.5]
let

H = a closed algebraic subgroup of @

Y = a real subvariety of G which is closed under right H-translation

One has the right regular H-action on the Schwartz function space S(Y, V1),
and the H-action on V3 through the representation oy. (Note that H C @
is a subgroup).

Definition 5.16 (Diagonal H-action on distribution space). We define
the following H-action L(S(Y, V1), Va): for all @ € L(S(Y,V1),V2),h € H
and f € S(Y, V1), the h- ® is given by

(h-®, f) = 09 (h)(®, Ry-1 f). (5.2)
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Here the
() LISV, A), Vo) x S(Y, V1) = Va

is the pairing between the Schwartz distributions and Schwartz functions,
Ry,—1f is the right regular action of h=! on f, the (®, R,-1f) is a vector in
V5, and h acts on it through the representation os.

We call this action the diagonal H-action on the distribution space
L(S(Y, V1), Va).

Lemma 5.17. For the above diagonal H-action on L(S(Y, V1), Va), we have:

1. The L(S(Y,V1),Va) is a smooth H-representation. It is isomorphic to
the tensor product representation

L(S(Y, 1), Va) = S(Y, V1) @ Vs (5.3)

of H, where S(Y, V1) is endowed with the contragredient H-action of
the above right reqular H-action, and Vs 1s endowed with the restricted
representation oa|g of H.

2. The space Hompg(S(Y,V1),Va) of H-equivariant Va-valued Schwartz
Vi-distributions on'Y is exactly the space of H-invariants on the space

L(S(Y, V1), Va):

Homy (S(Y, V1), Vo) = HY(H, L(S(Y, V1), Va)) (5.4)

3. Let Uy,Us be two right H-stable Zariski open subvarieties of G and
Uy C U, the restriction map of distributions

rest? : L(S(Uz, V1), Va) — L(S(U1, V1), Va)

is an H-intertwining operator. Its kernel is a H-subrepresentation of

L(§(Ua, V1), Vo) under the diagonal H-action.

4. Let U be a right H-stable Zariski open subvariety of G, O C U be a
right H-stable Zariski closed subvariety of U. Then the inclusion map
(extension of distributions from a closed subset)

L(8(0, W), V2) = L(S(U, W), V2)

is an H-intertwining operator.

134



5.3.3 Diagonal Actions on Distribution Spaces—II

Let P,Q,(o1,V1),(02,V2) be as above. Similar to the diagonal action
on Schwartz distributions on Schwartz function spaces, we can define the

diagonal action on Schwartz distributions on Schwartz induction spaces.
Let

H = a closed algebraic subgroup of @

Y = a real subvariety of G which is stable under left P-translation

and right H-translation

Since Y is left a P-stable subvariety of GG, one can define the local Schwartz
induction space
SInd¥Yoy

as in This space is a smooth H-representation, under the right regular
H-action on it. The H also acts on the V5 through o since it is a subgroup

of Q.

Definition 5.18 (Diagonal H-action on Schwartz induction spaces).
Let L(SInd%oq,V3) be the space of Va-valued Schwartz distributions on
SInd%al. We define the following H-action on it: for each h € H,® €
L(SInd¥o1,Vs), ¢ € SIndho1, let h - ® be the distribution

(h-®,¢) :=o(h)(®, Rp-10) (5.5)
Here R;,-1¢ is the right regular action of A~ on ¢ € SInd}gal, the
(,): L(SInd¥ay, Vo) x SIndhoy — Vo

is the pairing between Schwartz induction space SInd}gal and Schwartz
distribution space on it, and (®, Rj,-1¢) is a vector in Vo and o2(h) acts
on it.

We call this H-action the diagonal H-action on the distribution
space L(SInd%oq, Va).

Lemma 5.19. For the above diagonal H-action, we have

1. The L(SIndYo1, Vi) is a smooth H-representation under the diagonal
H-action. It is isomorphic to the tensor product H-representation

L(SInd%oy, V5) ~ (SIndbe1)' & Vs (5.6)

where the (SIndboy) is the contragredient H-representation of the
right reqular representation, Va is regarded as the representation space
of restricted representation ag\H.
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2.

5.4

The space Homp (SIndboy,Va) of H-intertwining operators between
SIndYoy and (09|, Va) is exactly the space of H-invariant of the space
L(SIndYoy, Va):

Hompy (SIndYoy, Va) = HY(H, L(SIndYoy, V3)).
Let U1,Usy be two Zariski open subvarieties of G, stable under left P-

translation and right H-translation, and assume Uy C Us. Then the
restriction map of distribution

Res;? : L(SIndp?oy, Vo) — L(SIndpioy, Va)

s an H-intertwining operator under the diagonal H-actions. Its kernel
is an H-subrepresentation of L(SInd%al, Va).

. Let U be a Zariski open subvariety of G, O be a Zariski closed subvari-

ety of U (thus also a locally closed subvariety of G), and assume both
U and O are stable under left P-translation and right H-translation.
Then the inclusion map of distributions

L(SInd%01, Va) < L(SInd¥%o1, V)

18 an H-intertwining operator.

Self-Intertwining Distributions

Starting from this section through the entire chapter, we consider the
self-intertwining distributions (operators) on a single smooth parabolic in-
duction. We let

P = Po = a standard parabolic R-subgroup
corresponding to a subset © of the base A
P =P =P(R)
(¢,V) = a Harish-Chandra representation of P
I = SInd%o = C*°Ind%o

We apply the notions and results in the previous three sections, to the case

when

136



i.e. P,@ are the same parabolic subgroup Pg, and (o1, V1), (02, V2) are the
same representation (o, V'), I, J are the same Schwartz induction. And we
study the space Homg(I, I) of self-intertwining distributions (opera-
tors).

Let D € Homg(I,I) = Homp(I,V) C Homp(S(G,V),V) be an inter-
twining distribution. As we have seen in[5.2), its support suppD is a union of
(P, P)-double cosets of G. Actually for any algebraic subgroup H C P, the
support suppD is also a union of (P, H)-double cosets. We are particularly
interested in the case when

H = Pq,

where () is a subset of O, and Py is the standard real parabolic subgroup
corresponds to 2.

5.4.1 (P, Py)-Stable Subsets of G and Local Schwartz
Inductions

As above, let

Q) = a subset of ©
P = the standard parabolic R-subgroup corresponding to 2
Po = Po(R) = the Lie group of real points of Pq

Then by ) C  C ©, we have Py C Py C Peo.
Notations on Double Cosets
As in the (P, Py)-double cosets in G are parameterized by the set
[Wo\W/Wq] = {w e W :w 0 > 0,wQ > 0}

of minimal representatives of the double quotient Wo\W/Wgq. The double
cosets form a partial ordered set by the closure order on them, which also
give the parameter set [Wg\W/Wq] a partial order. We adopt the same
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notations as in [3.3k
Gg = PwPF = the double coset corresponding to w

L, =[] G2

T>w
= the open union of double cosets PxPq s.t. PwPq C PxPg
Q Q
G>w = H G:r
T>W,rEW

= the open complement of Gg in Ggw

In particular, if Q@ = 0 (the empty set), we omit the superscript 2, i.e.
for w € [We\W| = [We\W/W;], we use the following simplified notations:

Gw =G = Pupy
Gsw =G,
G>w = Ggw

Remark 5.20. Note that for different {2 C ©, the double cosets are param-
eterized by different sets of minimal representatives [Wg\W/Wq]. However
all of them contain the minimal element e (identity of W ). And we always
have

GY=p
Gl =G
G.=G-pP

no matter what € is, and they are stable under left and right P-translations.
In this sense, the minimal double coset Gg = P will be singled out and studied
separately.

Some Notations on Local Schwartz Inductions

Let Y = G, Ggw, or Ggw. Obviously they are left P-stable and right

Po-stable, and the local Schwartz inductions SIndbo are smooth nuclear
representations of P under the right regular Pp-actions. We use the follow-
ing simplified notations to denote the local Schwartz inductions on them:
Q
Iful = SIndng
G2,

Igw =SIndp="0

Q
12, = Snd o
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They are nuclear Fréchet spaces and smooth representations of Py under
the right regular Pn-actions.

As before, when Q = 0 (empty set), we omit the superscript €2, and for
each w € [Wo\W], we let

I,=1°
Iy = Igw
I>w = Igw

5.4.2 Scalar Intertwining Operators

Let G, P,o0,1 be as above. The space Homg(I,I) always contain the
1-dimensional subspace of scalar intertwining operators.

Given a A € C, let \id € Homg (I, I) be the scalar intertwining operator.
Then the corresponding intertwining distribution (by Frobenius reciprocity)
is obviously the

Ao : T = V.

We call this AQ, € Homp(I,I) a scalar intertwining distribution. For
such distributions, we obviously have

Lemma 5.21. A scalar intertwining distribution \Q. € Homp(I,V') have
its support contained in P. More precisely, we have

P, ifA#£0

5.7
0, otherwise. (5.7)

supp(A Q) = {

5.4.3 Analysis of Schwartz Distributions

Let Y be a subvariety of G, which is stable under left P-translation and
right Po-translation. We have the Schwartz function space S(Y, V) and the
Schwartz induction space SIndga, and a surjective homomorphism of TVS

S(Y,V) - SIndbo, f— f°,

where f? is the o-mean value function of f. These two spaces are smooth
Pq-representations, and the above surjective homomorphism is a homomor-
phism of NF-spaces and Po-representations.

The L(S(Y,V),V), L(SInd%o, V) are the Schwartz distribution spaces,
and they have the diagonal Pg-actions on them which make them into
smooth Pg-representations. The V-transpose of the above surjective homo-
morphism is an injective homomorphism of TVS and Py-representations:

L(SIndYo, V) — L(S(Y, V), V).
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Restriction of Distributions to Open Subsets

Let Y = Ggw,Ggw or GG, they are all open in G. We have the two
commutative diagrams of TVS and Po-representations in Figure . (Re-
member that restriction maps of the pseudo-sheaf L(S(—, V'), V') are denoted
by res, while restriction maps of the pseudo-sheaf L(SInd o, V') are denoted
by Res.)

On the left diagram (a), the four inclusion maps (vertical arrows) are
induced by the inclusions G¢,, € G¢,, C G. The three horizontal maps are
surjective homomorphisms of TVS by the definition of Schwartz inductions.
All six spaces in the left diagram (a) have the right regular Pg-actions,
and all maps in the left diagram (a) are Pgp-equivariant, hence they are
Pq-intertwining operators between smooth Po-representations.

The right diagram (b) is the V-transpose of the left diagram (a). All four
vertical arrows are restrictions of distributions, and three horizontal arrows
are injective homomorphisms of TVS. All six distribution spaces have the
diagonal Pg-actions, and all maps in diagram (b) are intertwining operators
of Pq-representations.

Igw — S(Gng V) L<I§w7 V) - L(S(Gng V)? V)

Rengw resc”
12, «—— 8(GL,,V) L(1L,,V) ——— L(8(G%,,V),V)
G G
ReSGgw reSGgw
I «——— S(G,V) L(I,V) — L(S(G,V),V)
(a) Schwartz spaces (b) Distribution spaces

Figure 5.1: Schwartz and Distribution-Open

Extension of Distributions from Closed Subsets

Let Y = ngagw or G¢,. The Ggw,Ggw are open in G, while G
is closed in Ggw. We have the two commutative diagrams of TVS and
Pqg-representations in Figure [5.2]
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On the left diagram (a), the above two vertical arrows are inclusions
of TVS induced by the inclusion G£,, € G¢,_,. The two vertical arrows
below are surjective homomorphisms of TVS, given by restriction map to
closed subvariety Gg. The three horizontal arrows are surjective homomor-
phisms of TVS by the definition of Schwartz inductions. The composition
of two consecutive vertical arrows are zero, i.e. each vertical sequence in
diagram (a) is a complex. All six spaces in diagram (a) have the right reg-
ular Pp-actions, and all maps in the diagram (a) are Po-equivariant hence
intertwining operators between smooth Pqn-representations.

The right diagram (b) is the V-transpose of the diagram (a). In dia-
gram (b): The two vertical arrows above are restriction maps of distribu-
tions. The two bottom vertical arrows are “extension of distributions from
closed subsets” and they are injective homomorphisms of TVS. The three
horizontal maps are inclusions of distributions spaces. All six distribution
spaces in diagram (b) have the diagonal Pg-actions and they are smooth
Pq-representations. All maps in diagram (b) are Po-intertwining operators.
The compositions of two consecutive vertical arrows are zero.

12, «——8(G2,,V)  LUL,V) ——— L(S(GZ,,V).V)

>wo
G2 G&
R >w >w
eSGgw reSGgw
12, «—8GL,, V) L%, V) —— L(S(GY,,V),V)
(a) Schwartz spaces (b) Distribution spaces

Figure 5.2: Schwartz and Distribution-Closed

5.5 The Irreducibility of Unitary Parabolic
Inductions

In this section, we keep the notations as in the last section, and let (o, V')
be a Harish-Chandra representation, and I = C®Ind%o = SInd%o be the
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Schwartz induction (also the smooth induction). We want to study when
the following equality holds:

Homg(I,I) = C,
i.e. the space of self-intertwining distributions is one dimensional.

Remark 5.22. When the o is of the form o = T®511;./ ? for a unitary (Hilbert)
representation (7, V'), the smooth induction I = C“Indga is infinitesimally
equivalent to the normalized unitary induction IndgT. If two representa-
tions are infinitesimally equivalent, then they are irreducible/reducible si-
multaneously. Moreover, we have Homg (I, I) = Homg(Ind%7, Ind%7) and
Ind%7 is irreducible if and only if Homg(Ind%7, Indg7) = C. Therefore, if
c=T® 5113/ % for a unitary representation 7, the following statements are
equivalent:

e The I = C*®Ind%o = SInd%o is irreducible;
e The Ind%7 is irreducible;
e The Homg(IndgT, Ind]G;T) =C;

e Homg(I,1) =C.

When the 0 =7 ® 5}3/ 2, to show the I is irreducible, it is sufficient to show

Homg(I,1) =C.

In this section, we find sufficient conditions for Homg(I,I) to be 1-
dimensional, and in the Chapter [9, we will apply the results in this section
to study the irreducibility of unitary inductions.

Let D € Homp(I,V) be an intertwining distribution. For each fixed
subset 2 C O, we have seen its support suppD is a Zariski closed union of
(P, Po)-double cosets. Then one has two possibilities of its support:

e the extreme case: the support is contained in the identity double
coset P;

e the general case: the support is not contained in the identity double
coset P.

We will discuss these two cases separately in following subsections.
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5.5.1 General Case suppD ¢ P

Suppose the support suppD is not contained in P, then for each fixed
subset 2 C O, there exists a maximal (P, Py)-double coset contained in
suppD, say G for some w € [We\W/Wq],w # e.

For this particular Q and w, let I, I, be the two local Schwartz
inductions on Ggw and G, respectively, and one has the inclusions 1%, C
1, C I. By Lemma we see the restriction of D to the subspace I,
is zero, and the restriction of D to the subspace I Qw is nonzero. We denote
the restriction of D to Igw by Dgw, then it is in the up-left space in the
following diagram - -

Homp, (1£,,,V) «—— Homp, (S(GL,,,V),V)
'rest'r’z'ctz’anl Testrictionl

Homp, (I%,,V) «—— Homp,(S(GL,,V),V)

Moreover the Dgw € Homp, (Igw, V) is a nonzero element in the kernel of
the restriction map

Res'! : Homp, (Igw, V) — Homp, (I, V)

Since Dgw vanishes on the subspace Igw of Igw, it factor through a
Pg-equivariant continuous linear map on the quotient:

—0
Dy, 14, /I8, =V

which makes the following diagram commute

DS
Q0 >w
12, —"»v
quotientl %’
D,
Q Q
Izw/I>w

To summarize the above, we have the following lemma which gives a
local description of intertwining distributions which have GS as a mazimal
(P, Pa)-double coset in their supports:

Lemma 5.23. Let D € Homp(I,V) be an intertwining distribution with
support suppD.
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(1) If G} is a mazimal double coset in suppD, then the element ng defined
above is a nonzero element in Ker(Res:).

(2) The correspondence
Ker(Resg) — Homp, (Igw/lgw, V)

s a linear isomorphism. Moreover, since V, Igw, Igw are nuclear hence
reflexive, we have

Homp, (I2,/12,, V) =~ Homp, (V', (I2,/12,))")
where V’,(Igw/lgw)’ are the dual representation of V and Igw/lgw
respectively.
5.5.2 Extreme Case suppD C P
In this case, it does not matter what € is, since for all €2, one has
G2=P G =G G =G—P, and
=T =1
12, =I..=Smd%Fo
Thus we simply drop the superscript 2.
Since suppD C P, we have vanD D G — P, equivalently the D €
Homp (I, V) vanishes on the subspace I, (which is also a subrepresentation

of I). Therefore the D factor through the quotient representation I/I~.,
and gives a P-equivariant map

E:I/I>e—>v

which makes the following diagram commute

I —2 v

quott entl /
D

/1.

Similar to the general case, we have the following local description of
intertwining distributions supported in P:
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Lemma 5.24. Let D € Homp(I,V) be an intertwining distribution with
support suppD. The correspondence

{D € Homp(1,V) : suppD C P} — Homp(I/Is., V)
D~ D

1s a one-to-one linear map. Moreover, since the V,I,I<. are all nuclear
hence reflexive, we have

Homp(I/Is., V) =~ Homp(V', (I/Is.)),

where the V' and (I/Is.)" means the contragredient representation of V- and
I/I-. respectively.

In sum, the intertwining distributions with supports contained in P, are
in one-to-one correspondence with the space Homp(V' (I/Is.)").

5.5.3 Irreducibility of [

We summarize the above two lemma about local descriptions of inter-
twining distributions:

Theorem 5.25. Let D € Homg(I,I) = Homp(I,V) be an intertwining
distribution. Then either suppD C P or suppD ¢ P.

(1) If suppD C P, then the adjoint map of D is in the space
Homp (V' (I/1s¢)").

(2) If suppD ¢ P, then for each Q C ©, there exists a w € [Wo\W/Wq],

where w # e, such that the adjoint map of (restricted distribution) ﬁgw
s @ nonzero element in

Homp, (V/, (Igw/lgw),)

Remark 5.26. Combining with Lemma [5.21, to show Homg(Z,I) = C,

(equivalently I is irreducible when o = 7 ® dy % for a unitary 7), we just
need to:

~

(1) Show
Homp(V',(I/Is.)") = C.
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(2) Find a subset Q C ©, and show for all w € [We\W/Wg],w # e, one
has

HomPsz(V,v (Igw/Igw)/> = {0}

(Therefore it contains no nonzero elements.)

The (2) guarantees that there is no intertwining distribution with sup-
ports not contained in P. Otherwise suppose D has its support not contained
in P, then for every €, one can find a maximal double coset G} in suppD,
and a nonzero element in some Homp, (V’, (I,/1%,)"), a contradiction!

Then the (1) guarantees that the only possible intertwining distributions
are scalar intertwining distributions, therefore Homg (7, I) = Homp(I,V) =

C.
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Chapter 6

Schwartz Distributions
Supported in Double Cosets

Summary of This Chapter

In the last chapter, we are required to study the spaces
Q Q
(12w/1>w)/

for various 2 C © and w € [We\W/Wgq]. Recall that we have the following
exact sequence of NF-spaces

0— 1%, - 12, - 12,/1¢, —0
Since all spaces are NF-spaces, its dual sequence is still exact:

0= (1£,/12,) = (I2,) = (I12,) =0

The space (I gw JI2,) is exactly the kernel of the restriction map (Igw)’ —

(I,)". We will show the kernel of the restriction map (I2,) — (I2,)
consists of transverse derivatives of distributions on Gﬁ. In this chapter, we
will study the case 2 = () and the general cases of Q will be studied in the
last chapter.

Notations and Settings

Let G, P = Pg, Py, W,We, [Wo\W], (0,V) be the same as in Chapter
5. The (P, Py)-double cosets in G are parameterized by the set [Wgo\W]
of minimal representatives, and they are ordered by the closure order (see
Definition |3.28).

For a w € [We\W], let Gy, G>w, Gy and Ly, Isy, Isy be the same
as in 9.4, Remember that G>,G~, are Zariski open in G and G, is
the complement of G+, in G, hence G, is closed in G>,. The local
Schwartz induction I, is a subspace of I, and the restriction to G
gives a surjective homomorphism I>,, — Iy,.
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We will work on a more general setting. Let
F' = a nuclear Fréchet space
and let

S(—,V) = the pseudo-cosheaf of V-valued Schwartz functions on G
L(S(—,V), F) = the pseudo-sheaf of F-valued Schwartz distributions on G

We use the following notations to denote the extension maps (by zero)
of Schwartz V-valued functions and Schwartz inductions:

eXG;w : S(G>w, V) — S(GZw, V)
EXG;w sy = Iy

and the following notations to denote the restriction maps of Schwartz F-
valued distributions:

resg_" t L(S(G>w, V), F) = L(S(G>w, V), F)
Res, 2" L(Isy, F) = L(Isy, F)
and for the special case F' = C:

resy : S(G>u, V) = S(Gsw, V)
Resy, : Ilzw — 1L,

They fit into the following diagram

Ker(resg>") ——— L(S(Gsu, V), F) ——+ L(S(G>w, V), F)

Ker(Resg.") —————— L(I>w, F) L(Isy, F)

Figure 6.1: Restriction maps and kernels

The two leftmost kernels (for the case F' = C) are the spaces we need to
study in this chapter.
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New Notations in This Chapter

Let Np be the opposite unipotent radical of P. We introduce the fol-
lowing new notations:

N, = w 'Npw

NJ = w_lﬁpw N Ny

=Ny N N@
N, = 1w 'Npuwn Ny
= NynN W@

The N\, N,, are closed subgroups of N,, and N,} NN, = {e}, and the mul-
tiplication map N,/ x N, — N, is a smooth diffeomorphism and an isomor-
phism of real algebraic varieties (not a group isomorphism). Let n,,n}, n,
be their complexified Lie algebras respectively, and one has n,, = n} + n,.

Main Theorem of This Chapter

The main theorem in this chapter is (see for more details):

Theorem (Theorem (6.1). The right multiplication of U(n,,) (as deriva-
tives), on the distribution spaces Ker(resgi) and Ker(Resgi), gives the
following isomorphisms (of TVS):
L(S(Gu, V), F) ® U(ny) =5 Ker(resc2")
L(I,,F)®@U(n,) = Ker(Resgi)

In this thesis, we will only need the case F' = C, but we prefer to include
the general result since there is no essential difficulty to prove the general
case.

This theorem means, Schwartz distributions supported in G,,, are ex-

actly the transverse derivatives of Schwartz distributions on G,,. We will
explain the term “transverse” in of the next chapter.

6.1 Preparation

e In6.1.1, we first formulate the main theorem in this chapter, namely
explain the meaning of the maps (6.1) and (6.2)) in the main theorem.

e Inl6.1.2, we construct a Zariski open tubular neighbourhood Z,, of the
G-
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e In we change the neighbourhood from G, to Z,. Since the
Schwartz distributions have the pseudo-sheaf property, the space of

Schwartz distributions supported in G, is independent of the choice
of neighbourhoods (Lemma and Lemma 4.80)).

6.1.1 Formulating the Main Theorem

We explain the main theorem at the beginning of this chapter. Remem-
ber we want to study the algebraic structure of the following two kernels of
restriction maps of distributions:

Ker(resg>") = Ker{L(S(Gzu, V), F) = L(S(Gsw, V), F)}
Ker(Resg>") = Ker{L(Isw, F) = L(Isu, F)}

where F' is an arbitrary NF-space. (Here we abuse the notation, and use
the same Res, res to denote restrictions with different target spaces F'. This
will not create ambiguity since we will only work on a single target space F
at each time.)

Finally we will see for different F', they all have similar structure and we
only need to study the case F' = C.

The Kernel Ker{L(S(G>w,V),F) = L(S(G>w, V), F)}

The G>y and G, are Zariski open subset of G, hence the U(g) acts on
them as algebraic differential operators, and makes the Schwartz function
spaces S(G>qy, V) and S(Gsy, V) into left U(g)-modules. The inclusion
map

S(Gsu, V) = S(Gsw, V)

is a left U(g)-homomorphism.

The transpose action of differential operators makes the distribution
spaces L(S(G>w, V), F) and L(S(Gsy, V), F) into right U(g)-modules. And
the restriction map

resc2" : L(S(Gsu, V), F) = L(S(Gsu, V), F)
is a right U(g)-homomorphism. Hence the kernel
Ker(resgiz) = Ker{L(S(G>w, V), F) = L(S(G>w, V), F)}
is also a right U(g)-module (submodule of L(S(G>y, V), F).)
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Since G, is closed in G, by Lemma [4.36, we have the following inclu-
sion of TVS:
L(S(Gy,V),F) = L(S(G>w, V), F).

We regard the L(S(Gw,V),F) as a subspace of L(S(G>y,V),F). This
subspace is contained in the kernel Ker(resgiz), since the composition

S(Gsu, V) = S(Gsw, V) - S(Gy, V)

is zero.
The U(ny,) is a subalgebra of U(g), and the right multiplication of (al-
gebraic differential operators) on distribution space gives the following map
L(S(Gw, V), F) ® U(ny,) — Ker(resg>") (6.1)
PRQu—P-u

where the distribution ® - u is given by
(@ u, f) = (P, (Ry - f)lcw)-

The Kernel Ker{L(I>y, F) = L(Isqy, F)}

The situation for distributions on Schwartz inductions is similar. The
G>w, >y are in the Zariski P-topology of G, hence we have the inclusion
of left U(g)-modules

I>w — Izw.

And its F-transpose gives the restriction map

Resg>" : L(Isw, F) = L(Isy, F)

which is a right U(g) homomorphism, with its kernel Ker(Resg§:) a right
U(g)-module (submodule).

Since G, is closed in G'>,, and both are left P-stable, by Lemma 4.82,
we have the injective homomorphism

L(Iy, F) — L(I>y, F)

with its image contained in the kernel Ker(ResGiw), since the composition
Isy = Isqy — I, is zero.
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The right multiplication of the subalgebra U (ny,) of U(g) on the subspace
L(I,, F) gives the following map

LIy F) @ Ulng) = L(Is, F) (6.2)
dPRur— D u

where the @ - u is given by

(-1, 0) == (@, (Rud)lc,), Y9 € Iz = SIndp*".

The Main Theorem
The main theorem of this chapter is;

Theorem 6.1. The map and are isomorphisms of TVS.

Remark 6.2. The U(n;,) is endowed with the inductive limit topology of
Un(ny) and is a LF-space and nuclear space. Here U, (n,,) means the finite
dimensional subspace spanned by n products of elements in n,.

6.1.2 G, and its Tubular Neighbourhood 7,

The G>,, is an open neighbourhood of G, but its structure is hard to
describe. We introduce another open neighbourhood Z,, of G,, which is a
tubular neighbourhood.

The Neighbourhood 7,

For each w € [Wg\W], remember we abuse the notation and denote the
fixed representative of it in G by the same w. Let N, = w™'N pw be as the
beginning of this chapter. We let

Zw = PwN,, = PN pw,

i.e. it is the (P, Nw)—doublgcoset through the base point w, and it is exactly
the right translation of PN p by w.

Lemma 6.3. The Z,, is a Zariski open subset of G. And the map

P x N, — Z, (6.3)
(p,n) = pwn

s an isomorphism of varieties and manifolds.
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The Structure of G,

Recall that G, = PwPy is the (P, Py)-double coset through the base
point w. It is easy to see Gy, is also the (P, Ny)-double coset through w:

Gy = PwNy,

since wMpw ™! = My for all w € W.
The Ny is the product of two subgroups, i.e. the multiplication map

(Ny Nw ' Pw) x (Ng Nw™ N pw) — Ny (6.4)

(n1,n2) — ning

is an isomorphism of real algebraic variety and smooth manifolds (NOT a
group isomorphism). Since the w-conjugation of first part is contained in
P, we see

Gw = Pw(NyNw 'Npw) = PwN,

where N, = Ny Nw™'Npw as the beginning of this chapter.
Lemma 6.4. The map
P x N} — Gy (6.5)
(p,n) = (pwn)

s an isomorphism of varieties and manifolds. Hence the G, is a nonsingular
closed subvariety of Z,, and closed regqular submanifold of Z,,. The following
diagram commutes in the category of real algebraic varieties and smooth
manifolds

P x Ny, *> L

J

pPx NG 2 ¢,

Here the two vertical arrows are closed embeddings and the two horizontal
arrows are isomorphisms.

6.1.3 Change of Neighbourhoods

We now have two Zariski P-open neighbourhoods of G,: G> and Z,,
hence the intersection G'>,, N Z,, is also a Zariski P-open neighbourhood of
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G- The complements of G, in them are G, Zyy — Gy and G, NZy, — Gy
respectively (all three complements are Zariski P-open in G).
We then have the following two commutative diagrams, where all hori-

zontal arrows are restriction maps of distributions, and all vertical sequences
are exact:

0 0 0
wa (a) ZwNG'> (b) G>w
Ker(resZw_Gw) _— Ker(resZ:mG;_Gw) — Ker(resciw)

~ ~

L(8(Zy, V), F) ——=—— L(S(ZwN G5y, V), F) +—— L(S(G>w, V), F)

ZwNGs
resZv res =W
Zw—Guw ZwNG>,.,—Guw
~ =

L(S(Zy — G, V), F) =% L(S(Zw N Gsw — G, V), F) 25— L(S(G>w, V), F)

0 0 0
0 0 0
Ker(Resgz_Gw) L Ker(Resgzggi_Gw) & Ker(ReSg§Z)

L(SInd%v o, F) — B [(SInd?2"" "o, F) « 8= (I, F)

ZwNGsy,

€]
Res%Z—Gw ReSZmeE,w—Gw Resciz
L(SIndZ—Cvg, Fy By [(SInd?2"2v %y Fy ¢ B (1, F
(nP U?) (nP 07)<— (>wa)
0 0 0

By Lemma 4.38, the maps (a)(b) are isomorphisms of TVS, and by
Lemma 4.80, the maps (c)(d) are isomorphisms of TVS. Hence as in Lemma
4.39) and Lemma |4.81 we have the following isomorphisms of kernels of
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restriction maps:
Ker(resgi) ~ Ker(resngGw) (6.6)
Ker(Resgi) ~ Ker(Resgz_Gw)

Remark 6.5. As we have seen in the last subsection, the Z,, is a tubular
neighbourhood of G, and we have good product decomposition of both G,
and Z, in Lemma and Lemma This makes the analysis of the
kernels Ker(resg:_Gw) and Ker(Resgz_Gw) much easier than the original

kernels Ker(resgi”)) and Ker(Resgi).
6.2 Schwartz Distributions with Point Supports

In this section, let

N = a unipotent algebraic group defined over R

N =N(R)
e = the identity of NV
N* =N —{e}

ng = the real Lie algebra of N

n = the complexification of ng

The N is a nonsingular affine real algebraic variety and affine Nash manifold,
we have the pseudo-cosheaf S(—,C) of C-valued Schwartz functions on N,
and the pseudo-sheaf S(—, C)" of Schwartz distributions on N. The {e} is
a nonsingular closed subvariety of N and a closed Nash submanifold of IV,
the N* is Zariski open and restricted open in N.

Since N* is Zariski open in N, we have the inclusion map

S(N*,C) = S(N,C)
under which the S(N*,C) is identified with the subspace
{f€S(N,C):Df(e) =0,VD € D(N)}
of Schwartz functions vanishing with all derivatives at e.

Remark 6.6. Here the D is the sheaf of (complexified) algebraic differential
operators, and the D(N) is the (complexified) ring of algebraic differential
operators on N. Since N is affine real algebraic variety, the D(N) generates
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the ring of (complexified) Nash differential operators over the ring of complex
valued Nash functions. Hence a Schwartz function vanishes with all Nash
derivatives at e, is equivalent to say it vanishes with all algebraic derivatives
at e. In this section, all geometric spaces are affine real algebraic varieties,
hence it is safe to work only on algebraic derivatives.

Also if not otherwise stated, all differential operators are complexified,
since we work on complex valued smooth (Schwartz) functions.

The transpose of the above inclusion map is the restriction map of dis-
tributions, denoted by

res : S(N,C)" — S(N*,C)".

In this section, we study the kernel of this restriction map. It is a closed
subspace of S(N,C)’, and fits into the exact sequence

0 — Ker(res) = S(N,C) = S(N*,C) = 0 (6.7)
The main result in this section is

Lemma 6.7. The kernel Ker(res) is isomorphic to U(n). More precisely,
the following map is an isomorphism of TVS:

U(n) — Ker(res) (6.8)
ur Qe u

where Qe - u is given by

(Qe - u, f) := (Qe, Ruf) = (Ruf)(e)

for all f € S(N,C). And the U(n) is endowed with the direct limit topology
from finite dimensional subspaces Uy (n).

We omit the proof since it is exactly the same as the proof of Theorem
XXXVI on page 101 of [35].

6.3 Proof of the Main Theorem

We first prove the theorem for the case F' = C and we use the following
simplified notations:

res” : S(Zy, V) — S8(Zy — Gy, V)

Res® : (SInd%vo) — (SInd%»~Cvg)’
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i.e. they are the restriction maps of C-valued distributions on Schwartz
functions and Schwartz inductions respectively. In this section, we show the
following special case (F' = C) of the main theorem:

Lemma 6.8. The following maps, given by multiplication of derivatives in
U(ny,), are isomorphisms of TVS:

S(Gyw, V) @ U(ny,) — Ker(res”), ®Qu+— ®-u (6.9)
(SIndg“’U)’ ®@U(n,) — Ker(Res”), ®?Q@u+— P -u (6.10)
More precisely, let ® € S(G., V) (resp. (SInd]G::wa)') and u € U(ny,), the

D-uis
(@-u, ) = (P, (Ruf)lc.)
forall f € S(Zy,, V) (resp. SInd%“”a).

Later we will use this Lemma to show the main theorem for general
NF-spaces F'.

6.3.1 The Kernel Ker(res")

Let
res” 1 S(Zu, V) = 8(Zw — G, V'

be the restriction map of C-valued Schwartz V-distributions on Z,,, as in
the beginning of this section.

Isomorphisms between Varieties (Affine Nash Manifolds)
Combining the Lemma and Lemma and the isomorphism N,/ x

N, = Ny, we have the following isomorphisms:
P x N x Ny = Zy
P x N x (N, —{e}) = Zy — Gy
P x N} x{e} = Gy
Then by (E-6) of Proposition we have the following isomorphisms of
Schwartz V-valued function spaces:
S(Px NS, V)®S8(N,,C) = 8(Zu, V)
S(Px NI, V)®S(N, —{e},C) = 8(Zy — Gy, V)
S(Px N, V)®S({e},C) = S(Gu, V)
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Isomorphisms between Distribution Spaces

Since all the above Schwartz spaces are nuclear, we have the correspond-
ing isomorphisms on their strong dual:

S(Zw, V) = S(P x NF, V) &S(N,,C)
S(Zy — Gu, V) = S(P x NF, VY & S(N; — {e},C)
S(Gw, VY 5 S(Px N, V) ®S({e},CY

Note that S({e},C) = C, i.e. Schwartz functions at a point are exactly
“constant”, and S({e},C) = C0l® is the one dimensional space spanned

by the “delta function” on {e}.
It is easy to verify that the following diagrams commutes:

S(Zw,V)/ % S(P X NJJ_?V)/ ®S(N7;’C)/

Jresw lid@”’w

S(Zy — G, V) —== S(P x N}, VY ®S(N, —{e},CY

Here the rightmost vertical arrow is the tensor product of the identity map
on S(P x N5, V) with the restriction map

w:S(N,,C) = S(N,, —{e},C).

Therefore, we have the isomorphism between the kernels of the above

two vertical maps:
Ker(res?) ~ S(P x N}, V) @ Ker(ry,).
The Tensor Product S(P x N;J,V) @ Ker(ry,)
In section we have seen the following isomorphism between TVS
U(n,) = Ker(ry),

where U(ng,) is given the limit topology from the finite dimensional sub-
spaces U, (n,), and is a LF-space.
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By Lemma we have
Ker(res,) ~ S(P x N5, V) & U(ny)
S(P % N, VY & lig Un(n,)

im[S(P x N V)’n@) Un(ny)]

im[S(P x N5, V) ® Uy(ny)]

I
= —_
=I5 =I5

S(Px N5, V)Y ®@U(ny,)

In other word, the algebraic tensor product S(Px N, V) ®U (n;,) is already
complete, and we don’t need the completion on the ®.
In sum, we have an isomorphism of TVS

Ker(res”) ~ S(P x N, V)Y @ U(ny) (6.11)

6.3.2 The Isomorphism (/6.9)

In the last subsection, we have shown the isomorphism (6.11)):
Ker(res”) ~ S(P x N}, V) @ U(n,)

which is further isomorphic to S(Gy, V) @ U(n,,) since S(Gy, V) ~ S(P x
N5, V). Hence To show the map is an isomorphism, we just need to
verify it is the same as the isomorphism (6.11)).

More precisely, we just need to verify that the following diagram com-
mutes

S(Px N5 V)Y ®
S(Px N: V)& Ker(;‘w)/ \ Ker(res®)
[ [
S(P x N, V) ®S8(N,, S(Zw, V)

Cy
S(P x N}, V)®S(N,,C))

This is routine and we omit the detail. One just need to pick a function
of the form ¢ ® ¢ for ¢ € S(P x N}, V) and ¢ € S(N,,,C), and check
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the value (® - u,¢ ® 1) through two ways, and see they are equal. The
crucial reason is the Lie algebra n,, acts on Schwartz functions through left
invariant vector fields, i.e. by differentiation of the right regular N,-action,
and it will not affect the P-component on the left.

6.3.3 The Kernel Ker(Res”) and the Isomorphism (/6.10))

To show the map is an isomorphism, we just need to combine
the isomorphism U(ny,) ~ Ker{S(N,,C) — S(N, — {e},C)} with the
isomorphism in Lemma [4.91

By Lemma we have the following isomorphisms

SInd4* o =~ SIndho & S(N,, C)
Sind%» =g o~ Sndbo & S(N,, — N, C)
and the isomorphisms on their dual
(SInd%* o) =~ (SIndbo) & S(Ny, C)’
(SIndZ~Cvo) ~ (Sndbo) & S(N,, — N, C)’

Thus the following diagram commutes:

(SInd%* o)’ Res? (SIndZ»=Cvg)

(SIndbo) & S(Ny,C) —— (SIndbo)’ & S(N,, — N, CY

Ny

. Hence
Nuw—Ng

where the bottom arrow is the tensor product map id ® res
we have the isomorphism on the kernels

Ker(Res?) ~ (SIndbo)' & Ker(resﬁw_NJr)-

Therefore

Ker(Res?) ~ (SIndbo) & Ker(resxziNJ)
~ (SIndho) ® S(N,},C)
® Ker{S(N,,,C) — S(N,, —{e},C)"}
~ (SIndho)' ® S(N,F,C)' & U(ny)
~ (SIndng)’ ®U(ny)
And by the same argument as in the last subsection, we can verify this

isomorphism is exactly the map (6.10), hence (6.10) is an isomorphism of
TVS. The proof of Lemma [6.8] is completed.
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6.3.4 General Case of F

We prove the general case for arbitrary nuclear Fréchet space F', although
we won’t use this result in the thesis. We only show the isomorphism

L(Lu, F) ® U(ny,) = Ker{Resg:2" : L(Is, F) = L(Isy, F)}

since the other isomorphism is similar.
First we have the isomorphism:

Ker{Res¢2" : L(Isu, F) = L(Isu, F)} = Ker{IL,, — I, } & F
Second we have the natural maps

(I, 2 U(ny,)) @ F = (I,

and their composition extends to a continuous linear map
(I, @ U(n,)) & F = LIy, F) © U(ny,),
which makes the following diagram commute

(I, oUn,)® F —~— Ker{I%, — IL,} QF

l I

LIy, F) @ Ung) —— Ker{L(Isw, F) = L(Isy, F)}

To show the bottom arrow is an isomorphism, we just need to show the
left vertical arrow is an isomorphism. Actually

(I, ®U(n,)) & F = lim[I, ® Uy (n,)] & F
~ n;[u{u ® Un(n,)) ® F]
~ li;[(l{u ® F) ® Up(ny)]
- lqu[L(Iw,F) ® Un(ny,)]
~ Ln(Iw,F) ® U(ny)

(Here we use Lemma twice in the first and last steps.)
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Chapter 7

Torsions of Distributions

Summary of This Chapter

In the last chapter, we have shown the spaces (/>4 /I>y)" are isomorphic
to

I, ® U(ny,)

for all w € [We\W]. In this chapter, we continue to study the ng-torsion
subspaces of them, and show their ng-torsion subspaces are given by the
torsion subspace on the first component I,.

Notations in This Chapter

As in Chapter [6, we use the following notations to denote the restriction
maps of (scalar valued) distributions:

resy : S(G>u, V) — S(Gsu, V)
Resy @ I3, = 1L,

These two restriction maps are FPy-homomorphisms of Fj-representations,
when the four dual spaces are endowed with the contragredient actions of
Py. We have seen that
Ker(resy) = (S(G>w, V) /S(Gsw, V)
Ker(Resy) = (Isw/Isw)
and these two spaces are the main objects studied in the last chapter.
For each n € Z>g, let Uy(ny) be the (finite dimensional) subspace of

U(ny,) spanned by products of k-elements in n, for all k¥ < n. By convention,
let Up(ny,) = C. The {Up(ny),n > 0} is an exhaustive filtration on U(ny,).

The Main Theorem of This Chapter

The main theorem of this chapter is (see [7.1.1] for details):
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Theorem (Theorem [7.1)). The ny-torsion subspaces of the two kernels are
given by:

(Ker(resy)) ™l = [S(Gy, V) @ Un;)]M°] = [S(Gy, V)Ml @ Un)
(Ker(Res,))™"1 = [I}, ® U(n,,)]™"] = [1,]™" @ U(ny,)

Moreover, these two equalities are Mpy-equivariant when both sides are en-
dowed with the obvious My-actions.

Reading Guide

e Section consists of preliminary works. We explain the main theo-

7.1

rem with more details, show a product formula in enveloping algebra
which will be frequently used, and discuss the transverse decomposi-
tion of tangent vector fields on the submanifolds G,,. In particular, we
show the first equality in the above main theorem implies the second
equality, and we just need to show the first one, namely

[S(Gu, V) @ Uny,))™ = [S(Gu, V)M @ Uny).

In [7.2], we show the inclusion
[S(Gu, V) @U@ 5 (S(Gu, VYT @ Uny).

This is the easy part of the main theorem, and is proved by pure
algebraic tricks.

In [7.3] we show the reversed inclusion
[S(Guw, V) @ Uny)M"  [S(Gy, V)Ml @ Ung).

This is the most subtle part of the entire thesis. In a word, we choose a
“good” linear order on the PBW-basis of the enveloping algebra U (n,),
filter the left-hand-side by this order, and prove each filtered part is
included in the right-hand-side by induction on this linear order.

Preparation

This section is the preparation work for the proof of the main theorem
(Theorem 7.1). Each subsection could be read independently.
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e In we discuss the main theorem in more details. The entire
chapter is reduced to proving the first equality in the main theorem:

(S(Gu, V) @ U(n,))™") = [S(Gu, V)™ @ U (nyy).
The second equality in the main theorem is implied by this equality.

e In we recall the notion of transpose modules over an enveloping
algebra. The U(g)-actions on the distribution spaces are essentially
the transpose U(g)-module of the Schwartz function spaces. It is more
natural and convenient to consider the distribution spaces as right
U(g)-modules instead of left U(g)-modules. In the following sections
of this chapter, we will regard all distribution spaces as right modules.

o In we introduce some simplified notations which are convenient
for our proof.

e In we show a formula in the enveloping algebra, which will be
used repeatedly in the proof.

e In[7.1.5, we recall the necessary geometric notions: left and right in-
variant vector fields, transverse tangent fields, and show that the ele-
ments in n,, are indeed transverse to the submanifold G,.

7.1.1 Main Theorem in this Chapter

We have seen the following commutative diagram

0 — S(Gouw, V) — S(Gow, V) — o223 0
l |
0 > I>w > Izw > I;T 0

where the two rows are exact sequence of NF-spaces, the three verticall
arrows are surjective and all arrows are Fy-equivariant. By taking the strong
dual, we have the following commutative diagram of DNF-spaces (and dual
Py-representations), in which all two rows are exact sequences and three
vertical arrows are inclusions:

S(Gzw,V resqyw
00— (882 §(Co, V) S S(Gos V) —— 0
00— () ———— Iy —— o Iy ——— 0
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The two leftmost spaces, namely

Ker(resy) = (S(G>w, V) /S(Gsw, V)
Ker(Resy) = (Isw/Isw)’

are the main object to study. The two kernels are FPj-subrepresentations of
S(G>w, V) and 1L, respectively, and in particular they are also ng-modules
(actually even g-modules since G's,, is open), with the Lie algebras acting on
them as algebraic derivatives. In this chapter we will compute the nyg-torsion
subspaces on the two ng-modules Ker(Res,,) and Ker(res,).

The Main Theorem in this Chapter

In Chapter [6, we have shown the Ker(res,,) (resp. Ker(Res,)) is given
by U (n,,)-transverse derivatives of distributions in S(Gy, V')’ (resp. I.,), i.e.
we have the two horizontal linear isomorphisms in the following diagram

S(Gy, V) @ U(n,) =————= Ker(res,)

I, ® U(n,,) =——= Ker(Resy)
Figure 7.1: Ker(res,) and Ker(Res,,) as transverse derivatives

The right side inclusion Ker(Res,,) < Ker(res,,) is Py-equivariant (un-
der the contragredient Py-actions on S(G>q, V) and I%,, respectively), in
particular it is a homomorphism of ng-modules. -

The two horizontal isomorphisms transport the ng-actions on the right
two kernel spaces to the left two tensor products. The ny acts on them
as derivatives, while the U(ny,) also acts as (transverse) derivatives, hence
one regard U(ny) and U(ny) as subrings of the U(g), which also acts as
derivatives on distribution spaces. In particular, one can multiply elements
in U(ngy) and U(ny,) inside U(g).

These derivative actions are complicated, and there is no easy algebraic
descriptions. In other words, the tensor products S(G., V) ® U(n,,) and
Il, @ U(ny,) are not tensor products of ng-modules, as one can see the U(ny)
is not stable under ng-multiplication.

However, their nyg-torsion subspaces, behave like tensor product modules:
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Theorem 7.1. Under the two horizontal isomorphisms in Figure the
ny-torsion subspaces on Ker(res,,) and Ker(Res,,) are given by

[Ker(resy)]™°) = (S(Gu, V) @ Un;)M" = (S(Guw, V)T @ Uny)
(7.1)
[Ker(Res,)|""] = (I, ® U(ny))™" = (1) @ U(ny)

Since the inclusion Ker(Res,,) < Ker(res,,) is an ng-homomorphism, by
Lemma we see

[Ker(Resw)][nqr] = Ker(Resy) N [Ker(resw)][n@-]‘
If we can show the first equality in the above theorem, then we have

[Ker(Resy )|™ ") = Ker(Res,) N [Ker(res,,)] M)
= I, @ U(n,,)] N [S(Gw, V) @ U(ny,)]| ")
= [}, @ U(ny)] N {[S(Gu, V)M @ U(ny,)}
= {1, N[S(Gu, V)']["“']} ®@U(n,)
= 1,/ @ U(ny)

Hence the second equality in the above theorem is implied by the first one,
we just need to show the first equality. The rest of this chapter is devoted to
this object.

Remark 7.2. Showing the second equality directly, is much more difficult
than imagined. The Schwartz induction spaces Iy, >, are included in
smooth function spaces on corresponding algebraic manifolds, and one can
take derivatives of functions in them, however the resulting functions need
not satisfy the o-rule. Although one can take the derivatives in Lie algebra,
we will see in the following sections that derivatives in Lie algebra are not
sufficient for the discussion.

7.1.2 Left vs. Right

On Schwartz distribution spaces, the left action of Lie algebra is the
transpose action of the Lie algebra on the corresponding Schwartz function
spaces.

For example, the S(G>y, V) is a left U(g)-module, since U(g) acts as
algebraic differential operators on G and G>,, is open in GG. On the corre-
sponding distribution space S(G>y, V)’, the left U(g)-module structure is
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given by the transpose U (g)-action:
(X-®,f) = (2, =X f)

for all & € S(G>w, V), f € S(G>,V),X € g. Here the —X - f =
R_x f is the differentiation of the right regular action. More generaly, for
X1,..., X € g, one has

(X1 Xp- @, f) = (@, (1) X}, --- X1 - f).

To get rid of the annoying (—1)¥ and the reversed order, it is more
natural to regard a distribution space as a right module over an enveloping
algebra.

Remark 7.3. On distribution spaces, it is more natural to let differential
operators act on the right, since the differential operators actually act on
functions rather than distributions.

On Schwartz function spaces, the right regular action is an action, and
the Lie algebra action makes them into left modules. There is no ambiguity
about left or right in discussion.

Transpose Right Module of a Left Module

Definition 7.4 (Involution on Enveloping Algebra). Let h be an ar-
bitrary complex Lie algebra, and U(h) be its enveloping algebra. The map
—1:h— b, X — —X induces an involution on the U(h)

U(b) = U(h)
u—
More precisely, let X1, ..., Xy € b be arbitrary elements, then !(X7 - - - X},) =
()" (X -~ X1).

Definition 7.5 (Transpose Module of Left U(h)-Module). Let M be
a left U(h)-module. Then it has a natural structure of right U(h)-module,
given by

m-u::tu-m

for all uw € U(h),m € M. We call M with this right U(h)-module structure
the transpose (right) U(h)-module of the left U(h)-module M.

We keep the notation as in Keep in mind that we use superscript for
torsion subspaces of left module, and subscript for torsions of right module.
The right transpose U(h)-module of a left U(h)-module M share the same
torsion submodule with M, i.e. we have the following easy fact:
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Lemma 7.6. Let M be a left U(h)-module, and by abuse of notation we
denote its transpose right U(h)-module by the same M. For k € Z>, let
MO = the annihilator of (h¥) in the left U(h)-module M
Mgr) = the annihilator of (h*) in the transpose right U(h)-module M
MOl = the h-torsion submodule of the left U (h)-module M
Mpe) = the h-torsion submodule of the right transpose U (b)-module M
Then

MO = My VE >0
MO = My

Left Module vs. Right Module

For a Schwartz distribution space with appropriate left module struc-
ture, e.g. the left U(pp)-module S(Gy, V), or left U(g)-module S(G>y, V)’
and Ker(res,,), we will consider their transpose right module, and torsion
subspaces.

For example, on S(G>y, V)’ or its submodule Ker(res,,), the transpose
right U(g)-action is

(@ u, f)=(u-2,f)
=(2,"("u) - f)
=(®,u-f)

for all ® € S(G>y, V), f € S(G>w, V),u € U(g). In other words, the right
transpose action is exactly the right multiplication of derivatives.

Similarly on S(Gy, V)" we have the transpose right U(pp)-module struc-
ture, given by the right multiplication of derivatives. The inclusion map
S(Gw, V) = S(G>y, V) is a right U(pp)-homomorphism.

Remark 7.7. Starting from this subsection, through the entire chapter, we
will consider the Ker(res,,) and S(G>y, V) as a right U(g)-module, and
similarly S(Gy, V') as a right U(pg)-module, with the transpose right module
structures from the original left module structures on them.
We will study the right ng-torsion subspace
[Ker(resw)][nw.]

which is exactly the left torsion subspace [Ker(res,)]"] by Lemma
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7.1.3 Setting and Notation for the Proof

Remember that in|7.1.3, we have regarded all modules as right modules.
Let

U=8(Gyp,V)
K = Ker(resy)
= Ker{S(G>u, V) = S(G>u,V)'}
=8(Gy,V) @ U(ny)
=U®U(n,)
Upy,+) = the ny-torsion submodule of S(Gy, V)’
M =Upyyo) @ U(ny,)

The K is the space of (scalar valued) distributions on S(G>, V') vanishing
on the subspace S(Gsq, V'), and M is the space of U(ny,)-transverse deriva-
tives of (scalar valued) ng-torsion distributions on S(Gy, V). The M is a
subspace of IC, and we need to show it is exactly the ng-torsion submodule
of K:

Kinge) = M, (7.2)

or equivalently (U @ U(ny,))nye] = Upn,,] @ U(ny,)-
For each n € Z>, let

Un(ny,) = spanc{X1 - Xo-- Xy 1k <n, Xq,...,Xg €n,}

be the finite dimensional subspace of U(ny,), spanned by < n products of
elements in ny,. Then {U,(n;)}n>0 form an exhaustive filtration of U (ny,):

Ung) = |J Unlng).

n>0
Let
K'"=U®Upy(ny,) (7.3)
Kiige) = Kinge) N K"

M™ = Upyyo) @ Un(ny,)
Obviously we have M"™ C K" for all n > 0, hence M C K. The {K"},>0
(respectively {Kﬁ@.]}nzg, {M"},>0) form an exhaustive filtration of K (re-
spectively Ky e, M).
To show Ky o) = M, we just need to show the two filtration {’Cﬁm']}nzo
and {M"},>( are cofinal.
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7.1.4 A Formula

In this subsection, we show a multiplication formula in the enveloping
algebra. Namely, let g be an arbitrary complex Lie algebra, and U(g) be its
enveloping algebra, let Yi,...,Y; be k arbitrary elements in g and X € g
be another one. We want to compute the product (Y;-Y2-...-Y:) - X, and
move the Y7, ...,Y% to the right as much as we can.

Some Notations

For an element X € g, let

Rx :U(g) > U(g),u—u-X
Lx:U(g) = U(g),u— X -u
adX :U(g) > U(g),u— [X,u] =X -u—u-X

be the right multiplication, left multiplication, and adjoint action of X on
U(g). In the algebra Homc(U(g),U(g)), these three elements satisfy

adX = LX - Rx. (74)
The U(g) is an associative algebra, hence for X,Y € g, we have
LxoRy =RyoLyx (7.5)

i.e. the Ly commutes with Ry in Homc(U(g),U(g)) for all X,Y € g,
although the Homc(U(g),U(g)) is not a commutative algebra.
For a positive integer k, we denote by

1,k = {1,2, ... k—1,k}

the set of the first k positive integers. For a subset S C [1, k], let s = |S]| be
its size, and S¢ = [1,k] — S be its complement in [1,k|. For the subsets S
and 5S¢ we always arrange their elements in the increasing order.

Let Y7,Ya,...,Y) € g be k elements labeled by [1, k]. Let S = {i1,... i}
be a subset of [1,k] and let S¢ = {j1,...,jr_s} be its complement. We
introduce the following notations:

(Yg,—) = adY;, oadYj, o---oadY;,
YS:}/;l }/12}/15
Ry, = Ry,

s

o...oR)/il
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i.e. the (Yg,—) is the following element in the Homc(U(g), U(g))

(Ys,—):Ulg) = Ulg)
U= Dfilv D/Zé? [ ) [st>u]]]]a
the Yy is the ordered product Y7 ---Y, in U(g), and the Ryy is an element
in Home (U(g), U(g)) which multiplies every element in U(g) by the product
Ys on the right.
By convention, if S = (), we let Yg = 1 € U(g), and (Ys,—) = id and
Ry, =id in Homc (U (g),U(g)).

The Attempts for Small k’s

Let Y7,...,Y) be k arbitrary elements in g indexed by [1,k] and X € g
be an arbitrary element. We want to write the product

ViV, X =Ly o...0Ly (X)

in the form that Y;’s are on the right of X. We first look at the examples for
k = 1,2,3, which inspire the general formula for all k. These are routine,

but they help to understand the general formula.
For k=1, wesee Y7 - X = X - Y] + [V1, X]. In other word, we have

Ly, (X) = Ry, (X) + ad¥i (X) (7.6)

as in (|7.4)).
For k = 2, we have
(Y1Y2) - X = Lyl o Ly2 (X)

= Ly, o (Ry, +adY2)(X)  (by (7.6))
= Ly1 o RY2 (X) + Lyl o adYQ(X)

= Ry, o Ly, (X) + Ly, o adYs(X) (by (7.5))
= Ry, [Ry, (X) + ad¥3(X)]
+ Ry, [adY2(X)] + adYi[adY2(X)]  (by (7.6))

i.e. in Home(U(g),U(g)) we have

Ly, Ly, = Ry, Ry, + Ry,adY; + Ry,adY; + adY;adY. (7.7)
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For k = 3, we have

(Y1Y2Y3) - X = Ly, Ly, Ly, (X)
= Ly, Ly, [Ry,(X) +adY3(X)]  (by (7.6))

= Ly, Ly, Ry, (X) + Ly, Ly,adY3(X)
= Ry, Ly, Ly,(X) + Ly, Ly,adY3(X) (by (7.5)))
= Ry, Ry, Ry, (X) + Ry, Ry,adYs(X)

+ Ry, Ry,adY1(X) + Ry,adYjadY>(X)

+ Ry, Ry, adY3(X) + Ry,adY2adY3(X)

+ Ry,adY1adY3(X) + adYiadYsadY3(X)  (by (7.7))
i.e. in Home(U(g),U(g)), we have

Ly, Ly, Ly, = Ry, Ry, Ry, + Ry, Ry, adY5
+ Ry; Ry,adY; + Ry,adYjadYs
+ Ry, Ry,adY3 + Ry,adYsadY3
+ Ry,adYjadY3 + adYiadYsadYs (7.8)

The General Formula

We now show the general formula:

Lemma 7.8. For a positive integer k, and elements Y1,...,Y,, X € g, we
have
MYz.. V) - X = > (Ve,X) Vs (7.9)
SC|1,k]

Equivalently in the algebra Homc(U(g),U(g)) we can write
Ly, o...0 Lyk(*) = Z (RYSC © <YSv *>)
SC[1,k]
= Y (Yo, ) Yse

SC|1,k]

Here the sum on the right hand side has 2% terms when S runs through all
subsets of [1, k].

Proof. As suggested by the cases of k = 1,2,3, we prove the (7.9) by in-
duction on k. The case k = 1,2,3 are shown in the above subsubsection.
Assume the (7.9)) is true for k — 1 elements Y7,..., Y 1.
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For (Y1Y>...Yy) - X = Ly, Ly, ... Ly, (X), we have

Ly, Ly, ... Ly, (X)= Ly, Ly, .. Ly, | [LYk (X)]
= LylLy2 e Ly,ﬁl [Ry,C (X) + adYk(X)]
= LylLy2 ... Lyk—lRYk (X) + LylLy2 . Lyk_ladYk(X)

For the first term, note that Ly, ...Ly, Ry, = Ry,Ly,...Ly, , by

(7.5), we have
Ly,Ly,...Ly, Ry, (X)=Ry,Ly,Ly, ... Ly, ,(X)
= Ry, Z (Ys, X) - Yge

Scll,k—1]
= ) (Ye,X) Vo) Yy
SC[1,k—1]
= > (Yo, X) Vs
SCI1,k]
kese

For the second term, we have

Ly,Ly, ... Ly, adYp(X) = > (Vg,adVy(X)) - Ve
Sc[1,k—1]

= Z (Ysugry, X) - Yse
SC[1,k—1]

= Y (Yo, X) Vs
SCl1,k]
keS

Hence the sum of the above two terms is

E (Y, X) - Yge + E (Y, X) - Yge = E (Ys,X) - Yse
SCl1,k] SCl1,k] SC[1,k]
kese ke

i.e.
Ly, Ly, ... Ly, (X) = Y (Y5, X) - Yge.
SCl1,k]

O]

By the same argument, or simply move the leading term in the sum to
the left, we have

173



Lemma 7.9. Let Y,...,Yr, X € g be arbitrary elements. Then

X-(Y1-Yy) = > Yo (X,Ys) (7.10)
ScCl1,k]

Here the last notation means
<X7 YSC> = [ e [Xv 1/]1} . '}/]'k—s]

if S° = {j1, ., jues).

7.1.5 Geometric Preparation

We study the tangent spaces on the regular submanifold G,, of Z,.
Recall that Z,, = PN pw is a Zariski open subset of G, and G, = PwPy =
PwNy = PwN,} is a Zariski closed subset of Z,,. As manifolds, the Z,, is
an open submanifold of G and G, is a regular closed submanifold of Z,,,.

Let go be the (real) Lie algebra of G, and similarly for a subgroup of
G denoted by an uppercase letter, we use the same fraktur letter with a
subscript 0 to denote its (real) Lie algebra.

We regard the gg as the abstract Lie algebra of GG, and for an element
X € go, we denote by X* the corresponding left invariant vector field, and
XgL € TG be the tangent vector of the vector field Xl at g € G. The X*

and X gL are given by

(X“)0) = XEF = Dlimofloe™),  ¥f e 0¥(@).

Similarly, we denote by X the corresponding right invariant vector field on
G and Xf € TyG its tangent vector at g. The X® and Xf are given by

(X")(g) = XJT = Llcof(eXg),  ¥f € C(E)

Remark 7.10. In most textbooks, the Lie algebra is defined to be the space
{XL: X € go} of left invariant vector fields, and is canonically identified
with T.G = {XF : X € go}. In this chapter, we will regard Lie algebra
elements as vector fields (differential operators of degree 1), hence it is con-
venient to distinguish vector fields from tangent vectors.

We have the following easy facts in Lie theory:

Lemma 7.11. For the two vector fields X, X corresponding to an element
X € go, they satisfy
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o X' = XE e the two vector fields have the same tangent vector at
the identity.

. Xf = (gleg)é and XgL = (ngfl)f, for all g € G. (Here gXg=!
means the adjoint action Adg(X).)
The Tangent Space T,,G,,

We consider the tangent space T;,G,, of the submanifold G, at w, where
w is a fixed representative in G (abuse of notation) of the Weyl group element
w. The T,G,, is a subspace of T,,G = T,,Z,, since G,, is a embedded
submanifold of Z,,.

At the point w € G, C G, the tangent space T,,G = T\, Z,, is

TG = Ty Zy = spang{ XE : X € go} = spang{XT: X € go}.

Recall that N, = w !Npw, N} = N, N Ny,N, = N, N Ny, and
nwo,nzo,n:uo are their real Lie algebras respectively. Also the po,npy are
the real Lie algebras of P, N p respectively. Let

RPO = spang {XZ : X € pg}
L0 = spang { XL : X € nyo}
L:Uj‘:o ;= spang{ XL : X enf,}
Ly = spang{ X5 : X €n g}

e.g. REY C TG is the subspace of the T,,G, spanned by tangent vectors X[
for all X € pg, etc. Then we have:

Lemma 7.12. The above four spaces are subspaces of T,,G = Ty Z,,, and
(1) Ltwo — L0 gy Mo

(2) T,G =TyZy, = R @ Lo,

(8) TGy = RY @ L&IO.

(@& means direct sum of vector spaces)

Proof. The (1) is trivial, since ny = nt, + ng,.

For the (2), first note that R C T,,Z, since Z, = PwN, is left P-
stable, and L C T,,Z,, since Z,, = PwN,, is right N,-stable (note N,, =
w~'Npw). Hence

TG = Ty Zy O R + L0
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By counting the dimension, we just need to verify the two subspaces RE and
L0 are linear 1ndependent Actually, let X € ny0, then X2 = (wXw™HE

w?
and wXw™! € w(w™ npgw) ~—1 = fipy which is linear independent from po.

Hence the tangent vector X2 = (wXw™!) is linear independent with the
subspace RE).

+
For the (3), we also have Ty,Gyy D RE + Ly since Gy, = PwN;} is left
P-stable and right N,f-stable. Also by counting dimension, we just need to

+
show the two subspaces RY, Lut® are linear independent. This is obvious

+
from (2) since Ly is a subspace of Lo, O

The Tangent Spaces T, G

Let pwn (p € P,n € N;}') be an arbitrary point in Gy, (every element in
Gy is uniquely written as pwn for a pair of p € P,n € N;). We study the
tangent space TpyunGw at pun € Gy.

Similar to the tangent space at w, we have the following subspaces of
prnG = Tpume

R};g)m := spanp{X pwn : X €po}
Ly, = spang{ X pwn : X €ngol
n+ +
Ly, = spang{X pwn X enl,}
Lpum := spanp{X pwn X engyt

Rpwn is the subspace of TynG = Tpwn 2w spanned by tangent vectors at
pwn of right invariant vector fields in pg etc, and all these four are subspaces
of TpunG = TpuwnZw-

As a generalization of the previous Lemma, we have

Lemma 7.13. For arbitrary pun € Gy, C Z,, C G, the above four vector
spaces satisfy

(1) Lgﬁ% = pwn @ prn

(2) TyunG = TywnZw = Rpton @ L1w0

pun*

(3) prnG = Rp%)n S prn

(The Lemma is the special case when p=n =e.)
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Proof. (1)(3) are exactly the same as the previous lemma. The (2) is similar.
Let X € nyyg, then

Xprn = (pwan_lw_lp_l)gwn.
Since n € NJ C N, one has nXn™! € nyp and wnXn tw™! € upy.
Then since nipg is linear independent with pg, we see punXn tw™lp~! €
p(Mpo)p~! is linear independent with p(po)p~' = po. Hence the subspace

Ly, is linear independent with the subspace RYon. O

The n_, is Transverse to G,

In the last chapter, we call elements in U(n,) “transverse derivatives”.
We now explain this term.

Definition 7.14. Let V be a set of vector fields on a manifold M, and
N C M is a regular submanifold. Then we say V is transverse to the
submanifold N, if

ToM =T, N @ spang{X, : X € V},

for every x € N, i.e. the vector fields in V give a linear complement of T,, N
in T, M at every point z of N.

The G, is a submanifold of Z,,, with a smooth embedding ¢ : G, — Z,,.
Let TZ, (resp. TG,) be the tangent bundle on Z, (resp. G ), and let
1*T'Z,, be the pull-back bundle over G,,. Then T'G,, is a subbundle of *T Z,,,
and at every point pwn € G, the fibre (tangent) space (T'Gw)pwn = TpuwnGuw
is a subspace of (:*T'Zy)pwn = TpunZw-

By the Lemma we have

prnZw = prnGw @ Lzlﬁ))%

(direct sum of vector spaces), i.e. the left invariant vector fields in n_ give
a linear complement space of Ty, Gy in TpwnZyw at every point pwn in Gy,.
Hence the Lemma [7.13 tells us

Lemma 7.15. The subalgebra n,, (regarded as the space of left invariant
vector fields) is transverse to the double coset G,.
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The Pull-Back Bundle *T'Z,

Let i : Gy — Zy be the smooth embedding as above, and let i*T'Z,, be
the pull-back vector bundle of the tangent bundle T'Z,, to G,,. The tangent
bundle TG, of Gy, is a subbundle of *TZ,,, and we have the following exact
sequence of vector bundles:

0— TGy — i*"TZy,

Note that the tangent bundles TG, T Z,, are algebraic vector bundles and
the map ¢ is an algebraic morphism, hence the bundle +*TZ,, and the above
bundle sequence are also algebraic.

The total space of the bundle i*TZ,, is

{(z,v) 12 € Gu,v € TpZy},

and its fibre space (i*1'Z,,), at a point z € G, is exactly the tangent space
T,.Z, of Z,, at x. Given an algebraic vector field V' on Z, (a section of
the bundle T'Z,,), its restriction Vg, to G, is an algebraic section of the
bundle i*TZ,,.
Algebraic Sections of the Bundle i*T'Z,,
Let
{X1,..., X} = areal basis of pg

{Z1,...,7;} = areal basis of n;r)o

{Y1,..., Yy} = areal basis of n,
Let X7 be the right invariant vector fields on Z,, (or G) corresponding to
X; for all i = 1,...,k. Similarly, let Z}F,i =1,...,land Y}, j = 1,...,d
be the left invariant vector fields corresponding to Z;,Y) respectively. In
Lemma we have seen the

(X, XEyu{zt,, . Zb oY, YR

form a basis of the fibre space (i*T'Zy), = Ty Zy of i*TZ,, for every point
x € Gy, and the subset

{xft,, ... ,X,fx} u{Z{,. ..., fo}

is a basis of the subspace T, G, for every x € Gy,.
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Lemma 7.16. Under the above basis, every algebraic section s of the bundle
*TZy, on Gy is of the form

k

l d
s(x) =Y A@) X+ B(x)zh, +> Cla)VE
=1 =1

=1

for a unique set of regular functions A',i = 1,...,k, B',i = 1,...,1 and
C'i=1,...,d. (If we write z = pwn for unique p € P,n € N, the
AY B, C* are regular functions of p and n.)

The Coefficients A*, B!, C*

Let H € go be an arbitrary element. For each n € N}, consider the

w
conjugation wnHn lw™! € go. Since go = po + npo, the wnHn tw! is
uniquely written as

wnHn fw™t = HPo 4 PO
where HP0 € py, H™P0 € nipg. Therefore the H decomposes as

H=n"'w 'Hwn + n tw  H"own.

Note that n~tw 'H™own is in n~ v apgwn = n~!

n € N C Ny). Hence we can further decompose it as

Mol = Ny (since

ntwTHYown = HY + H™
where H* € nf ), H= € n_,. We denote by
H' =n"tw tHPown.
Then H is a sum of the form
H=H+H"+H"

where H' € n"'w™lpown, HT € anZOaH_ € n,o. Note that the three com-
ponents H', HY, H~ depend on n, hence one has different H',H*, H™ at
different point n € N

Now let pwn € G, be an arbitrary point (the p € P,n € N,} are uniquely
determined by the point), and H € gy be an arbitrary element in the real

Lie algebra. For the n € N}, let H',H", H™ be three components of H
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as above, and let (H')Y, (H+)Y, (H™)" be the corresponding left invariant
vector fields, then

HY = (H')" + (HY)" + (H)".

At the point pwn € G, the tangent vector HZ  decomposes into

pwn
H]fum = (H,)pwn (H+)pwn + (H_)zl;um (7'11)
(p’LUTLH/’I’L w lp_l)g]y%wn (H+)pwn + (H_)]%wn

+
Since HT €n O,H € n,,, one has (H+)pum € Lpwo, and (H™)E
Also by H' = n~tw™ HPown € n~'w~'pywn, one has

S Lpz;%

pwn

pwnH'n " w™'p~! = pHPp~! € pq,
hence (H'):,, = (pwunH'n"twp~ )ﬁwn 6 Rff{un
Therefore the above decomposition (7 agrees with the tangent space
decomposition in Lemma 7.13:

TyonZuw = RE,, ® Lo & L.

In sum, given an element H € gg, and let H” be the corresponding left
invariant vector field on G. If we restrict H” to the open submanifold Z,,,
we get an algebraic section in I'(Z,,17Z,), and by abuse of notation, we
still denote it by H”. The restriction H”|q, of HY € I'(Zy,TZy) to Gy
is an algebraic section in I'(Gy, i*TZ,), and by Lemma [7.16} the H"|¢, is
uniquely written as

!
= Z Al(pwn)Xi},zpwn + Z Bl(pwn)zil:pwn
i=1 i=1
d

+) Clpun)Yis,,,, (7.13)
=1

where X;, Z;,Y; are the basis of subalgebras as above, and A?, BY,C? are
algebraic functions on G, (of p and n).

Remark 7.17. Given an H € gy, we can find the coefficient functions
C*(pwn) in the following way:
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(1) conjugate H to nHn™!;
(2) decompose the nHn ™! into a sum

nHn ' = (an_l)wflpow + (an_l)wilﬁP(’w

3) conjugate the second component (nHn ™! wTpow ¢ M pow back to
jug
n 1(an 1)“’_1“1’0“’71

(4) then the C*(pwn) is the coefficient of the base vector Y = in

pwn

(n~H(nHn e Rrowp)L

7.2 The Inclusion M C K.

In this section, we show the inclusion M C K, ¢ by showing
Mk C IC[“@.}

for all k > 0, since the {M*};>¢ form an exhaustive filtration of M.

The distributions in £ = U ® U(ny,) are transverse derivatives of distri-
butions on G,,, while the ng acts on such distributions as derivatives. Let
P ceU =8(Gy,V) and u € Uy(ny), then the ® @ u = ® - u is a typical
element in K. Let ' € U(ng), then the right multiplication is given by

(@ -u) v/ = (u-u)

where - v is the multiplication in U(g) or in the larger algebra D(G>,,) of
algebraic differential operators on G>,,.

The elements in U(ny,) “protects” the elements in ¢/ from elimination by
U(ng). The essence of inclusion M C K0 is: the U(ng) can always “peel
off” the protection from U(ny,), and annihilate the inner distributions in U,
if they are ng-torsion.

The main idea is to use induction, and show one can peel off “one layer
of the U(ny)” at a time. Then after sufficiently many steps, the U(np) can
reach the U part of the distributions.

7.2.1 Some Algebraic Lemmas—I

We show some algebraic results before proving the inclusion M C Ky e}
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A Product Formula

Let h be an arbitrary Lie algebra.

Lemma 7.18. For arbitrary n € Zsg, let H, X1,..., X, € bh be arbitrary
elements. Then in U(h) we have the formula:

n
Xl'X2"'Xn'H:H'Xl"'Xn_ZXl"'Xi—l'[HaXi]'Xi+1"'Xn-
- (7.14)
Proof. We prove the formula by induction on n. For n = 1, we have
X,-H=H- X, —[H, X,

which verifies (7.14).

Suppose (7.14)) is true for n = k, then for n = k + 1, we have

X1 Xy Xppr - H=X1 - Xp - (Xpsr - H)
=Xy Xp (H - Xpy1 — [H, Xpy1])
= (X1 X1 - Xi - H) - Xpy1 — Xq- - X - [H, Xig 1]

k
:(H'Xl"'Xk_ZXl'”[H7Xi]"'Xk)'Xk+1
i=1

Xy X [H, Xpid]
k+1
:H‘Xl“’Xk—i-l_ZXl"'[Hin]"'Xk+1
i=1

O

This lemma is easier to prove than Lemma [7.8, hence it is less powerful
than Lemma The advantage of Lemma [7.8 is: all Y¥;’s are on the right
end of the product.

Torsion Submodule is Stable

Let b be an arbitrary complex Lie algebra, and b1, hs be two subalgebras
of b such that

h="b1+b

i.e. b is the direct sum of b1, ho as vector spaces. Suppose h1 normalizes §o:

(b1, ba] C bo,

or equivalently hs is an ideal of . We have
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Lemma 7.19. Let

U = a right h-module, also a right U(h)-module,
and we can regard it as a ho-module
Ups) = the ha-torsion subspace of U
Then each he-annihilator U[hg] is a h-submodule of U. In particular, the
ho-torsion subspace U[h;] s a h-submodule of U.

Proof. We just need to show each U[h’;} is stable under the left h-action.
Obviously it is stable under ho-action, hence we just need to show it is
stable under h;-action.

Let k € Z~( be arbitrary (when k = 0, Upo = U, there is nothing to be
proved). Let u € U[h’;] be an arbitrary element, i.e. for any Xi,..., Xg € bho,
one has

Let H € h; be an arbitrary element, we show u - H € U[h;zc], ie. it is
annihilated by products of k elements in ho. For arbitrary Xi,..., Xi € bho,

by (7.14), we have

w-H-X1--Xpg=u-(H-X;-X3)
k
:U‘Xl“‘Xk;‘H+ZU'X1"'[HaXi]"‘Xk
i=1

The first term is zero since v - X; -+ - X = 0. Every term in the second sum
is zero, since [H, X;| € ho. (Note that we assumed b2 to be normalized by
h1.) Hence u- H - X1 --- Xy, =0 for all Xy,..., X, € by and H € b;. ]

Torsion Submodule is Absorbing

Lemma 7.20. Let

h = a complex Lie algebra
U = a right h-module
Upye) = the h-torsion submodule of U

Let u € U be an element, and assume there exists an integer n > 0 such that
u-X1---X, € U[ho]

Jorall Xy,...,Xn €Y. Then u € Upe.
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Proof. Let v and n be as in the Lemma. Let by,...,bg be a basis of h.

Note that the n is “uniform” for arbitrary Xi,...,X,. In particular we
can pick X;’s from the basis {b,...,bq}, and there are d" choices. The
d™ elements of the form Xj - Xs--- X,, (each X; is from the above basis)
generate the ideal (h™).

For each product X --- X,, (X; from the above basis), the u - X7 --- X,
is in Uppe), hence

(u- X1 Xp) - (h™) =0

for a m > 0 depending on the choices of X;. Since there are only d" choices
of the product X; --- X,,, we pick the largest m and denote it by M, then

(u- X1 Xn)- (6" =0

for all d" choices of Xi,...,X,. Hence u - (h"*™) =0 and u € Ulpe]- O

The Quotient g/p; is a ng-Torsion Module

The adjoint representation of ny on g makes g into a (finite dimensional)
ng-torsion module. The py C g is a ng-submodule (parabolic subalgebras are
self-normalizing), hence the quotient module g/py is a ny-torsion module.
Hence we have

Lemma 7.21. Let Y € g be an arbitrary element. Then there exists a
positive integer n (depending only on'Y ), such that

[ [[Y, Xa], Xo] - - - Xiu] € py,
forall Xy,..., X, €ny.

7.2.2 The Inclusion M* C K¢

We show the following Lemma by induction on k:
Lemma 7.22. For each k > 0, the subspace
MFE = Uy o) @ Up(ny)
is contained in Kpye-
The case k = 0 is trivial. Namely the

MO = u[“@'] ®C= u[“@'} = S§(Gu, V)/

[ng®]
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is contained in K¢}, since the inclusion & < K is a right ng-homomorphism
and the ng-torsion functor is left exact (Lemma |3.306)).
(Induction Hypothesis): We assume

Mkil C IC[H@']'
We show the MP¥ is contained in Kinge)-

Proof. By the Poincare-Birkhoff-Witt theorem, every element in MF is a
sum of terms of the following form:

PRY, Yo Yi=®-Y,---Y;

where ® € Upye), 0 <i < kand Y1,...,Y; € ny,. If i <k, then by induction
hypothesis, such elements are already contained in K, e), since they are in
M MF7L We just need to show elements of the following form are
contained in Ko

d-Y,- Y,

where @ € Upy o) and Vi, ..., Yy € 0y,
First we write

-V Ype=(®-Y;-- Vi) Y.

The ® - Yy ---Y,_; is in M*¥™ 1 and by the induction hypothesis, it is ng-
torsion, hence there exists an integer n; > 0 such that

(@-Y1---Yi1) - (ng™) = {0}
By Lemma there exists an integer ny > 0 such that
[. o [[Yka Xl]a XQ] o ']7 XHQ] € p@a

for all Xy,..., Xy, € ny.
Now let n = ny + na + 1, then for any n elements X;,..., X, € np, we

have (by (7.10))
(@ YY) X1+ Xpn=(®-Y1--- Y1) (Yie- X1+ Xp)

= > (®-Yi--Yiy) - Xg - (Y, Xge)
SC[1,n]

If |S| > ny, then (®- Y1 Y1) - Xg = 0, since Xg € (ny™) and we
have (®- Y1 - Y1) - (ng™) = {0} as above.

185



If |S¢] > ng, then (Y, Xge) € pp. By the induction hypothesis, the
-V Y., € K[mf]» hence (®-Y;-- Y1) - Xg € K[n@']a since ’C[“w'} is
a ng-submodule of K and is stable under multiplication of U(ng). Then by

applying Lemma to b = pg,b1 = my, h2 = ng, we know the K, e is
pg-stable, and

(®-Y1--Yi1)  Xg- (Vk, Xge) € IC[“@']‘

Since we have chosen n = nj 4+ ng + 1, then either |S| > ny or [S¢| > na.
Hence the term
(@Y1 Yi1)  Xg - (Yi, Xse)

is either zero, or in K e;. In sum, the summands (® - Y- Y1) - Xg -
(Y, Xge) are all in Ky o], hence

((I)'Yl‘--Yk)~X1”-XnE’C[nwo]
for all Xy,..., X, € ng. Then by Lemma we see

(I)-Yl---YkE/C[n@-}.

7.3 The Inclusion K. C M
Similar to the proof of Lemma [3.52] the crucial idea to prove
URUMy,)) o) € Upnys) @ U(ny,)

is to find a “good basis” of the enveloping algebra U(n,).
Let Y1,...,Yy be a set of basis of the Lie algebra n,,. Let I = (iy,...,4q)
be a multi-index in Z‘éo, and we denote by

yfzylil.yzb...yjd

the ordered product. Then the P-B-W Theorem tells us the {Y: I € Z‘éo}
form a basis of the enveloping algebra U (ny,).
Therefore every element in K is uniquely written as a finite sum

Z o, Y = Z o, Y!

d d
ez, rezd,

186



where ®; € U and all but finitely many terms in the sum are zero. This
element (sum) in K is in M if and only if each nonzero ®; is in Uy, e).

As an analogue to the Lemma [3.52] the main difficulty of the proof is: if
the above sum is ny-torsion, one cannot see whether each summand ®;-Y!
s ng-torsion. The idea to prove the inclusion is very similar: we need to
single out one summand at a time and show it is torsion.

Unlike the proof of Lemma , the tensor product U @ U(ny,) is not a
tensor product of ng-modules, and the multiplication of ng on it is extremely
complicated, such that one cannot expect a simple multiplication formula
as (3.2)).

This requires us to arrange the PBW-basis Y/ by a linear order on the
multi-index set, so that we can perform induction on this linear order to
separate the summands. This order is constructed by the following two
steps:

e First fix a basis of n,, consists of root vectors, and arrange them as
Y1,...,Y; (here d is the dimension of n ) such that their “height” are
non-decreasing (see |7.3.3]).

e Second we define a “linear order” on the index set £¢ = Z‘éo (see(7.3.1).
The the above fixed basis {Y7, ..., Yy} determines a linear order on the
PBW-basis

(Y =Yy vyt I = (in,....00) € £1 =24}
Combining the above two aspects, we have a good linear order “<” on
the PBW-basis {Y!: T € £%}. Let
Ur(n,) = the subspace spanned by Y7 for all .J < I.

Then we define a filtration on the I and its subspace K, e by

Kl :=U @ Us(ny)
I
K = K'n ,C[n@‘]

[no*
The {KL ., : I € £} forms an exhaustive filtration of K, e, and we just
[no*] [ng*]
need to show each subspace IC[I%.} is included in M.

The key points of the proof are

. Each subspace IC[I nge] 10 the filtration is ng-stable (Lemma , hence
is a ng-submodule of K.

e Each graded piece of the filtration {Kﬁm’} : I € £} is isomorphic to
U as ng-modules.
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7.3.1 Orders on Multi-index Sets
For a positive integer d, let
Qd = Z%O = {(il,...,id) P01y ,0g € ZZO}

be the set of multi-indices with d components of non-negative integers. The

£% is an additive semigroup. We denote a generic element in £¢ by I =

(i1,...,1q), and we denote the sum of its components by |I| =iy + ...+ i4.
For each m € Zx>q, we let

ed —(regd Il =m}={(ir,...,iq) i1+ ... +iqg=m}

be the subset of multi-indices with sums of their components equal to m.
Then £4 = Um>o0 £¢ is a disjoint union. It is easy to count the size of £ :

d
1€l = Cdim-1-
For each m € Z>q, we let
d d
0<k<m

Then £7 = J,,,50 £%,,.-

The Reverse Lexicographic Order on £¢,

Let £4 = {I € £%:|I| = m} be as above. We define an order on £¢,.

Definition 7.23 (The Reverse Lexicographic Order on £4)). Let I =
(i1, ,ia),J = (j1,-- -, ja) be two elements in £¢ . We define

I1<J
if there is an [, such that 0 <! < d and
id = Jdstd—1 = Jd—1,- -+ b+1 = Ji+1, % < Ji-

This is an order called the reverse lexicographic order on 2%. We
denote by I < Jif I < JorI=J.

Remark 7.24. It is easy to see this order is a linear order (total order), and
is a well-order since £¢, is finite and discrete. Actually the above reverse
lexicographic order is defined on the entire £, and we just restrict it to
each subset £4,.
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Example 7.25. Consider the case d = 3, m = 4. It contains Cg = % =15
elements, and they are ordered as the following linear sequence:

(0,0,4) > (0,1,3) > (1,0, 3)
> (0,2,2) > (1,1,2) > (2,0,2)
> (0,3,1) > (1,2,1) > (2,1,1) > (3,0,1)
> (0,4,0) > (1,3,0) > (2,2,0) > (3,1,0)
> (4,0,0)

The Linear Order on £¢

Since the £¢ is the disjoint union of £ ,m > 0, we can connect the linear
orders on each £¢ to obtain a linear order on £7.

Definition 7.26 (linear order on £9). Let I = (iy,...,iq),J = (ji,. .-, jd)
be two elements in £¢. We define

I<J

if |I| < |J] or [I| = |J| =m and I < J under the reverse lexicographic order
on £¢. We call this order the linear order on £¢.

Example 7.27. For d = 2, the linear order on £2 is just the snake-like
order parameterizing the rational numbers.

Remark 7.28. Note that the above linear order on £% is NOT the reverse
lexicographic order. For example, let d = 2, then under the lexicographic
order, one has (3,0) < (1,1) by comparing the second component. However
under our order, the (3,0) > (1, 1) since the sum 3+0 > 1+ 1.

Why Linear Order?

Why not use the reverse lexicographic order on £4? Because we cannot
perform induction on the reverse lexicographic order.

In Figure , we show the linear and reverse lexicographic order for £2..
In both figures, each dot is an element in £2, and each dot has an arrow
pointing to the adjacent element which is larger than it in the corresponding
order, i.e. one has an increasing sequence following the arrows.

As we can see from the Figure (a), each dot has a unique adjacent dot
“smaller“ than it. Starting from an arbitrary dot, one can always descend
to the initial dot (0, 0) after finitely many steps.
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(a) Linear order d = 2
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(b) Reverse lexicographic order d = 2

Figure 7.2: Linear order and Reverse lexicographic order (d=2)

However in Figure (b), one can see the dot (0,1) has no adjacent
element smaller than it. In other word, under the reverse lexicographic
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order, the subset {I € £2 : I < (0,1)} contains all (7,0),7 > 0, and this
subset has no maximal element. Hence starting from (0,1), one cannot
descend to the initial point (0,0) after finite steps, therefore one cannot
perform induction on this order.
A Partial Order on £¢

We define a partial order on the £¢

Definition 7.29. Let [ = (i1,...,44),J = (j1,...,Jq4) be two elements in
£4. We define
I1=<J

if i1 < j1,42 < jo,...,iqg < jq. And we denote by I < J if I < J but I # J.
It is easy to see the < is a partial order on £¢, and we call it the component
order on £%.

Lemma 7.30. For two I,J € £, if I < J, then |I| < |J| hence I < J
under the linear order on £2.

Definition 7.31. Let I = (i1,...,%4),J = (j1,-..,Ja) and suppose I < J.
We define their difference by

J—TI:=(1—11,....Ja— ia)-
Obviously we have J —I € £¢, and J — I < J and |J — I| = |J| — |I|.

The Fortified Formula of (7.9) and (7.10)

Let g be a complex Lie algebra, and Y7,...,Y; be d arbitrary elements
in g. For a multi-index I = (iy,...,iq) € £ we denote by

vi=viy2.. .y
And we denote by (Y!, —) the following element in Homc (U(g), U(g))
(YT ) == (ad¥1)" o (adY2)®2 o ... 0 (adYy)% (u),
for all u € U(g), and (—, Y ') the following element in Homc (U(g), U(g)):
(u, YT := (=DM (adYy)@ o . .. o (ad¥1)™ (u).

By convention, if I = (0,...,0), then (Y, =) = (-, Y1) =id.
With the above partial order on £¢ and notations, we have the fortified

version of the formulas (7.9) and (7.10)).
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Lemma 7.32. Let X € g be an arbitrary element. Then we have the fortified

formula of :

vy x =) ¢/’ x). v/ (7.15)
J=XI

— Z C}I<YJ, X> . Ylil—jl . Ydid_jd.

J1<i1,.,0a<%d

and the fortified formula of (7.10):

xX-vh=>Y civ’ (x,y'"7). (7.16)
J=XI

Here the coefficient C}] is the product of combinatoric coefficients:

=) () ()
i1 i9 iq
Proof. To show (7.15) we simply use the (7.9)). By counting the multiplicities
of repeating terms, we have the combinatoric coefficients in (7.15). The
(7.16)) is shown in the same way. O
7.3.2 Some Algebraic Lemmas—II
The Poincare-Birkhoff-Witt Basis

Let b be an arbitrary complex Lie algebra, with dimension d, and let
Y1,...,Yy be an arbitrary basis of h. For a multi-index I = (i1,...,iq) €
gd = Z‘éo, we let

y! :ylil...ydid

then {Y! : I € £9} form a basis of the enveloping algebra U(h), called a
Poincare-Birkhoff-Witt basis of h, or simply a PBW basis.

Lemma 7.33. Let I € £ be an arbitrary multi-index, and let Y be the
PBW basis element as above. Let Y € b be an arbitrary element, then the
Y - Y is contained in the linear span of

Y7 |J < Il + 1}
FEquivalently, this means
b Un(b) C Unga(h).
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Proof. We just need to show the case when Y = Y} is a basis vector from
{Y1,...,Y4}. We prove by induction on |I|. If |[I| = 0, then Y/ = 1 and
the result is trivial. If [I| = 1, then Y/ is a single basis vector Y; for some
1 <1 <d. Then
Y. Y, ifk<l

YY) = { V7, if k=1

and the result is true.
For a general Y/, we have

yk.yfzyk.ylil...y;d
Y
— VIV Y ) Y VY v
By the induction hypothesis, the Ykarle"Q e de is in the span of {Y/ :

|J] < |I| =14 1} and the [V}, Y3]¥;" Y32 Y4 is in the span of {V7 :
|J| < |I| =141}, hence the Y- Y7 is in the span of {Y”7 : |J| < |I|+1}. O

By iteration, i.e. by repeatedly using the above Lemma, we have

Lemma 7.34. Let X1, ..., X}, be arbitrary element in by, and I,Y ! as above.
Then the
XX YL

is a linear combination of Y7 such that |J| < |I| + k.

A Formula on Lie Brackets in Enveloping Algebra

Let h be an arbitrary complex Lie algebra, and U(h) be its enveloping
algebra.

Lemma 7.35. Let X,Y1,..., Yy be arbitrary elements in . Then in U(h)
we have

k
(X, Y1 Y] =) Vi Vi [X, YilYi - Y (7.17)
=1
and similarly
k
Vi Y X] =D Vi Y [Vi, X|Yi - Y (7.18)
=1
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Proof. We prove the first one by induction on k, and the second equality is
implied immediately by the first one.

For k = 1, the equality is trivial. We assume the equality holds for k—1,
then

[X,Yl---Yk]:X}ﬁ---Yk—Yl---YkX
=XYYs - Y, -V XYy - Y+ VXY - Y — Y- VX
:[X,Yl]Ygu-Yk+Y1(XY2--~Yk—}/2~--YkX)

By the induction hypothesis, we have

XYg---Yk—YQ---YkX:[X Yy V3]

—ZYQ Y1 [X,Y]¥igr - Y

Hence
k
(X, Y1 Y] = [XN)Ve - Ve + 1) Yo Y [X, YilYig -+ Yy
=2
k
Z Y[ X, Y] - Y

By a straightforward application of the above Lemma, we have

Lemma 7.36. Let I = (i1,...,iq) € £% be a multi-index, and X,Y1,...,Yqy
be arbitrary elements in b, and let YI = Y“ .- Y;? be the ordered product.
Then

d Zk 1
Y =303 v Y v v (7.19)
k=1 1=0

and similarly

ie—1

d
=DV YR XYY Y (71.20)
k=1 =0
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7.3.3 Heights on Basis of n,

The real Lie algebra n , = wMpow N Ay of the real group N, =

w~ N pwN Ny is a direct sum of restricted (relative) root spaces. In partic-
ular, we can find a R-basis of n, (which is also a C-basis of the complexified
Lie algebra n;,) consisting of root vectors.

The roots occurring in ny, (or n,,) form the subset ¥~ Nw ™1 (I~ —Xg),
and this subset is closed under addition. For a root a occurring in n, let
goa be the root space, its complexification g, is exactly the relative root
space. The go, is an abelian subalgebra of gg if 2« is not a root. (Note that
its dimension may not be one since the group G may not be split.)

Let A = {a1,...,a,} be the fixed simple system of the relative (re-
stricted) root system. Since ¥~ Nw ™! (X~ — Xg) is contained in X7, every
root in it is uniquely written as an integral combination of roots in —A. Let
aeY Nw (X — ¥g), and suppose it is of the form

o = — E n;0

for n; € Z>p. We define the height of o to be

Ht(a) = Z ;.
i=1

Remark 7.37. Note that this is not the ordinary height function in the
theory of root system, since we are working with negative roots. The above
“height” Ht is the height function under the base —A in the ordinary sense.

Ordered Basis of n,

From this section through the entire chapter, we fix a R-basis of n,
consisting of root vectors, and they are also C-basis of the complexified Lie
algebra n,,.

Let d be the dimension of the n,, and we label the basis of root vectors as
Y1,...,Yy, and define the height of Y; to be the height of the corresponding
root. We label the Y;’s such that

Ht(Y1) < He(Y2) < ... < Ht(Yy),

i.e. the height of the corresponding roots of Y; increase with 3.
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Lemma 7.38. For two basis root vectors Y;,Y; (i < j), we have

Yivil= > aY, (7.21)
k>
Ht (Y5 )>Ht(Y;)

i.e. the [Y;, Y]] is a linear combination of basis vectors with strictly larger
heights.

In particular, the basis root vectors corresponding to the highest roots
(e.g. the Yg) are in the center of n,.

Proof. For two roots a, 8 occurring in n,,, we have

g , ifat+per Nnuw (- -2
00 80s] € § 20+) . &%)
{0}, otherwise.
The Lemma is implied immediately by this fact. O

7.3.4 The Coefficients C*

Let Y; be a base vector in the fixed basis {Y1, ..., Yz} of n , and suppose
we label the basis such that their height are increasing. Without loss of
generality, let X € nyy be a root vector in the real Lie algebra ngy,. In
this subsection, we study the element [Y;, X] € go, and its decomposition
into linear combination of base vector fields (with coefficients in the ring of
algebraic functions).

Remark 7.39. Note that [Y;, X] may not be in pyy or n , (neither tangent
nor transverse), and it could be an element in w~!pow N 7yp.

Lemma 7.40. Let C* be the coefficient function of YkL in the expression
of [Yi, X], then we have C* =0 for all k > i.

Proof. By the assumption, both Y; and X are root vector, we may assume
that [Y;, X] is also a root vector. We go through the 4 steps in Remark
to compute C*.

In the step (1) of Remark we may assume n = exp(X) for some
X e “:;07 then by the Baker-Campbell-Hausdorff formula, we have

1
nHn ' = H +[X, H] + il X X H]

On the right-hand-side, every term has strictly lower heights than Y;.
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According to the step (2) of Remark |7.17, we need to decompose the
nHn™! into two components

nHn™ ! = (an_l)wilpow + (an_l)wflﬁPOw.
By the step (1) above, we see the second component (nHn~1)® ™ Trow jg g
linear combination of root vectors with strictly lower heights than Y;. (The
coefficients are functions of n)
According to the step (3) of Remark [7.17, if we conjugate the second
component back to
nfl(anfl)w_lﬁpown

again by Baker-Campbell-Hausdorff, it is still a linear combination of root
vectors with strictly lower heights than Y;.

Therefore, all root vectors Yy, k > ¢ cannot occur in the linear combina-
tion (i.e. coefficients are zero), hence C*(pwn) = 0 for all k > i. O]

7.3.5 The Elements Y, - Y/

Let Y7,...,Yy be a basis of n,, consisting of root vectors and satisfying
Ht(Y1) < Ht(Ys) < ... < Ht(Yy).

For a multi-index I = (i1,...,iq) € £4 we denote by Y the ordered product
Yyt .- Y;4 and they form the PBW basis of U(n).

Let Y% be an arbitrary basis vector from {Y7,...,Yy}, we consider the
element Y;, - Y!. It is hard to find a expression of it as a combination of
PBW-basis. However we can estimate the PBW-basis vectors Y occurring
in the expression of Y- Y/, and have the following result which is a fortified
version of Lemma [7.33:

Lemma 7.41. For all Y;,,1 <k <d, the Y3, - Y is a linear combination of
Y7 such that
J < (ila s 7ik—17ik + 17ik+17 s 7id)‘

(under the linear order on £2). In particular, all such J satisfy |J| < |I|+1,
and this lemma implies the Lemma|7.55.

The product Y;Y! = Y, Y]* --- V¢ is in U(ny) and is a linear combina-
tion of PBW-basis Y7/, J € £¢. This Lemma estimate the “leading term” in
the expansion of ¥, Y as sum of PBW-basis. Note that the following proof
is a proof by the first principal, not by induction.

197



Proof. We first look at some simple cases. If |I| = 0, or equivalently I =
(0,...,0), the statement in the Lemma is trivial.

Next we look at the simplest nontrivial cases when |I| = 1, and assume
I=1(0,...,0,1,0,...,0), i.e. the ith component is 1 and all other compo-
nents are zero. Then Y/ =Y, = Yil, and we have

Y3Y;, if k<i
VYT =YY, = v2 =Y if k=i

The cases k < i,k = i obviously verify the Lemma. The interesting case is
when k > i, where a new term [V}, Y;] is created. By Lemmal7.38|, the [V}, Yi]
is a linear combination of root vectors with strictly larger heights, i.e. it is
a combination of Y; such that j > ¢ and j > k. However, such Yj’s are still
single elements, and they are of the form Y/, where J = (0,...,1,...,0) (i.e.
the jth component is 1 and all the other components are zero). Such J still
satisfies J < (i1,...,ix + 1,...,1q), since |J| = 1. Hence the Y;Y; + [Y%, Yi]
is still spanned by Y7 with J < (iy,...,i, + 1,...,1q).

Now we look at the general case Yy - Y, where I = (i1, ...,i4). We have

IRD I (D CLN ALTRED 750 FULRER 4
_ Ylil . Ylk 1 Ylk+1 Y'Lk+1 L. Y;d

k—1 k+1
+ [V, Y ...Ylk - ylky’jﬁl e Y;d
The first term is Y/, where J = (i1,...,i5_1,0% + 1,ips1,...,4q), i.€. it is

obtained from the original I by adding 1 to its kth component. This term
has J equals to the “upper bound” in the Lemma. We need to show the
second term [Vi,Y{'- - Y *7'] - Y““Y,jfl1 ---Y;* is a linear combination of

Y such that J is strictly smaller than (11 ey g1yt + 1,011y -y 0q)-
By (7.20) in Lemma we have
[kayill" Zk 1 ZZY“ Yk’}/p]ylp — IY;i_El kaiil
p=1 =0

We just need to show for each p such that 1 <p <k —1 and [ such that
0 <1 <1, —1, the product
RN A A ) T AT (R U TR

is a linear combination of Y/ such that J < (i1,...,ix +1,...,4q).
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We apply the Lemma to the above elements. Note that the rear
segment Y;Fﬁl*l}/;ﬁl . ~Y,§f‘11YI:’“Y]jﬁl - Ydid is of the form Y where J =
0,...,0,ip =l —1,dp41,... 0k, ..., 0q), i.e. it is in the PBW-basis. And the
front segment Y, - Y[ [Vk, Yp] is a (sum of) products of i1 +. .. +ip_1+1+1
elements. Then in Lemma we see the element

Y ...Ypl[yk?y})])/;p—l—lygfll .. .y]jiflly]jkyljﬁl Y
is a combination of Y/ where [J| < (i, — 1 — 1+ ips1 +...iq) + (i1 + ... +
ip1+1+1)=di1+...+ig = |I| < |I|]+1. Of course, these elements are
linear combination of Y/ with J < (t1,...,ig+1,...,4q) because the lengths
|J| < |1 < |I] + 1. O

Remark 7.42. After proving this lemma, we found out this is a basic fact
on enveloping algebra. One don’t need the linear order on the PBW-basis,
and one don’t need to label the basis of n;, according to the height either.

7.3.6 The Submodule K’
Let d be the dimension of the Lie algebra n,,, and let Y7,...,Y; be a

real basis of n_, (which is also a C-basis of n,), and suppose we label them

with increasing heights: Ht(Y1) < ... < Ht(Yy). As in the last subsection,
for a multi-index I = (iy,...,iq) € £, we denote by

vl =yh .y2i2...y;d
the corresponding monomial PBW-basis.

Definition 7.43. For a multi-index I = (iy,...,i4) € £, the set {J € £¢ :
J > I} has a unique minimal element under the linear order, and the (finite)
set {J € £9: J < I} has a unique maximal element under the linear order.
We denote them by

I'" = the minimal element in {J € £¢:J > I}
I~ = the maximal element in {J € £¢:.J < I}

and we call I™ the the upper adjacent of I and I~ the lower adjacent
of I.
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The Refined Filtrations on U(n;) and K
For an arbitrary I € £¢, we denote by
el ={Jegl.J<I}
Ur(n) = the subspace of U(ny,) spanned by all Y/ such that J < T
Under the linear order on £9, the {U;(n;) : I € £%} form an exhaustive

filtration of U(ny,) by the PBW theorem. And for each I € £¢, let I~ be its
lower adjacent multi-index as above, then

el ={I}u ’QdSI*a

and by the PBW theorem, the quotient space Ur(n,)/Us-(n;,) is an one
dimensional space spanned by the Y.
We denote by
K'=u @ Ur(ny).

Obviously the {K! : I € £9} form an exhaustive filtration of K. Let ! /ICT~
be the quotient space and
Kt — kt/et” (7.22)
> @Y @Y modk!
J<I

be the quotient map. Then the quotient space is linearly isomorphic to U:

U= khiet (7.23)
P — & Yimodk!™

The K! is a ng-Submodule of £

The following lemma is the most crucial result. 1t tells us: if a finite sum
of the form Y ,.; ®, - Y’ is nyg-torsion, then its “leading term” ®; - Y7 is
torsion, and then every term is torsion by iteration.

Lemma 7.44. For all I € £%, the subspace K! of the right U(ny)-module
KC is stable under the right multiplication of ng. Hence they are right U(ng)-
submodule of K.

Therefore the quotient space KC' /K™ is a right U(ng)-module. The quo-
tient map is a right U(ng)-homomorphism, and the isomorphism
is an isomorphism of right U(ny)-modules.
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Remark 7.45 ((Sketch of the proof)). We prove by induction on the
linear order of £%. For the initial case, when I = (0,...,0), the K! = is
obviously a ng-submodule.

For an arbitrary I, suppose for all J < I (equivalently J < I7), the K/
is a right U(ng)-submodule (induction hypothesis). To show the K7 is ng-
stable, we just need to show the (®-Y7)- X (i.e. the leading term multiplied
by X), is still in K! for all ® € U, X € ny.

First, by the fortified formula in Lemma we have

@-YhH.X=ao (Y. X)

=y @ (v, x). v/
J=I

We split the last sum into three parts:

Z @(YJ,X> YI J+ Z Y[J
J=I,]J|=0 J=I,|J|=1
SRR
J=XI|J|>1

1. The first part is a single term

Yo e v x) Y =0 XY
J=1,|J]=0
since (Y7, —) =id. This “leading term” is still in K but not in KI™.

2. For the third part ZJ517|J|>1 ®- (Y X)- Y=/ welook at each sum-
mand. Since |J| > 2, we see | — J| = |I| — |J| < |I| — 2. Therefore,
the third part is in K1~ .

3. The second term is the hard part to deal with. We just need to show
each
o (v x). v/

isin K™ forall J < I,|J| = 1.

Proof. Let I = (i1,...,iq). Assume J = (0,...,1,...,0) be the multi-index
with jth component equal to 1 and all the other component equal to 0. Then

J
Y7 =y,
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is a single monomial element (the jth element from the basis {Y1,..., Yy}
of ny).
We need to show

o (v, X) YT = [v;, X]- VT

is in the K.

Without loss of generality, we assume X is a root vector in ny. Note
that the element [Y}, X] may not be an element in py or n, (the worst
case: it might be in w~!pw N #y), hence it may be neither tangent to G,
nor transverse to G,,. The derivative [Y}, X] is regarded as a left invariant
vector field [Y;, X]¥ on G and also on the open subset G>,,. As in , we

can write it as a pointwise “linear combination”
d
¥, XIE =D, + 3 Ol
i=1

where D, is a tangent vector in TG, and C*(z) is an algebraic function
of z (and we have seen it only depends on n if we write x = pwn for
pePneN].)

By Lemma [7.40, we have seen the C? are all zero if 4 > j, hence the
above linear combination is written as

Y, X] =D+ C*;.
k<j

Now the original ® - [Y;, X] - Y=/ is written as

-, X] Y =0 DY 4y o (CPy) v
k<j
=0 DY 4> (®-C) v, YT

k<j

The C* are algebraic functions, hence ® - C* are still distributions in ¢ =
S(Gy, V). The D is tangent to Gy, therefore ® - D is also in S(Gy, V).

By Lemma , the terms Y}, - Y/~/ are C-linear combinations of ele-
ments of the form YIZIYQZ2 e de where

(lh' : 'ald) < (ily‘ "aik‘—lyik + 17i/€+1a' : 'aijfhij - 17ij+1a"' 7id)

and the latter index is strictly less than 1.
In sum, the original ® - [Y;, X]- Y=/ is in KI™. O

202



7.3.7 The Inclusion Ky« C M

Let
I I
ICM.] = IC[%.] NK-.

Then the {]C[In@'} : I € £%} form an exhaustive filtration of Kinge)- To show
the inclusion K, o) C M, we just need to show

Kf,, © M
for all I.
We show the inclusions IC[IHQ.} C M by induction on the linear order
of I € £ First the initial case is obvious: let I = (0,...,0), we see

I _ _
K[n(b'] =Uun ]C["O)'] = u[“@'] Cc M.
(Induction Hypothesis): For arbitrary I, assume K/ q C M for all

[ng
J < I. We show }C[In@.} C M. Let
J I
> %Y e Ky
J<I

be an arbitrary element, then we need to show all ®; are inside U, s).
Consider the following commutative diagram

Kl KK —= U

T J J

Kiye) — (KK )nge) = Upnye)

By Lemma the linear isomorphism U ~ K!/K!™ is actually an isomor-
phism of U(ng)-modules, hence they have the same torsion submodules:
~ (1l T
Upngey > (KK inge

The image of ZJgI ®;- Y’ in the quotient ! /K!™ is in the torsion sub-
module (ICI/ICI_)[%.] since the quotient map is U (ng)-linear by Lemma |7.44,
hence ®; - Y/modK!'™ is in the torsion submodule (K'/K'")p, e, then the
d; e u[“@']'

Hence the leading term ®;-Y! of Y, ., ®;- Y’ is in Upnye) € M. By
- I

the “easy part”: M C Ky, e}, we see the leading term @ - Y! is in IC[%.],

hence the following sum

Yo, v' =)0, v - v!
J<I J<I
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is in the intersection K e N K™ = Kﬁ;a']' By the induction hypothesis,
each ®; for J < I are inside Unye)- In sum, all @ in the sum ZJgI o;-Y/
are inside U, e], hence

Z Dy - YJ e M.

J<I
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Chapter 8

Shapiro’s Lemma

Summary of This Chapter
In the last two chapters, we have shown the space
Ker(Resy) = (Izw/Isw)'
is isomorphic to I, ® U(ny,), and its ny-torsion subspace is exactly
(Izw/Iow) ™) = (1) © U (ny).

This chapter is devoted to the study of the torsion subspace (I’,)M0°],
or more precisely the annihilators (Iq’lj)[“@k]. Our aim is to find the explicit
Mp-action on these annihilators.

e In we use the “annihilator-invariant trick” to show the following
isomorphism (see (8.1))

(1)1 25 HO(ng, (I, ® Fy,)').

Then we can study the kth annihilator by studying the zeroth ng-
cohomology on (I, ® F})'.

e In[8.2, we show the following isomorphism

~ N,
Ly ® Fi = Snd 1, (0 @ 1),

Then we can replace the (I, ® Fy)' in the 0th cohomology by the dual
of the Schwartz induction space SIndxg 1P (T @ k).

e In[8.3 we formulate Shapiro’s Lemma and use it to compute the zeroth
cohomology N
H®(Ny, [Snd )l 1, (0% @ 0p)]').
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Combining all three sections, we have the following isomorphisms

(L) ~ HO(ny, (I, ® Fy)')
~ HO(N, [SInd]]:?mw_IPw( v @ )]
~ HY(Ny nw™ Pw, (Vyw @ F)')

Through these isomorphisms, we explicitly express the Mp-action on (I{U)[“V’k}
by the Mjy-action on (Vow @ F)'. The main result of this chapter is Lemma
the My acts on (I{U)[“ﬂk] by 0@ @ i ® 7w, where o is the twisted
representation o o Adw, 7 is the conjugation on the finite dimensional quo-
tient U(ng)/(ng"*), the “hat” means the dual representation, and the -, is
the My-modular character on the quotient Ny N w ™! Pw\Ny.

8.1 Preparation

8.1.1 Main Object of This Chapter

In Chapter [6, we have shown the following isomorphism
(Isw/Isy) = Ker(Resy) ~ I, @ U(n,).

This isomorphism is only a linear isomorphism: the U(ny) is not stable
under FPp-conjugation, hence the right-hand-side cannot be regarded as a
tensor product of Py-representation. However we see the n, is stable under
My-conjugation, hence the U(n;,) has the My-action on it. Then we have

Lemma 8.1. The isomorphism Ker(Res,,) ~ I/, ®U (n,,) is My-equivariant,
when the right-hand-side is endowed with the tensor product Mpy-action.

Proof. Actually for arbitrary ® € I/ ,u € U(ny,) and m € My, we have

(m-(P®u), ) =(®Ru,R,,~10)

o R,R,,~10)

O R,-1RpR,R,,-10)
P, Ryt Radm(u)®)
m - ® RAdm(u)¢>

(m - @) @ (Adm(u)), ¢)

for all ¢ € I>y. (Here Ry RyR,;,—1 = Rpdm(u) because the Lie algebra action
is obtained by differentiation of the Lie group action.) O

{
=
=
=
=
=
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In Chapter |7, we have shown the following equality
(I /Tow) M0 = (1) @ U (ny,).

Since the ny-torsion subspaces are My-stable, this equality is also equivariant
under My, when the right-hand-side is endowed with the tensor product Mp-
action.

The main object of this chapter is to study the My-action on the tor-
sion subspace (I!,)1"°], or more precisely the My-action on the annihilators

(1) for all k € Zsy.

8.1.2 The Annihilator (I))"] and the Annihilator-Invariant
Trick
In this subsection, we show the following isomorphism by an algebraic
trick .
(L)) = HO(ng, (F ® L)")- (8.1)
(See below for the meaning of Fj.) Moreover, this isomorphism is Py-
equivariant.

The Pj-Representation on U(ny)/(ny")

Let (ny*) be the two-sided ideal of U(ny) generated by products of k
elements in ny. Let

Fy, = U(ng)/(ng")

be the quotient space of U(ny) modulo the ideal (ny").

Since the (ny"*) is an ideal, it is a U(ny)-submodule of U(ny), and the
quotient space Fj has a natural structure of (left) quotient U (ng)-modules
(ng-modules). More precisely, for a u € U(ny), let w € F}, be its image under
the quotient map U(ng) — F). Then the left U(np)-action is given by

u = wu, Yu,u' € Ulng).

The quotient module F}j has the following properties.
Lemma 8.2. For the quotient spaces F}, we have

o The Fy, is a finite dimensional complex vector space.

207



o The natural conjugation of Py on U(ng) induces a Py-action on Fy,.
More precisely, the Py-action is given by
p-u:=p-u,

where p - uw = Adp(u) is the natural conjugation. And this action
makes Fy, into a finite dimensional continuous (hence smooth) Ppy-
representation. We denote this representation by (ny, F).

o The (nk, Fi) is an algebraic representation of Py.
o The differentiation of the Ny-action on Fj, coincides with the U(ng)-
module structure.

Remark 8.3. Since F} is finite dimensional, the topology on it is the canon-
ical topology. The strong dual F}, is exactly the algebraic dual F}} (also with
the canonical topology since F}' is also finite dimensional). All algebraic
tensor product with Fj, or F} have a unique topology and they are auto-
matically complete.

The Annihilator (I},)""]

The annihilator (I{U)[“@k} is a Py-stable subspace of the Pj-representation
I!, and a ng-submodule of I,.
Given an element ® € (Iz’u)[“@k}7 one has a map

Lg : Fi. — I{U
uru-P
Here w is the image of an arbitrary u € U(ny) in the quotient Fj =
U(ng)/(ng*). The Lo is a well-defined linear map and it is actually a left

U (ng)-homomorphism between the two left U(ng)-modules Fj and I;,. The
following algebraic facts is easy to prove:

Lemma 8.4. The map
k
(1)) — Homy (ny) (Fk, 14, (8.2)
P — Lq>
18 a linear isomorphism.

Proof. If Ly = 0, then u - ® = 0 for all uw € U(np). In particular 1- & =0
and ® = 0, hence (8.2)) is injective.
Let L € Homy wy) (F, I},), we let ® = L(T) € I,. Obviously (ny*)-® = 0,

hence ® € (I,)[""] and it is easy to see L = Lg, hence (8.2) is surjective. [
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The Diagonal Py-Action on Homc¢(Fg, I),)

Let Homg (Fy, I},) be the vector space of linear maps from Fy, to I;,. The
F} is a Pj-representation by Lemma and the I/, is the contragredient
Py-representation of the right regular Fy-representation on [, We thus have
a abstract group action of Py on the vector space Homc (Fy, I.,).

More precisely, let L € Homc(F, I,,), we define the Pj-action on it by

PL(@@)=p- Lp~'u), Vuc F.

We call this the diagonal Py-action on Homg¢(Fg, I),).

The subspace HomU(nm)(Fk,I{U) is stable under the diagonal Pp-action.
Actually on both Fj and I, the ng-module structure is obtained by dif-
ferentiating the smooth Ny-action. Hence the Pj-action and ng-action on
the Fy and I/, are compatible in the sense (C-3) in Definition More
precisely, let L € Homy () (Fg, Iy,), p € Py, we have

PL(uu)=p- L[p_1 ~u’ -]

for all v’ € U(ng),u € Fy,. Hence PL is still ng-linear.

Lemma 8.5. With the Homc (Fy, I,) and Homg ) (F}, I,) endowed with
the above diagonal Py-actions, we have

o The isomorphism mn Lemma 1s Py-equivariant.
e The natural isomorphism
Homg (Fy, I,,) ~ F @ I,

is Py-equivariant, with the Homg(Fy, I},) endowed with the diagonal
Py-action, and F}} ® I, endowed with the tensor product Py-action.

e By differentiating the diagonal Py-action, one has the ng-action on
Homg (Fy, I),), and its ng-invariant subspace is

H°(ng, Home(Fy, I,)) = Homy; (4, (Fk, I,)

and this equality is Py-equivariant.
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e By differentiating the Py-actions on Home (Fy, I,,) and F} @ I, their
ng-invariant subspaces are isomorphic

H®(ng, Homg (Fy, I},)) ~ H® (ng, Fyf ® I,),

and this isomorphism is Py-equivariant.

Summary

Combining the above two Lemmas, we have the following sequence of
isomorphisms

(Iq’u)[nwk] ~ HomU(nw)(Fk,I{U) (Lemma 8.4)
= H°(ny,Home (F, I,)) (Lemma [8.5)
~ H'(ng, Fy @ I,)
~ H(ng, (Fy ® I,)")

and all isomorphisms above are FPy-equivariant.
Remark 8.6. We can construct a linear map directly:

(1) = (B, ® 1) (8.3)
b — 5

where ® is given by B
P(u® ¢) = P(Rug).

And it is easy to see this map is well-defined, Pj-equivariant, with image in-
side H'(ny, (F,®1,,)"), and is exactly the composition of the above sequence
of isomorphisms, hence is an isomorphism.

In sum, to study the annihilator (I{U)[“‘Dk] and the Mjy-action on it, we
just need to compute the 0th cohomology H(ng, (Fy ® I,,)"). We will first
show the Fj ® I, is isomorphic to a Schwartz induction space, then use
Shapiro Lemma to compute this Oth cohomology.

8.2 The I, and The Tensor Product [, ® Fj

The main object of this section is to study the tensor product [, ® F},
and the My-action on it.
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In we quickly recall the structure of the local Schwartz induction
— PwPy
I, =8Ind, ’o.

In 8.2.2, we define the Schwartz induction SIndJ]z” .
pNw=1P
is the twisted representation o o Adw of Ny Nw~!Pw on V. We show

there is a natural isomorphism ((8.4) or (8.5)):

Ny w
N@ﬁwfleO— :

waw where o%

I, = SInd
In we describe the Mjy-action on the right-hand-side
No
SIndN@ﬁwflpwo-w
induced from the Mj-representation I,, by the above isomorphism.

In we recall the notion of external tensor products of represen-
tations, and the following basic property of Schwartz inductions:

SInd%l o1 ® SIndF2oy = SInd 35201 K os.

In we apply the above basic property to show the following
isomorphism (8.17)):

N ~ N
(SInngmwflpwo-w) ® Fp — SIDngnw,lpw(O'w ® nk‘N@ﬁw—le)'

In sum, the I, ® F}, is isomorphic to the Schwartz induction

N
SInngmwflpw(Uw ® nk’N@ﬁw—le)a

and we can write down the explicit Mjy-action on it.

8.2.1 Revisiting the [,

Recall that the notation I,, means the local Schwartz induction:

I, = SndSvo,

where G, = PwPF) is the double coset corresponding to the representative
w e [W@\W]
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Structure of the Double Coset G,, = PwF;

By abuse of notation, we denote the fixed representative of w € [Weg\W]
in G (actually in Ng(S)) by the same w.

We regard G, as an abstract real variety. For every p € P,q € Fp, we
denote the point pwq € PwPy by

Tpuwg € Gu.

Remark 8.7. The reader can treat it as the point pwq € G, but we want
to emphasize that the expression pwgq is not unique.

We have the following easy facts:
PwPy = PwNy
= Pw(Ny Nw™ ' Pw) - (Ng Nw™ ' Npw)
= Pw(Ny Nw™ ' Npw)
= PwN,}
Recall that N is exactly Ny N w™'Npw as defined in Chapter
w 0

Lemma 8.8. The last expression in the above align is unique. More pre-
cisely, the map

P x N} — G, = PwP

(p,n) = pwn

18 an isomorphism of real affine varieties and smooth manifolds. In partic-
ular, every element in G, s uniquely written as Tpyn for some p € P and
neNS.

Functions in [,

The I, = SIndgwa is defined to be the image space of the following
integration map

S(Gw, V) = C%(Guw, V,0), f = [7,

where C®(Gy,,V,0) = {f € C®(Gw,V) : f(px) = o(p)f(z),Vp € Pz €
Gu} and f7(z) := [po(p!)f(pz)dp is the o-mean value function.
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The topology on SIndIGDwa is the quotient topology, and in particular it is
a nuclear Fréchet space, and one has the following surjective homomorphism
of TVS and Fj-representations:

S(Gy, V) - SIndGo.

By the above definition, the I, = SIndg‘“a is contained in C*°(Gy,, V, 0).

“

In particular, a function ¢ in I, is a smooth function and satisfies the “o-
rule”:

d(pxr) = o(p)p(x), Vp€ P,x € Gy.

8.2.2 The I, is Isomorphic to SInd]]zgmw_IPwaw

We denote by (o, V) the following representation of NyNw ™! Pw on V:
o (u)v == o(wuw v, Vv € V,uec Nynw ' Puw.

(Note that o o Adw is a twisted representation of w™!Pw on V, the above
o is its restriction to the subgroup Ny Nw~!Pw.)

The representation o is actually a (real) algebraic representation of
Ny Nw™tPw on V. In particular, it is of moderate growth, and one can
define as in Chapter {4f the Schwartz induction

Ny w
SIHdN@ﬁw—IPwU )

which is the image of S(Ny, V) under the c"-mean value map:

N w
S(Ng, V) = Stnd? 1p,0

fef

where f°° is given by
17 (n) = / o (u™Y) f(un)du,Vn € Ny.
Nynw=1Pw

Similar to the I,,, a function ¢ in SInng

w :
Norw—1pwC 1S a smooth function

on Ny, satisfying the o*-rule:

Y(un) = o (u)h(n), Yu € NyNw Pw,n € Ny.
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The Map from I, to SInng

Nynw—1Puw?

We can define the following map
I, = Stnd$ o — C°(Ny, V, o®) (8.4)
616

o~

where the ¢ is given by

~

d(n) = ¢(xywn), Vn € Ny.

The QAS is obviously a smooth V-valued function on Ny, and satisfying the
o®-rule: for all u € Ny N w~tPw,n € Ny, one has

= o(wuw ™) G(Lwn) (¢ satisfies the o-rule)
= 0" (u)(n)
The Image of

We show

Lemma 8.9. The image of the map is in the Schwartz induction space

SIndxgmw_lpwaw. Therefore, we have an isomorphism (of TVS):

I, = SInd}? w (8.5)
w n N@ﬂwfleO— :
o= ¢

First we have the following diagram
C*®(Ny, V,o")
T » SInd? | 1p, 0"
(4.37) ~ = @.37)
S(Ng, V)
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In this diagram, the upper-right arrow is the inclusion, and the two down-
slash arrows are isomorphisms given by the Lemma [4.92] since both G,, and
Ny are isomorphic (as real algebraic varieties) to direct products:

Gy~Px N}
Ny ~ (Ng Nw ™ Pw) x Nf

To show the image of () is in ‘S'Indxgmw,1 Pul

the composition of the isomorphism I,, — S(N,5, V) and the inverse iso-
morphism S(N,}, V) — SInng

¥ we just need to show

Norw—-1pwC 18 exactly the map 1D

Proof. The map I, — S(N,},V) is given by (4.37) in Lemma Pick a
¢ € I, its image in S(N,5, V) is exactly

o(n) := ¢(xwn) = ¢(wn).

The proof of Lemma [4.92 gives us an explicit inverse of the isomorphism
SInd%gnw,lpwa — S(NJ,V). Namely, let ¢ € S(NF,V) be an arbi-
trary Schwartz function on N, let v € C2°(Ny Nw~'Pw) be an arbitrary
C-valued smooth function with compact support such that vy(e) = 1 and
fN@ﬂw—le y(u)du = 1. Then one can first define a function ® € S(Ny, V)
by

®(un) = y(u)o®(u)p(n), Yue NyNw 'Pw,ne N,
(Here note Ny = (Ng Nw ™1 Pw) - N, is a direct product of manifolds.) It is
easy to see the ® is Schwartz on Ny. Now we consider the ¢*-mean value
function of ®:

w

7 (z) :/ o¥(a ") ®(az)da, Yz € Ny
Nygnw—1Pw

It is easy to check the ®°" ¢ SInd%mw,1 P 1s independent of the
choice of v as in the proof of Lemma @ Actually for all uw € Ny N
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w~!Pw,n € N}, one has
" (un) :/ o (a"H®(aun)da
Nonw—1Pw
-/ 0" (™) [y (au)o™ (au) () da
Nonw—1Pw
-/ +(au)o™ (w)(n)da
Nonw—1Pw

[ andalr (@l
= 0*(w)o(n)

Obviously ®°"| Nt = ¢, hence ®°" is indeed the image under the inverse
: : N,
isomorphism S(N;, V) — SInngmw_lpwaw.

Now the composition of the two maps I,, =+ S(N,}, V) and S(N,}, V) —

SInng

Norwo—1pC sends the ¢ to ®7". Tt is easy to see

" = ¢ on Ny

Therefore the composition of the two isomorphisms I, — S(N,/,V) and
N, .
SN, V) — SInngmw,lpwaw is exactly the map 1) O

8.2.3 The Isomorphism (88.5) is My-Equivariant

Note that the local Schwartz induction I, = SIndIGgwa is a representation
of Py under the right regular Pp-action, denoted by

R,p, V¢ € l,,pc Py

The isomorphism (8.5) transport the right regular Pj-action on I, to a
P . Ny
p-action on SInd Ny

Ny
on SIndN@nwfle

Aw—1pe - We can explicitly write down the Fy-action

o¥.

The Ny-Action on SIndxgmw_lpwaw

N
The STnd 1 p,,

Np-action. The following lemma is trivial.

o' is obviously a Ny-representation with right regular

Lemma 8.10. With both sides endowed with the right reqular Ny-actions,
the isomorphism s Ny-equivariant.
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O.’LU

The My-Action on SInd]X,gmw,lpw

. Ny
We compute the Mjy-action on SIndemw,lpw

~ Ny .. . .
trary, and let ¢ € ‘S'Ind]\,‘mw,1 0" be its image under the isomorphism

(8.5). For arbitrary m € My, n € Ny, we have

o". Let ¢ € I, be arbi-

— 0" (m)G(m ™~ nm)

In sum, the Mjy-action on SInd%g is given by

ﬂwflpwa-w
m -1 =o¥(m)oyoAdm™* (8.6)

for all ¢ € SInd%gmw,l pu0"sm € My. Actually this Mg-action is well-

defined on the entire C*°(Ny, V,0"), and we have just shown the subspace
SInsz

Noro—1pwC 18 stable under this My-action.

Lemma 8.11. With the right reqular My-action on I, and the My-action on
SInd%gmw,lpwaw defined in , the isomorphism s My-equivariant.
8.2.4 External Tensor Products

Fori=1,2, let

G; = a real algebraic groups
P; = an algebraic subgroup of G;

(04, V;) = a smooth nuclear Fréceht representations of P;

External Tensor Products of Representations

Definition 8.12. The following representation of P; x P, on Vj ® Vs is

called the external tensor product of o; and o9, and is denoted by
(01 Ko, Vi ® Va):

o1 W oa(p1,p2)(v1 @ va) := [o1(p1)v1] @ [02(p2)val,

for all p; € Py,v; € Vi,i=1,2.
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Remark 8.13. When P; = P, the restriction of o7 X oy to the diagonal
subgroup of P; x Ps is exactly the tensor product o1 ® o9.

It is easy to see
Lemma 8.14. The representation o1 X oo is a smooth NF-representation.
Moreover, if o1, 09 are of moderate growth, then so is o1 X o9.
Tensor Product of Schwartz Inductions

Suppose 01,09 are of moderate growth, then one has three Schwartz
induction spaces:

G G G1xG
SIndPllal, SIHdPSUQ, SIndPlIXP;O'l @0’2.

Fori=1,2, let ¢; € SInngai be two arbitrary functions, then one can
define a smooth function on G x G with values in Vi @ Va:

¢1 X p2(g1, 92) == d1(g91) ® P2(g92), V(91,92) € G1 x Goa. (8.7)

Then we have

Lemma 8.15. The function ¢1 X ¢o is in SIndIGgllxxl%al X oo, and the map
01 ® P2 — ¢1 K @y extends to an isomorphism of TVS:

SIndfloy & SIndF2oy — SInd§ 201 Ko (8.8)
$1® ¢z = ¢1 K o

8.2.5 Tensor Product of Schwartz Inductions

In this subsection, we show a Lemma about tensor product of Schwartz
induction. We will apply this Lemma to the tensor product I, ® Fj. The
analogue of this Lemma in the ordinary induction picture is well-known.

Let G, P be the same as in [4.6 and let

(o,

0,V) = a nuclear Fréchet representation of P of moderate growth
(n, F') = a finite dimensional algebraic representation of G

(n|p, F) = the restriction of n to the subgroup P

SInd%o = the Schwartz induction space of o

In particular, the n and n|p are of moderate growth.
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Let ¢ € SIndga, v € F, we define the following function in C*(G,V ®
F):

Pu(9) = é(9) ®n(g)v, VgeG. (8.9)
The main result of this subsection is:

Lemma 8.16. The function ¢, is in SInd%(c @ n|p). And we have the
following isomorphism of TVS:

SInd%o @ F — SInd% (0 @ n|p) (8.10)
O RV Py

This map is an isomorphism of G-representations, where the left hand side
1s the tensor product representation and right hand side is the right regular
representation.

We first show the function ¢, is indeed in SInd% (o ® n|p), by finding its
preimage in the Schwartz function space S(G,V ® F). Then we show the
above map is an isomorphism.

Tensor Product on Schwartz Function Spaces

For a f € S(G,V) and a v € F, we can define the following smooth
function on G' with values in V ® F'

fo(g) = flg) ®@n(g)v, VgeG. (8.11)
We claim:
Lemma 8.17. The function f, is in S(G,V & F).

To prove this Lemma, we just need to apply the following Lemma to
(p,U) = (1%, ®n,V ® F) where 1% is the trivial representation of G on V.

Lemma 8.18. Let G be a real point group of a linear algebraic group, and
(p,U) be a representation of G of moderate growth. For an arbitrary f €
S(G,U), we define the function

Pf(9) = p(9)f(g), VgeGC. (8.12)
Then * f is in S(G,U).
Proof. One can easily check, for all u € U(g), the

[Ru("1)](g) = p(9)[Ruf(g)]-

Since p is of moderate growth, the R,”f is bounded on entire G. Since
U(g) generates the entire ring of Nash differential operators (and algebraic
differential operators), we see ? f is rapidly decreasing on G. O
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The ¢, is in SInd% (o @ n|p)

We show the first part of Lemma for all ¢ € SInng, and v € F|
the ¢, defined by is in the Schwartz induction space SInd% (o ® n|p).
By definition of the Schwartz induction, one can find a Schwartz function
f € S(G,V) such that f7 = ¢. Then we consider the function f, € S(G,V®
F) defined in (8.11), and its o ® n-mean value function (f,)°®"7, and we see

(1) = [ (e @me) o)y
= [ @00l 0) @ ntog)elan
= [l o0)) © o ool
= [ It o)) o) el
0 /P o(p™Y) f(pg)dp] @ [n(9)]

)
= f7(g9) ®n(g)v
= ¢(g9) @ n(g)v
= ¢v(g)

Therefore, the ¢, is the image of f, under the mean value map S(G,V ®
F) — SInd%(o @ n|p).

Relation With External Tensor Product

For a 1) € SInd% (s ® n|p), one can define the following smooth function
on G' x G with values in V ® F":

¢" (g1, 92) := id @ n(gagy (g1), V(g1,92) € G x G. (8.13)

Also for a ¥ € SIndgiga X n, one can define the following smooth

function on G with values in V ® F":
UY(g) = ¥(g,9), Vgeq. (8.14)
Then we have

Lemma 8.19. With the above notations,

(1) The ¢" is in SInd5xSo K.
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(2) The ¥V is in SInd% (o @ n|p).

(3) The two maps 1 — Y™ and ¥ — ¥V are mutually inverse, therefore we
have the following isomorphism of TVS:

Snd% (o @ nlp) = SIndGxGo K1 (8.15)

(4) The isomorphism is G-equivariant, when the left-hand-side has
the right regular G-action, and right-hand-side has the diagonal right
reqular G-action.

The Map (8.10) is an Isomorphism

We show the (8.10) is an isomorphism.
First we note F' ~ SIndgn by Lemma and this isomorphism com-
bined with the Lemma [8.15] gives the following isomorphism

SndGo @ F = SInd$x5G0 K (8.16)

X

pRvi— oXuv
where the function ¢ X v is given by

o X (g1, 92) = &(91) @n(g2)v, V(g1,92) € G x G.

We then have the following diagram

(8.16)

> SIndgiga X

SInd%o @ F

(810) ®15)
SInd% (o @ n|p)

And we have seen the (8.15) and (8.16) are isomorphisms, we just need to
verify the above diagram commutates, i.e. (¢,)" = ¢ K v. Actually,

(66)" (91, 92) = [id ® n(gag7 )] bw(g1)
= [id @ 1(g2g7 (1) @ n(gr)v
= ¢(g91) @ n(g2)v
= ¢ Xov(g1,92)
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Application to I, ® F}.
Applying the Lemma to

G =Ny
P=Nynw 'Puw
(0,V) = (V)

where Fj, = U(ng)/(ng*), we have the following Lemma

Lemma 8.20. For any ¢ € SInd%g o and v € Fy, the function

Nw=1Pw

dp(n) = d(n) @ nr(n)v, Vn € Ny,
is in SInd%gmw,lpw(aw ®ng). The map
(SIndp? 1 p, ") @ F = SIndy? .y (0% @ 1) (8.17)
PRV Py

is an isomorphism of TVS.

By abuse of notation, we write ng instead of 77k|N®mw71Pw, to keep all
equations short. This will not cause any ambiguity.

The My-Action on SInd]]zgmw,lpw(Uw ® M)

Combining the isomorphisms (8.5)) in Lemma and (8.17) in Lemma
we have the following isomorphism

Ly ® Fy = STnd 1, (0" @ mp) (8.18)

¢®v'—>$v

where the ¢ is defined by q/ﬁ\(n) = ¢(zwn), and the (Ev(n) is defined by ¢y (n) =
¢(n) @1 (n)v.

The left-hand-side I,, ® F has the tensor product My-action, where the
My acts on I, by right regular action, and on Fj, by the conjugation which

is also denoted by 7.

222



Now we want to describe the corresponding Mjy-action on the right-hand-
side ‘S'Ind]]:/[grm,1 (@ ®nx). Obviously, it is given by

m- QA% = (Rm(b)nk(m)v

Rud(n) @ mi(n)ne(m)ov

We should write the (Em\qﬁ)nk(m)v in a more explicit form. The first
component is given by :

Ron(n) = 0 (m)$(Adm™"n).

The second component is given by

1 (n)ng (m)v = ng (m)ng(Adm ™ n)v.
Therefore, we have

m- gy = (6 @ ng)(m) - pp(Adm~'n).
And in general, we have
Lemma 8.21. The Mjy-action on the SInd%‘gmw,le(aw ® M) induced by
the isomorphism s given by

m-® = (c¥ @n)(m) o ®o Adm™1, (8.19)

for all ® € SInd%g (e @ng) and m € M.

Nw—1Pw

8.3 Shapiro’s Lemma

In the last two sections, we have shown the isomorphism
k
(L) = HO (ng, (1, © Fy)')

and the following isomorphism between [, ® F}, and a Schwartz induction
space N
I, ® F, ~ SInngmw,IPw(Jw ® Ng;)-

Therefore, the computation of the kth annihilator (I{U)["Wk], is reduced to
the computation of the space of ng-invariant distributions on the Schwartz

. . Ny
induction SInd Norw—1 Puw

N, w
HO(“@? [SInngﬂw—le(U ® nk)]/)'

(o™ ® ng), namely the following space
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e In we formulate a version of Shapiro’s lemma (Theorem [8.23).
Let G, H be unimodular real algebraic groups, and (p, U) be a smooth
nuclear representation of H of moderate growth. Let (p,U’) be the
dual representation of (p,U), and SInd%p be the Schwartz induction.

Then the natural map (see (8.21))
H°(H,p) — H°(G, (SIndp)’)
is an isomorphism.

e In we apply Shapiro’s lemma to the Schwartz induction

N,
SInngmwflpw(o—w & 77k)

Since the group Ny and its subgroup Ny Nw~!Pw are unimodular and
cohomological trivial, we can apply the Shapiro’s Lemma which tells
us the H(ny, (I, ® F},)') is exactly the following space

HO(ng nw™tpw, (Vow @ Fy)').

8.3.1 Shapiro’s Lemma

In this subsection, we state the version of Shapiro’s Lemma which we
will apply. To simplify the understanding of Shapiro Lemma, we state a
weaker version of it, and the general version could be reduced to this weaker
version. This means we put some strong conditions on the groups, and in
this subsection, we temporarily stick to the following notations:

G = a real algebraic group which is unimodular
H = a (unimodular) closed algebraic subgroup of G
(p, U) = smooth nuclear Fréchet representation of H
which is of moderate growth
S(G,U) = the space of Schwartz V-valued functions on G

SInd%p = the Schwartz induction space

Since GG, H are both unimodular, one has a right G-invariant measure on
the quotient H\G, denoted by dx. Further more, we assume the H has a
complement in G, i.e. G has a real subvariety @) such that the multiplication
map H x () — G is an isomorphism of real varieties and manifolds.

Let (p,U’) be the contragredient H-representation on the strong dual
U', and let H°(H,U’) be the space of H-invariant vectors in U’. Given a
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vector A\ € HO(H,U’) and a ¢ € SInd%p, we consider the following function
on G:

Ad(=)) 9= (A dlg), VgeG,
where (,) : U' x U — C is the pairing between U’ and U. This function has
the following properties:

Lemma 8.22. The (A, ¢(—)) is constant on each H-coset, hence it factors
through a smooth function on the quotient manifold H\G, which is denoted
by
<)‘7¢> : xg = <)‘7¢(g)>7vxg € H\G
Here x4 means the point on H\G represented by the group element g € G.
Moreover, the function (X, ¢) is integrable on H\G, and the map:

Ty : Snd%p — C (8.20)
¢ (A @) (g)dzg
H\G
is a continuous linear functional on SInd%p, which is G-invariant.
Proof. The (X, ¢(g)) is constant on each double coset because A is invariant
under H. The (A, ¢) is integrable because it is a Schwartz function on

H\G. The functional Y is G-invariant because the measure dz is right
G-invariant. ]

Therefore, we have a linear map
H(H,U") — H(G, (Snd%p)") (8.21)
A= Ty
and it is an isomorphism by the following version of Shapiro’s Lemma
Theorem 8.23 (Casselman). The map s an isomorphism.
The proof is unpublished now, and we omit it.

Remark 8.24. The traditional Shapiro’s Lemma says the above isomor-
phism also holds for higher cohomology. We will only apply the special case
of zeroth cohomology, which is actually a variation of Frobenius reciprocity.

Remark 8.25. Our original work applied the version of Shapiro’s Lemma
in [2] (p182 Theorem 4.0.13). But the version there requires the represen-
tation o to be a Nash representation, in particular the ¢ need to be finite
dimensional, which cannot be generalized to infinite dimensional ¢. This
is a strong confinement of our work, therefore we abandon the old proof
and switch to the current version of Shapiro’s Lemma which also applies to
infinite dimensional o.
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8.3.2 Applying Shapiro’s Lemma

We need to study the Mp-structure on the annihilators (I{U)[“V)k], and we
have shown it is linearly isomorphic to

Ho(n@a (Iw o2y Fk)/) & H0<n@7 [Slnd]\[@mw 1Pw(0_w ® nk)]/)

Since the Ny and its subgroup Ny Nw~!Pw are cohomologically trivial,
(i.e. they are isomorphic to Euclidean spaces by the exponential maps), we
have the isomorphisms of functors

HO(N(Z)a _) = Ho(u@v _)
HOY(Nynw ' Pw,—) = H(nyg Nw ™ pw, —)
In particular, we have
H°(ny, [Slnd]\fwmw—lpw( o @ n)]') = H(Np, [SIHdN rw-1pe(@ @nE)])
Combining this with Shapiro’s Lemma (Theorem (8.23)):
H° (N@7 [Slnd]\[ nw *1Pw( o’ ® 771:)]/) = HO(N@ N w_lpw’ (Vcr“’ & Fk),)a
(Here the Vyw means the V' with the group action through the ") we have
(L) ~ HO(ng, (Ly ® F)')
N w

HO(n@, [SInngﬂw—le(J ® nk)]/)
= HO(Np, [SInd ! 1, (0% @ 1))
~ H(

N@ﬂw
Ny Nw Pw, (Vyw @ F)')

In sum, we can describe the elements in the annihilators (I{U)[“V)k] by the

cohomologies
H(Ny nw™ Pw, (Vo @ Fy)').

And the above sequence of isomorphisms also transplant the natural M-
action on (I7,)["] onto H(Nyg N wtPw, (Vyw @ F},)'). The last step is
to describe the My-action on H°(Ny N w=tPw, (Vyu ® Ft)') in terms of
(ng (9 Fk),.
Remark 8.26. The (V,» ® Fy) is the dual of Vow ® Fj, which is a tensor
product of two My-representations: the My acts on Vyw through o" (since
My C w™'Pw), and on the Fy through 7. However we will see the My-

action obtained from (I{U)[“@k] through the above isomorphisms, is NOT the
dual of o% @ ny.
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The My-Action From (I{U)[“@k}

We have the shown two isomorphisms to H"(Np, [SInd%‘gmw_l o0 ®

m)]'):
(L)) =5 HO(Ny, [STdy® 1 py, (0 @ me)])
HO(Ng N w™ Pw, (Voo @ Fi)') S HO(Np, [SInd? o, (0% @ g)]))

Therefore the My-structure on (I{U)Wk] could be described by the M-
structure on (Vyo ® Fy)'. Unfortunately, the inverse of the isomorphism
is not explicit. Thus to compare the Mjy-actions on (I{U)[“Wk] and
H(Nyg N w™tPw, (Vyw ® Fy)'), we have to send these two My-actions to
HO (N, [SInd%gmw,lpw(ow ® nx)]') and compare on this space.

First we look at the Mjy-action from (Vyu ® F}). Let A € HO(Ny N
wPw, (Vyu @ F)') C (Vow ® i)', and m € My be arbitrary element. Let

Yoa € HO(Ng, [SIndxgmw,lpw(aw ® nk)]’) be the integration distribution

introduced in Lemma [8.22, then for all ® € SIndxgmw_lpw(ow ® ng), we

have

(Trpr, @) = / (m -\, ®(n))dx,
N@ﬂwflpw\N@

- / [0 © ) (mY)] - B(n))day
NgNw—1Pw\Ny

Second we look at the Mjy-action from (I{U)["ﬁk], we have (A, m, Ty, P as
above)

(m-Ty,®) =(Y,m 1. d)

-/ A [0 @ i) (m™)] - @(mnm ™)) da,
NpNw—1Pw\Ny

Let n’ = mnm™!, then we have
(m- T ) = [ A0 © ) (m™)] - D)) 1
N@ﬂw—le\N@

—um) [ A (6" @ i) (m )] - B(n))
Nynw=1Pw\Ny

= Yu(m)(Tpa, )
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where the v, is a character of Mj given by
Yo () = det(Adgynu-1puwrn, (M 1)), ¥m € M. (8.22)

In particular, the v, restricted to the Ay is given by the following char-

acter of Ay:
Sw(a) = 11 aa)™, Va e Ay, (8.23)
aext
acw (T -%3)

where m,, is the multiplicity of a (Note that the roots are restricted roots,
with multiplicities).

Now we can see the difference between two My-actions on HO(Ny N
w L Pw, (Vyw ® F,)'): the Mg-action on HO(Ny, [SInd%gmw_lpw(U“’ @ ni)]’)
is expressed by the My-action on (Vyw ® Fy)" twisted by 7.

Lemma 8.27. The My acts on (I{U)[“@k], through 6® @ p ® Y, where Yy

is the character in .
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Chapter 9

Application: Finite
Dimensional (o, V)

Summary of This Chapter

In this chapter, we combine tools developed in previous chapters, to
reproduce irreducibility theorems (Theorem 7.2a on page 193 and Theorem
7.4 on page 203) in [15].

Setting and notations

For groups, we keep the notations as previous chapters. In particular,
for the parabolic subgroup P = MpNp, we also write it as Po = MgNg
when we need to emphasize the subset ©. In this chapter, let

(1,V) = a irreducible unitary representation of Mp

and we extend it trivially to the entire P. The 7 is obviously a Harish-
Chandra representation, in particular the V is nuclear.
Let
C=T® 5113/ 2

be the representation of P on V obtained by twisting the 7 by 6}3/ ®. Then the
normalized unitary (Hilbert) induction of Indgf is infinitesimally equivalent
to:

I = C*Ind%o = SInd%o.

We will apply the results in Chapter [5] 6, |7/ and |8 to the 0 = 7 ® 5113/2.

9.1 Degenerate Principal Series

In this section, we prove an analogue results (Theorem (9.6)) of Bruhat’s
Theorem 7.4 in [15], on the irreducibilities of degenerate principal series.
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e In 9.1.1, we show the restriction of 7 to the Ay is a direct sum of
Ag-characters that are Wg-conjugate to each other.

e In we formulate our analogous version of Bruhat’s Theorem 7.4,
and give an outline of the proof.

e In we complete the first step of the proof, by showing
Homp(V',(I/Is.)") = C.

The Theorem also tells us the interesting phenomenon occurs on
non-identity double cosets when the [ is reducible.

The second step to prove the Theorem [9.6]is completed in the next section.

9.1.1 Ay-Spectrum on (7,V)

In this subsection, let (7,V') be a finite dimensional irreducible unitary
representation of Mp. We follow the [15] to describe the Ag-spectrum on
the representation (7, V).

The main result in this subsection is Lemma [9.2], which says the restric-
tion of 7 to the Ay splits into a direct sum of unitary characters of Ay,
moreover these Ag-characters are all Wg-conjugate to each other.

For the parabolic subgroup P = Pg = MgNg, let Po = °MoAgNg be
its Langlands decomposition, i.e. Ng is the unipotent radical, Ag is the
split component, and ° Mg is the intersection of kernels of real characters on
Mg. The Levi component is the direct product of °Mg and Ag:

M@ = OM@ X A@,

and Ag is exactly the center of Mg.
For the irreducible unitary representation (7, V'), we know it is trivial on
Ng. Let

°1 = the restriction of 7 to °Mg

Xe = the restriction of 7 to Ag

Then the °7 is an irreducible unitary representation of °Mg on V, the x. is
a unitary character of Ag (called the restricted character of 7), and the
T is written as

T="TRx.® 1. (9.1)
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The Restriction of 7 to °Mg°
Let °Mg" be the identity component of °Meg, and let

°79 — the restriction of 7 to °Mg".

In general, the °7% is a unitary representation of °Mg”, but it may not be
irreducible.

Since the °7° is a finite dimensional unitary representation of °MgP,
it decomposes into a direct sum of finite dimensional irreducible unitary
representations of °Mg". The ° Mg -irreducible constituents on V are °Mg-
conjugate to each other.

Actually, we just need to apply the following Lemma to G = °Mg, H =
°MgP:

Lemma 9.1. Let G be a Lie group, H be a normal subgroup of G with finite
indez. Let (m,V') be a finite dimensional irreducible unitary representation of
G. Then the restriction (w|m, V') is a finite direct sum of irreducible unitary
representations of H, and the H-irreducible constituents are G-conjugate to
each other.

Proof. Since V is finite dimensional, one can find a minimal nonzero H-
invariant subspace of V', denoted by Vj. Then Vj is obviously a irreducible
representation of H. Let

G(Vo) ={g9€G:7m(g9)Vo C Vo}.

Then the G(Vp) is a subgroup of G containing H, and H is also normal in
G(Vh).

Let {go = €,91,...,q1} be a set of representatives of the right cosets
in G/G(Vp). Then obviously each 7(g;)Vp is a H-invariant subspace of V/
(of the same dimension as Vj) since H is normal, and they are irreducible
representations of H.

It is easy to see: for i # j, either m(g;)Vo N7 (g;)Vo = {0} or m(g;)Vo =
7(g;)Vo. The latter cannot happen, otherwise g, ! g; € G™ contradicting to
i # j. Hence one has a direct sum

l

P gV,

=0

which is G-invariant subspace of V', hence equals to the entire V since V is
G-irreducible. O
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By applying the above Lemma, we may denote the irreducible con-
stituents of (°le a0, V) by (o0, Vo). - (o1, Vi)

l

°r0 = “Tloprg0 = @(pZ,VZ)
=0

As above, let °Mg(Vp) be the subgroup of ° Mg fixing the subspace Vj. And
for each i # 0, there is an element g; € ° Mg representing its ° Mg (Vp)-coset
in °Mg, such that p; = pg o Adg;.

The Ay-Spectrum on (7,V)

As in [15], the restriction of the ° Mg -irreducible constituent (pg, Vo)
to the subgroup °Mg N Ay is a unitary character of °Mg N Ay, denoted by
Xo- Similarly, for each ¢ = 1,...,[, the restriction of p; to °Mg N Ay is a
unitary character y;, we thus have [ + l-unitary characters of °Mg N Ay:

X05 X1s5-+-5 X1
We have seen the p; are all °Mg-conjugate to each other, i.e. for each

i=1,...,1 there is a g; € °Mg such that p; = pp o Adg;. Therefore, for the
characters y;, one also has

Xi = Xxo0 o Adg;,i =0,1,...,1.

Moreover, one can choose the g; from the normalizer Ng(Ap), and let
w; be its image in the Weyl group W. One can see the w; is actually in
Weg since it centralizes the Ag. Therefore, we see the characters y; are all
Weg-conjugate to each other:

xi = xoo0 Adw;, i=0,...,1.
Since the Ay is the direct product of Ag and °Mg N Ayp:
Ap = (°Me N Ay) x Aeg,
each y; combined with x. gives a character of Aj;. We denote it by
X' = Xi * Xe-
It is easy to see x* is exactly the w;-conjugation of x°:
X' =x"oAdw;, i=0,1,...,L

(Note that all w; € Weg fix the subgroups Ag and x..) In sum, we have the
following description of the Ag-spectrum on (7, V):
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Lemma 9.2. The restriction of T to the Ay is a direct sum of unitary
characters (with the same multiplicities). Let

Spec(Ag, 7) = {x%x, .. X'}

be the set of unitary characters of Ay occurring on (1,V), i.e.

l
= @B dx=Pax,
=0

X€Spec(Ap,T)

where d is the dimension of the irreducible ° Mg -representation py. Then
the x* are conjugate to each other by elements in Wg. More precisely, there
is a element w; € We (which may not be unique), such that x* = x° o Adw;
(and one can choose wy to be identity).

Remark 9.3. The explicit description of the w; depends on the concrete
representation 7, and there is no uniform way to describe them.

9.1.2 Formulating an Analogue of Bruhat’s Theorem 7.4

We formulate the Theorem 7.4 in Bruhat’s [15]. We keep the setting
as in the last subsection, and still assume (7,V’) to be finite dimensional,
irreducible and unitary. Let Spec(Ay,7) be the finite set of Ay-characters
occurring in 7 as in Lemma 9.2

Definition 9.4. A character x € Spec(Ay, 7) is called regular if

X # x o Adw

for all w € W — Wg, i.e. the w-conjugation of x is not identically equal to
x for all w ¢ We.

If one (hence all) Ag-characters in Spec(Ay,7) is regular, we say the
representation 7 is regular.

Remark 9.5. If one character in Spec(Ay, 7) is regular in the above sense,
then every character in Spec(Ayp, 7) are regular. Actually, let x € Spec(Ay, 7)
be a regular character, then the other characters in Spec(Ap, 7) are of the
form yoAds™! for some s € Wg. If the yoAds™! is not regular, then there is
aw € W—Wg such that yoAds !oAdw = yoAds~!. Hence yoAd(s tws) =
x. But s~lws is not in Wg (otherwise w € Wg a contradiction), this
contradicts the assumption that y is regular.
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Now we state the theorem in Bruhat’s thesis, which gives a sufficient
condition of irreducibility of unitary parabolic induction of finite dimensional
representations:

Theorem 9.6 (Bruhat [15] Theorem 7.4). Let (1,V) be a irreducible fi-
nite dimensional unitary representation of Po (therefore of Mg), and let
Spec(Ag, T) be the finite set of Ag-character occurring on 7. If one (hence
all) character in Spec(Ay, ) is reqular in the sense of Definition then
the normalized parabolic induction IndgT s irreducible.

Outline of the Proof of Theorem (9.6

By the Remark we just need to show the Schwartz induction
(smooth induction) I satisfies Homg(Z,I) = C. By the Remark we
will show the irreducibility in by the following two steps:

1. show the Homp(V’, (I/Is.)") = C.

2. find a subset Q C O such that for all w € [We\W/Wq],w # e, the
Homp, (V' (I2,,/1%,,)) = {0}

As in Remark these two steps correspond to the two cases that
suppD C P or suppD ¢ P. The first step is done in the next subsection
For the second step, we will choose Q = ) and show the Hom spaces
are zero in section

9.1.3 The Space Homp(V’, (/1))

In this subsection, we only assume (1,V') to be irreducible unitary, with-
out assuming it to be finite dimensional.

By Lemma the space of intertwining distributions with supports
contained in P is linearly isomorphic to the following space

Homp(V', (I/1s.)).
By the Theorem in Chapter [6, we have the following isomorphism
(I/Ise) = I, ®U(n)

(Note that for w = e, the transverse subalgebra ny, is exactly np.) Also by
Lemma [4.93, we see the I, = SIndbo is exactly the P-representation (o,
V). Therefore, we have

(I/Is.) =~ V'@ U(np) (9.2)
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(The (I/Is.)" is isomorphic to a generalized Verma module.)
Therefore we have the following inclusion

Homp(V', (I/1s.)) ~ Homp(V', V' @ U(np))
C Homy (V!,V' @ U(np))

where the V'®U (np) has the tensor product M-action by the same argument
as in Lemma More precisely, we have

Homp(V’, (I/Is¢)") C Homy (7,5 @ U(np))
= Homy (F® 654,70 65" @ Ump))

(Here the “hat” means dual representation.)

Note that a M = Mg-equivariant map from ?®5I§1/2 to ?®6};1/2®U(ﬁp)
has to be Ag-equivariant. The 7 restricted to Ag is a single unitary character
Xc of Ag (the restricted character discussion in the last subsection), while
the other two components 51;1/ ? and U(np) are real rational representations.
Hence the image of a Ag-equivariant map from ?®(5;1/2 to ?®6;1/2®U(ﬁp)
must send the 7 to 7. Therefore we have

Homy (7 @ 6572, 7 @ 65"* @ Unp))
C Hom (7, 7)
=C

Remark 9.7. In the above argument, we don’t need the 0 = 7® (5113/2 to be

finite dimensional. We only need the 7 to be irreducible unitary, since all
such representations have restricted Ag-characters.

To summarize the above discussion, we see the Homp(V’, (I/I.)") = C
when V is an irreducible unitary representation. We have the following
theorem:

Theorem 9.8. Let (1,V) be an irreducible unitary representation of M
(and P by trivial extension), then the intertwining distributions with support
contained in P are exactly the scalar intertwining distributions.

Remark 9.9. This theorem tells us: even when the parabolic induction is
reducible, its non-scalar intertwining distributions are not supported in P.

This theorem has the following easy corollary
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Corollary 9.10. Let (7,V) be an irreducible unitary representation of M
(and P by trivial extension), then the normalized Schwartz induction I =
SIndg(T ® (5113/2) is irreducible, if and only if all intertwining distributions
have their supports contained in P. Equivalently, the I is irreducible if and
only if there is mo intertwining distribution with its support containing a
double coset other than P.

9.2 The Space Homp,(V', (Isy/I-v)")

In this section, we complete the proof of the Theorem We still
assume (1,V') to be a finite dimensional and irreducible unitary representa-
tion.

We choose the 2 = (), and show the following Hom spaces are zero:

Homp, (V', (I>w/I>w)") = {0}, for all w # e,w € [Wo\W].
In a word, we prove these spaces are zero, by comparing the Ap-Spectrum
on V' and [(Isy/Isw)')™ .
9.2.1 The Reason to Study nyg-Torsion Subspaces

The condition “(7,V) is finite dimensional” is a very strong condition
and it largely simplify the proof of irreducibility of IndgT. More precisely,
the smooth representation V' is np-trivial, and is mp N nyg-torsion since it is
finite dimensional. Therefore the V' is torsion as a ng-module:

yine®l — v,

and so is its dual V': (V)] = V7,

For an arbitrary ® € Homp,(V’, (I>w/I>w)'), since it is Py-equivariant,
it is also ng-equivariant. In particular, it maps the V' = (V')[%°] to the
ng-torsion subspace of (Isy/Isqy)":

® € Home (V') [(Isw/Isw) M%),

Moreover, since the ng-torsion subspace is Mp-stable, and the ® is a Mp-
equivariant map from V' to [(Isy/Is4)']"]. In sum, we have the following
Lemma

Lemma 9.11. If (7,V) is a finite dimensional representation, then
Homp, (V', (I>w/Isw)') = Homag, (V/, [(Isw/Tsw) ™). (9.3)
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By this lemma, we only need to show the right-hand-side is zero, by show-
ing the Ag-spectrum on [(Isq/Isy)]M") is disjoint from the Ap-spectrum
on (T® (51;1/2, V’). The Chapter @ and |8 are devoted to the study of
Ag-spectrum on [(Isy/Isy)' )"0

e In Chapter 6, we have shown

(Isw/Isyw) ~ I, @ U(ny), as My-spaces.

e In Chapter |7, we have shown (under the above isomorphism)
[, ® Ung )| = (1) @ U(ny,).

e In Chapter |8, we use Shapiro’s Lemma to compute the Mp-structure
(hence also the Agy-spectrum) on [I7,][0*],
9.2.2 Comparison of the Ayp-Spectrums

We compare the Ag-Spectrums on V’ and [(Isy/Isy)]°]. Given an
arbitrary ® € Hompy, (V', [(Isw/I>w)'] %°]), by the Lemma and the
main theorems in Chapter [6, [7, the ® is reduced to a My-equivariant map

&V = (1) o Uny).
Since the V” is finite dimensional, the image of ® is thus contained in
()" @ Un(ny,)
for some k£ > 0 and n > 0 (large enough). To show the
Homgy (V/, [(Izw/Tw)' ™)
is {0} or equivalently the above arbitrary ® is zero, we just need to show
Homyy, (V/, (1)) @ Uy (ny,)) = {0}

for all £ > 0,n > 0. This requires us to compare the Ap-spectrum on V'
and (I')™" & U, (ng).
The Ag-spectrum on V’ is the following finite set of Ay-characters:

—

Spec(Ag, 7 ® %) = {x T @ 55

: X € Spec(Ag, 1)} (9.4)
We are left to study the Ag-spectrum on (I,)""l @ U, (ny).
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The Ay-Spectrum on (I,)" @ U, (n7)

By Lemma the tensor product (7)™l @ U, (n7) is actually a tensor
product of My-representations hence also Ap-representations. We just need
to find the Ag-spectrum on the annihilator (I7,)M"].

The Mjy-action on (Iq’jj)[“@k] is studied in Chapter |§ and summarized in
Lemma i.e. the My acts on (I7)["] by the representation

o —

(r@dd®) " @m] @y =7 (H)* @ H & 1.

(Note that the 0 = 7 ® 6113/ % in the concrete case.) In particular, by re-
stricting the Mjy-action to the Ay, we have the following description of the
Ay-spectrum:

Lemma 9.12. The Ay-spectrum on (I{U)[‘W’k] consists of Ag-characters of
the following form:

x*)'® (6;1/2)“’ ® Oy @ [

where x € Spec(Ag, T), 6w is the Ag-character in (8.23), and p is a Ay-
character on the 1y, of the following form

I] o (9.5)
aext

where ko are non-negative integers such that Y ko = j for some j <k —1
(The p comes from the Ay-spectrum on ny).

The Ag-spectrum on the transverse derivative space U, (n,) consists of
Ap-characters of the form

11 ale (9.6)

ae¥X™
acw H(Z7-%3)

where [, are non-negative integers such that >, < n.
In sum, we have:

Lemma 9.13. The Ay-spectrum on the (I{U)[“@k] ® Un(ny,) consists of Ag-
characters as follows:

)@@ el opey (9.7)

where x € Spec(Ay,T), 8y is the Ay-character in (8.23), p is the Ay-
character as in and v is the Ay-character as in (9.6).
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The Spectrum Spec(A4y, 7") of Regular 7

Recall that in Definition the 7 is called regular, if any Ap-character
occurring in 7 is regular. Given the (7, V) and an element w € W, we denote
by

7 =70 Adw

the twisted representation of w~!Mpw on V. And similarly, for a character
x of Ay, we denote by x* the Ay-character x o Adw.

For a regular 7, we have the following lemma about the Ap-spectrum of
T for w ¢ We:

Lemma 9.14. Suppose the finite dimensional irreducible unitary represen-
tation T is reqular, and w € W — Wg. Then the finite set Spec(Ay, ") is
disjoint from Spec(Ag, 7).

Proof. Obviously, one has
SpeC(A(ZbTw) = {Xw X € SpeC(A07T)}'

Suppose a x* € Spec(Ag, 7) is also in Spec(Ag, 7), then there is a s € Wg
such that x* = x*. Then one has X“’fl = x. Since 7 is regular, so is x, this
implies ws~! € Wg, which further implies w € Weg, a contradiction. ]

Comparison of The Ajp-Spectrum and Proof of Bruhat’s Theorem
7.4

Since
Homy, (V/, (I1,)1"] @ U, (n)) € Hom a4, (V, (IL,)™") @ U, (ny)),

to show the first My-Hom space is zero, we just need to show the second Ay-
Hom space is zero. In and , we have written down the Ag-spectrum
on V' and (I')™"] @ U,(ng). We just need to show every Ag-character
occurring on V’ cannot occur on (I,)""1 @ U, (ny). For simplicity, we write
the characters additively.

We just need to show the Ay-character of the form —y — %(5 p and the
Ay-character of the form —w !y’ — %w_lép + 0y + p + v are never equal.
(Here y, x" are Ag-characters in Spec(Ag, 7) which may not be equal.)

Assume these two Ay-characters are equal:

1 1

239



Then we must have

x=w 'y (9-8)

1 1
—50p = —5’(1]_15]3 + 6w+ p+v

This is because the y and w™!'y’ are unitary characters with values on the
unit circle, and all the other characters are real characters taking values in
R~. Therefore for the two Ay-characters to be equal, their pure imaginary
and real parts have to be equal respectively.

Now since the w is a non-identity element in the representative set
[Weo\W], it is not in the subgroup Weg. If 7 is regular as in Bruhat’s theorem,
by Lemma we see the )Qn\d w™ 'Y/ cannot be equal. Therefore every

Ag-character occurring on (7 ® (5113/2, V') cannot occur in (I,)"1 @ U, (n3),
and the proof is completed.

9.3 Minimal Principal Series

In this section, we prove our analogous result (Theorem [9.15) of Bruhat’s
Theorem 7.2a in [15]. In this section, we let

P=Dn

be the minimal parabolic subgroup (i.e. ® = (), then the only choice of €2
is the empty set). The representative set [We\W] is exactly W, which is in
one-to-one correspondence with the (P, Py)-double cosets.

e In we formulate and prove our analogue (Theorem 9.15) of the
Theorem 7.2a in [15].

e In we study the real parts of the Ag-spectrum on [I/]"°] ®
U(ng). We will show the real parts of Ag-spectrum on V’ and [I7,]M"]g
Un(ny,) agree only when k£ = 1,n = 0. Then for certain special cases,
(e.g. split groups), we can actually write down the local intertwining
distributions as integrations by Shapiro’s Lemma.

9.3.1 An Analogue of Bruhat’s Theorem 7.2a

As above, let P = Py be the minimal parabolic subgroup. In the Lang-
lands decomposition °MyAgNy, the component °My is a compact group,
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hence the irreducible unitary representation (7,V) of My = °Mjy x Ay has
to be finite dimensional.
We now formulate the analogue of Theorem 7.2a in [15]:

Theorem 9.15. Let P = Py be the minimal parabolic as above. If the
representation TV = 17 o Adw is not equivalent to T for all w € W,w # e,
then the induced representation IndIGme s trreducible.

Proof. Similar to the proof of Theorem [9.6, we just need to show
Homp, (V', (I>w/I>w)’) = {0}
for all w # e.
Since V’ is finite dimensional, we have
Homp, (V/, (Isw/Tsw)") = Homag, (V' (T4 /T5w)'] ™)

i.e. the image of each ® € Homp,(V’, (I>w/I>y)") has its image in the
torsion subspace. Combining the results in Chapter [6| and [7, we have

Homgy (V/, [(Izw/Iow) 1) = Homg, (V/, [1,]™07 © U(ny,)).

Again, since V' is finite dimensional, there exists k > 0,n > 0 (large enough),
such that

Homy, (V/, [1,)"" @ U (ng)) = Homg, (V' [I,]™") @ Up(ng)).
To summarize the above steps, we have

HomP@ (V/, (IZw/I>w)/) = HOHIM@ (V/7 [( w/I> )/][n@'})
:Home(V’,[Iz’U] U(ny))
= Homy, (V' [1,,] "w’“] 2 Un(n,,))

We just need to show Homyy, (V', [17,]" @ U, (ng)) = {0} by comparing
the Mg-actions on V' and [I,]™" @ U, (ny).

On the V’, the My acts by T® (5;1/2, while on the [I7]™" @ U, (ny), the
My acts by 70 @ wL55"? @7, 7, ®U(ng). Let & € Homyg, (V7, [I1,]M"]
Uy (ny,)) be an arbitrary element. Since the 7 is unitary, the image of ®
has to lay inside the 7. This is because ® is also Ap-equivariant, the only
unitary Ag-eigensubspace in [I7]"] @ U, (ny) is 7%. Therefore, the ® is
inside Homy, (?,TA“’). By Schur’s Lemma, this space is zero, if 7 satisfies
the condition 7% # 7 for all w # e. Therefore the ® has to be zero, and
Homyy, (V/, (1)) @ Un(ny)) = {0}.

O

241



9.3.2 Real Parts of the Ay-Spectrum

In the proof of Bruhat’s theorem 7.4, we show the Ay-characters that
occurring on V' cannot occur on (I{U)[“@k] ® U, (ny,), by showing their pure
imaginary parts are never equal on all the other double cosets other than P.
Actually, the real parts of the Ay-characters occurring on (I,’U)["‘Z‘k] ®@ Up(ny,)
also give us interesting results. We will study the real parts of the Ay-
spectrum on (I,)™" @ U, (ng), for P = Py the minimal parabolic subgroup.

The real parts of the Ay-characters occurring on (I,)™"] @ U, (ny) are
of the form:

1
—5’[0_16]3 + 511) +M+ v,

where 0y, t, v are Ag-character as follows:

Ow = — Z MaQ

Here all characters are written additively, m, are the multiplicity of the
(restricted) root «, k, are non-negative integers such that > ko <k —1, [,
are non-negative integers such that Y l, < n. One can see the d,, u, v are
all integral combinations of negative roots.

The real parts of Ap-spectrum on V' are all equal to —%6 p, we may ask
when does this equal to the real parts —%w_lcsp 4+ 0w+ p+v.

Lemma 9.16. For all w € W, one has
1 1 _
— 56]3 = —5’[1) 15]3 + 5’UJ' (99)

Proof. This is elementary. Note that we have assumed P = Py, therefore
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(Note that the d,, depends on w.)
First we decompose

St={aext:iwlac Lt} [[{feest v laen )

Then we have

1 _ 1 _ 1 _
—wlop = wt Mo+ —w E Mo
2 2 2
acxt aexnt
wlaext wlaex—
1 1
= 5 E WQ¢1+»§ g e’
acyt aEX™
waeXt waeXt
Then
1 -1g 15 1 +_1 1
—w p— —0p = — E Mo + — E Mo — = e
2 2 2 “ 2 ¢ 2 ¢
aext aeY™ aext
waent waent
1 1
= - g Mo — — Mo
aEX™ acxt
waeXt waeX™
1 1
= 5 meaeo — 5 E meat
IS acyt
acw~ izt acw X~
1 1
= —5 maqaQ — 5 E ma
aext acxt
acw ¥~ acw X~
= — E Mo QX
aext
acw 1x—

O]

By this Lemma, we see if the real parts of Ag-characters occurring in V'
mm(ﬂﬁhw]®L%®;)mﬁemmLLe—%&ﬂ:—%w*Wp+5w+¢w+thm
we must have

uw=0v=0.

Equivalently, this could only happen when k = 1,n = 0. Recall that the u
comes from the 7, = F}; which is only non-trivial on higher annihilators, and
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the v comes from the transverse derivatives in U(ny). Then pp = 0,v =0
implies the distribution has neither higher annihilators nor transverse deriva-
tives. This means the image of ® € Homyy, (V’, (I2,)0"] @ U, (ny)) is inside
(12"l

Therefore, we have

Homp, (V', (Isy/Ts)') = Hompg, (V/, (I2,)1%0']) (9.10)
= Homyy, (V/, H(ng, I.,))
— Homyy, (F @ 052,70 @ w652 & 1)
(The last step is by Shapiro’s Lemma.)
Although we don’t have any immediate consequence, at least we know
the local intertwining distributions do not have any transverse derivatives
in their expression, and these local intertwining distributions are given by

integrations on the quotient spaces Ny N w ™! Pyw\ Ny.
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Chapter 10

General Results and Future
Work

In this chapter, we sketch the proof of the general results (for arbitrary
Q C ©), and discuss the topics we will study in the future.

10.1 Generalization of Chapter |6

We keep the setting as in the introductory subsection |1.1.3] e.g. the
notations G,P = Po,G,P = Py, 7,0 = T®6113/2,I = SInng have the same
meaning as there. For each subset Q of O, and w in the set [Wg\W/Wq] of
minimal representatives, we let

GS = PwPy
PwPoCPxPqo

Ggw = Ggw - Gg

and let Ifg, I gw, Igw be their corresponding local Schwartz inductions.

10.1.1 Formulating the Theorem
As in Chapter 6, the dual quotient (Igw /12, is exactly the kernel of

the following restriction map
Resy : (I12,) = (I2,).
Let
@ .—R T —1=
w . =noNw npw=ngNw nNew

be the transverse subalgebra.

As in the [6.1.1, since G£,, is open in G and G is closed in G, the
U(g)-derivatives of distributions on G} are supported in G¢! (vanishing on
G¢,). As a generalization of Theorem [6.1, we have the following theorem:
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Theorem 10.1. We have the following linear maps as in and :
S(Gu, V) @ U(t,) = Ker{S(G2,, V) — S(G2,, V)'}
(1) @ U(ty) = Ker{(12,) = (IZ,)'}

i.e. they are given by U(t})-derivatives of distributions on GSt. The above
two maps are isomorphisms.

10.1.2 Sketch of the Proof
The key points of the proof are

e Change of neighoubrhood: Lemma |4.38 and Lemma, |4.80.

e The Z, is a tubular neighbourhood of G%}:
Zw ~ Gl x (NoNnw 'Npw).

e The tensor product property, i.e. (E-6) in Proposition

e The distribution with point support, i.e. the kernel of the restriction
map

S(NoNw 'Npw,V) = S(NogNw 'Npw — {e}, V)
is exactly the enveloping algebra U (g Nw™npw) = U(t2).
The G¢! and the Tubular Neighbourhood Z,
As in we let
Zw = PNpw = PgNgw

for all w € W. This is an Zariski open subset of G, and the Lemma 6.3 still
holds.
For each Q C © and w € [Wo\W/Wg], the G = PwPq is isomorphic

to P x {w} x Pgmfigllvw' The canonical map
(Mo Nw 'Npw) - (Nog Nw 'Npw) = Py Nw™ Pw\ Py (10.1)

is an isomorphism of manifolds and real algebraic varieties. Similar to the
Lemma we have the following Lemma on the structure of GS2:
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Lemma 10.2. The map

P x (Mg Nw 'Npw) - (NoNw 'Npw) = G} = PwPq (10.2)

(p, mn) — pwmn

is an isomorphism of manifolds and real algebraic varieties. The G is a
nonsingular closed subvariety of Z,, and a closed reqular submanifold of Z,,.
The Zy, is a tubular neighbourhood of GS}:

Zy~Pxw 'Npw~ G x (NgNw 'Npw). (10.3)

As in[6.1.3, by the Lemma and we have the following isomor-
phisms between kernels of restriction maps of distributions:

Ker{S(GY,.V) = S(GL,,V)'} ~ Ker{S(Zy, V) = S(Zw — GL,V)'}
Ker{(12,) = (IZ,)'} ~ Ker{(SInd%* o) — (Snd %~ )}

Distributions on Schwartz Function Spaces

We first show the following isomorphism on distributions on Schwartz
functions:

S(GLVY @UE) S Ker{S(Zy, V) — S(Zy — GSLV)'}.

First by the above Lemma and the (E-6) of Proposition [4.30, we
have

S(Zy,V) = S(GL V)R S(NgNnw ' Npw, C)
S(Zy—GL V)~ SGLV)RS(NgNnw 'Npw — {e},C)
Since all spaces are nuclear, we take the strong dual of the above isomor-
phisms, and we see the Ker{S(Z,, V) — S(Z, — G}, V)'} is isomorphic
to
S(GL V) ® Ker{S(Nq Nw N pw,C) = S(NqgNw *Npw — {e},C)}.
By the Lemma we see the above space is exactly

S(GL VY @ UmgNnw pw) =S(GL V) @ UE).
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Distributions on Schwartz Induction Spaces

We show the isomorphism

Q

(I2Y @ U(2) =5 Ker{(SInd%v o) — (SInd%" “wo)'}.
By the Lemma we have
SIndIZ;"a
~ SIndbo & S(Mg Nw 'Npw) - (Ng Nw™ N pw), C)
& S(NoNw 'Npw,C)
o~ SIndggJ & S(NoNw 'Npw,C)
Stnd%» =%y
~ SIndbo ® S((Mg Nw ' Npw) - (Ng Nw N pw), C)
& S(NoNw 'Npw — {e},C)
~ SIndgga ®S(Nonw 'Npw — {e},C)
Since all spaces are nuclear, by taking their dual, we see the kernel
Ker{(SInd%* o) — (SInd]ZD’”_GgU)’} is isomorphic to
(SIndS¥ o) & Ker{S(Nq Nw™ ' Npw,C) — S(NoNw "Npw — {e},C)},

which is exactly (I2) @ U(t).

10.2 Generalization of Chapter

10.2.1 Formulating the Theorem

The following theorem is a generalization of the main result (Theorem

in Chapter 7}

Theorem 10.3. The ng-torsion subspace on the kernels of the restriction
map S(Ggw, V) = S(GL,,V) and (Igw)’ — (1%,)" are given by

[S(@ V) @ U™ = [S(G5, V)M o U)
(1) @ Ul = [(15) 1" @ U(£)
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By the same argument as in we just need to show the first equality.
by the same argument as in we regard all distribution spaces as right
modules over enveloping algebras.

We use the same notation as in Chapter 7, let

U=8G:vy
K=8GLvY U
M =[8(Gy, V)"l o U(t)
For each n > 0, we let
Kr=S(GSL VY @ U, (£
M =[S(Gy, VY|l © U ()
We have K0 = U, M® = Upys|. We need to show
M = Kppe ).

"o
10.2.2 Sketch of the Proof
The Easy Part M C K.
We prove
./\/lk C /C[ °l

"o
by induction on k. The case k = 0 is obvious. Assuming M* 1 C Kine), we

show MF IC[n;ﬂ. By the same argument as in we just need to show
the elements of the following form are in the torsion subspace IC[n;l]:

bV, - Y

where ® € U[n;ﬁ,yl, oYL € fg.
By Lemma we just need to show there exists a large n such that

<I>Y1Yk(n?l) C’C[ngz]
Actually, by writing
-V Yp=(®-Y1-- Vi) Yy,

we see there exists a ny > 0, such that (®-Y7---Y,_1) - (ng') = {0} since
the ®-Y7---Y;_4 is in the ng-torsion subspace by the induction hypothesis.
Also there exists a no > 0 large enough such that

[. .. [[Yk,Xl],XQ] e Xn2] € nq,
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for all X; € nq.
Therefore let n = nq +n9 + 1, and use the formula in Lemma [7.8, we see

d.-Y,---Y,- (ng) C IC[“?;]

Linear Order on PBW-Basis and the Linear Filtration of

As in , we fix a basis {Y7,..., Yy} of £{! consisting of root vectors and
satisfying
Ht(Y1) < Ht(Y2) < ... < Ht(Yy).

Recall that if Y; is a root vector of the restricted root «, and « is uniquely
written as non-positive integral combinations of simple roots aq, ..., a;:

.,
o= - E niag;, n; >0,
=1

then the height of Y; is defined as Ht(Y;) = >\, n;.
With the above labeling on the basis of t, we thus have a PBW-basis
of the enveloping algebra
(Y. 1eet}
where £¢ = Z%O is the set of multi-index, and for a I = (i1, i, ...,iq), the Y/

means the product Y;1Y,?2 - -- Ydi‘i in U(t}) and the Y! form a PBW-basis.

As in we choose the linear order on the index set £¢ thus the above

labeling of Y73, ..., Yy gives a linear order on the PBW-basis Y/ of U(t).
As in for each multi-index I € £, let I~ be its lower adjacent (see

Definition |7.43)), and let
Ul(tg) = the subspace of U(tg) spanned by Y7, J < I,

and let
Kl =u o Ul(t)).

Then the {K!: I € £4} form an exhaustive filtration of K.

The Decompositions of Vector Fields

As in given an element X € g (complexified Lie algebra), its
corresponding left invariant vector field is denoted by X’ and right invariant
vector field is denoted by X%, and for a point = € G, the tangent vector of
the vector field X* (resp. X%) at 2 is denoted by X% (resp. XF).
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Let 0
Liw := spang { XL : X e ¢}

T

This is a subspace of the tangent space 1,,G = T, Z,,, and one has

T,G =Ty Zy = T,G2 & L'

x

for all € G¥, i.e. the subalgebra t! is transverse to the submanifold G
at every point on it.

Given an element H € g, let H” be the corresponding left invariant
vector field on G, let H L|G% be the restriction of the vector field to the

submanifold Gg, then this restriction is uniquely written as

k

l d
(Hag)e = Y A@) X[+ B(2) 2, + Y Ca)Y,
i=1 i=1

i=1

where {Xy,..., X} is an arbitrary basis of p, {Z1,...,Z;} is an arbitrary
basis of mg N w™tpw + ng Nw~tpw, and {Y7,...,Ys} is an arbitrary basis
of t§}. The A%, B}, C" are algebraic functions on the variety GS2.

By the same argument as in Lemma we can show

Lemma 10.4. Let Yi,...,Yy be a basis of tg with non-decreasing heights.
Let X € nq be an arbitrary element, and let [Y;, X] be the Lie algebra bracket.
Then in the above decomposition of [Y, X]L|G3, we have all C* =0 on G5!,
forall k > j.

The K are ng-Submodules

The most crucial results to prove the inclusion M D IC[%} is: each K! is
ng-stable, hence is a ng-submodule of . Namely we have

Lemma 10.5. For each multi-index I € £%, the subspace K! of the right
ng-module IC is stable under the right multiplication of ng.
The quotient space IC]/IC]_ 1s 1somorphic to U as ng-modules.

As in the Remark we just need to show the following element is in
Kk
P - [vaX] : YI_J
where ® € U, X € ng and the multi-index J = (0,...,0,1,0,...,0) (with

jth entry equal to 1 and all other entries zero). This is easy to see by the
above Lemma on the coeflicients C* and the Lemma
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The Hard Part M D K

To show the inclusion IC[%] C M, we just need to show

I
Kine) © M
by induction on the linear order of I. The case I = (0,...,0) is clear. For
an arbitrary I, let I~ be its lower adjacent (Definition |7.43)), and we assume

Kiog) € M.

For an arbitrary element >, ., ®; - Y7 of KI

[ng)
quotient IC' /K™ is exactly ®; - Y modK! . Since the original element is
ng-torsion, we see the image ®7-Y modK!™ is also no-torsion. The quotient
K!/K!T™ is isomorphic to U as ng-modules, therefore the ®; € U has to be
no-torsion.

By the (easy part) inclusion M C IC[n;I], we see the leading term & - Y/
is in IC[n;Z]. Therefore the tail sum is also torsion:

P first its image in the

Z(I)J'YJ S IC[HEZ]'
J<I

By the induction hypothesis the tail term ) ;_; ®; - Y7 is in M, and the
leading term ®; - Y is in M (since ®; is torsion), therefore the entire sum
is in M:

d @Y7 eM.

J<I

10.3 Generalization of Chapter

We keep the notations and setting as the last two sections. We can
generalize some of the results in Chapter [§ to arbitrary subset {2 C ©. But
a crucial problem is: the generalization of Lemma is not true.

The Lemma [8.1] says, the isomorphism (I /Isw) =~ I}, @ U(ny) is My-
equivariant when the right-hand-side is endowed with the tensor product
My-action. However for the general €, the tensor product (I})' ® U(£) is
not a tensor product of Mq-representations, as one can see the subalgebra
tﬁ =g Nw 'ew is not stable under Mq-conjugation.

However, to make the results as general as possible, we state the gen-
eralizations some results in Chapter We omit the proof since they are
proved by exactly the same way as the corresponding Lemma in Chapter
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Lemma 10.6 (Annihilator-Invariant Trick). The kth annihilator space on
(1) is isomorphic to

[(12))8) ~ HO(ng, (I ® FEY)'),

where Fi! = U(ng)/(nk) is a finite dimensional representation of Ng (or
Py).

This is prove exactly the same way as in by algebraic tricks.

Q
Lemma 10.7. The local Schwartz induction IS} = SIndgwa s isomorphic
to the Schwartz induction
P
SIndPgﬂw—leaw

where 0¥ = o o Adw is the representation of w™'Pw and regarded as a
representation of Po Nw™'Pw by restriction.

This is proved by the same way as Lemma since both spaces are
(linearly) isomorphic to the Schwartz function space S((Mg N w™ !N pw) -
(Nq N w_lew), V).

Lemma 10.8 (Tensor Product Trick). The tensor product IS} F,? 18 150-
morphic to
SInd}?

Q
Pgﬁw—le(aw ® Fy, )

This is proved by the same way as Lemma [8.20

10.4 Future Works

As mentioned in the section some topic of our future work are:
e Irreducibility: Reproduce the result in [40] about complex groups.

¢ Globalization of local intertwining distributions, namely, find
the original D € Homp(I,V) from its restrictions to open subsets.
(e.g. for SL(3, C), reproduce all intertwining operators studied in [37]).

However in this final section, we want to show our plan on how to gener-
alize the methods to study the parabolic inductions of infinite dimensional
representations.

As we have seen in Chapter [9, the condition “V is finite dimensional”
largely simplify the proof: the entire V' is ng-torsion and the image of an
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arbitrary ® € Homp, (V’, (I>w/I>w)") is contained in the ng-torsion subspace
of (I>y/Isy)". Then we have

Homp, (V', (I>w/I>w)") = Hompg, (V7 [([Zw/[>w)/][n@'])

and we just need to study the My-structure on [(Isy/Isy)/]M0°.

In general, when the V is infinite dimensional, the V and V' are only np-
invariant (or np-torsion) if we assume (7,V’) to be irreducible. Therefore,
instead of considering ng-torsion subspaces, we need to study np-torsion
subspaces. Unlike in Chapter 6] [7] and |8, we will choose the subset 2 = ©.

For simplicity, we still let

(1, V) = an irreducible unitary representation of P.

As shown in Theorem the interesting phenomenon only occur on non-
identity double cosets. To show the irreducibilities of I = SInd%o where

o=T®R® 5113/2, we need to show
Homp (V', (I12,,/12,,)") = {0}.

As in the main body of the thesis, we are required to study the quotient
dual (I9,/12,)" and its np = ne-torsion subspace.

10.4.1 A Conjecture

For each w € [Wg\W/We], by applying the Theorem [10.1, we have the
following isomorphism

(I2,/12,) = (1) @ U(ty).
By the Theorem we can identify its np = ng-torsion subspace:
(12) @ U())) = (1) 1" © U (7).

However, as we have seen above or in the introductory subsection [1.1.3
the first obstacle we meet is: the above tensor product is not a tensor
product of Mg-representations as the tg = pNw 'Apw is not stable under
Mg = Mp conjugation.

Fortunately, if the w normalizes Mp (or equivalently normalizing the
subsystem (0) spanned by 0), the t© is stable under the Mp-conjugation,
and the above tensor product is indeed a tensor product of representations
of Mp.

As suggested by all examples we have known, we propose the following
conjecture:
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Conjecture 10.9. If w does not normalize the Mp = Mg, then we have
Homyy,, (V/, (I2,,/12,,)') = {0}.

10.4.2 Another Conjecture of Casselman

As we have seen in the introductory subsection the second obstacle
we meet is: we cannot apply Shapiro’s lemma to the Schwartz induction

SIndb -1 py (0¥ @ FP).

The main difficulty is: the P and P N w~!Pw are neither unimodular
nor cohomologically trivial. More importantly, the quotient

PNw 'Pw\P

is not Np-transitive. Therefore we cannot apply Shapiro’s Lemma directly.
To overcome this obstacle, Casselman has proposed a conjecture, which will
be formulated below.

Let Ponwe be the standard real parabolic subgroup corresponding to
the subset © N wO. It is contained in Pg, and we denote its image under
the quotient map

Py — Mg ~ Py / Ng
by Q. This @, is a parabolic subgroup in Mg = Mp, and let Mg, Ng,
be its Levi decomposition.
For the representation (£, H) of Mg = Mp, let ((*°, H*) be its Harish-
Chandra module. By a theorem of Hecht-Schmid, the quotient space

HOO/anHOO

is a finitely generated Harish-Chandra module of M, , we denote its Harish-
Chandra globalization (in the sense of Casselman’s [17]) by

(p,U).

The canonical map (of Harish-Chandra modules) V*° — V' /ng, V> ex-
tends to a map

(& H) = (p,U)
and this map is a Mg, -map.
We can then define the following map by integration
STndfe

Ponw—1Pgw

(€%) = SInd, %, (p"):
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This map induces a map

[Shndy, %y, (0] = Ho(np, [SInd? o, (6]).

Casselman proposed the following conjecture:
Conjecture 10.10 (Casselman). The above map is an isomorphism.

By applying this conjecture to (£, H) = (0% ®@ FP,V @ F?), we might
be able to compute the Mp = Mg-action on the H(np, (IS ® F9)). But
we are still working on this conjecture.
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