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The theory of quadratic forms overZ2 or over the finite ringsZ/2n is not treatedwell in recent literature.
At the head of §4 of Chapter 8 in Cassell’s book Rational quadratic forms, which is where he discusses
this topic, the author remarks, “Only the masochist is invited to read the rest of this section." He treats

subsequently only the simplest phenomena. There are several other accounts, some complete if obscure
and some very sketchy—for example §5 of [Pall:1945] (no proofs and an unmotivated summary); §93
of [O’Meara:1963] (apparently complete but unnecessarily complicated); [Conway:1973] (no proofs,

and somewhat vague statements, not improved in [Conway:1995]); and [Miranda­Morrison:1982/2009]
(complete, but not simple). This bad press is somewhat puzzling, because the original treatment in

Minkowski’s prize essay of 1883 is, if interpreted carefully, quite elegant.

The main problem at hand is to classify such forms, and in particular how to tell if two are equivalent.

The difficulty is that for Z2, as opposed to Zp with p odd, there is no canonical normal form to which
all can be reduced. (Cassels on this matter: “We do not attempt to specify a unique canonical form; that
is more for a parliamentary draftsman than a mathematician.") In Minkowski’s prize essay a somewhat

theoretical criterion for equivalence is demonstrated, but it was written before Hensel had introduced
p­adic numbers, and suffers from many annoying technical difficulties. I shall translate Minkowski’s
treatment into modern terminology, and then approach closer to more recent discussion explaining how

to get an explicit algorithm from this account. An important part of Minkowski’s treatment also explains
how to count the number of points in finite spheres.
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1. Quadratic forms over p­adic integers

I’ll call a quadratic form non­degenerate over Zp if it is non­degenerate overQp. The simplest and most

useful theorem about such forms is this:

Proposition 1.1. Two quadratic forms over Zp whose reductions modulo p are isomorphic and strictly[strictly-ndg-modp]

non­degenerate over Z/p are isomorphic over Zp.

This is a version of Hensel’s Lemma. If p is odd, this will give us a canonical form for all non­degenerate
quadratic forms over Zp. The most general result of this kind is that quadratic forms over Zp are

isomorphic if they are isomorphic modulo pn for n ≫ 0—put roughly, two forms are isomorphic if they
are close to one another. We’ll see this formulated precisely later on.

Proof. The map from O(Q) toO(Qmodp is surjective.

NOPE!

So we may assume Q1 and Q2 are the same modulo p. We want to findX ≡1 0 such that

t(I + X)M1(I + X) = M2 or
tXM1 + M1X + tXM1X = M2 − M1

by successive approximations. To start with, we haveM2 − M1 ≡0 0. Suppose givenXn such that
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Suppose (L, Q) to be a quadratic form over R = Z2 that’s non­degenerate over Q2, with L = Rn. As a

form overQ2 it is simply a sum of one­dimensional forms, and in fact the classification of forms overQ2

is not essentially different from the classification of forms over Qp with p odd. But over R the situation
is very different. Our goal here will be to classify forms over R up to isomorphism, and to give as well
some idea of how to compute the size of spheres.

Let

Ln = {λ ∈ L | ∇(λ, L) ⊆ pnR .

Define

L# = {λ ∈ L ⊗ Q2 | ∇(λ, L) ⊆ Z2} .

BecauseQ is assumed non­degenerate overQ2, the quotientD = L#/L is finite. I callD the different of
Q and the cardinalityD = |D| its discriminant.

For example, if Q = H or the norm from K to Q2, where K is the unique unramified extension of Q2,
then L# = L and D = 1. If Q =

∑

aix
2
i where a is a unit in Z2, then L# = (1/2)L and D = 2n. In

general, we can find a basis (λi) of L
# such that (pmiλi) is a basis of L with mi+1 ≥ mi. If m ≥ mn

then pmL# ⊂ L. We have a filtration

L ⊇ L ∩ pL# ⊇ L ∩ p2L# ⊇ . . . ⊇ L ∩ pmnL# = pmnL# .

The exact sequence of quadratic spaces

0 → L ∩ pL# → L → L/L ∩ pL# → 0

splits. Let L1 = L ∩ pL#. Then L is the orthogonal sum of a unique non­degenerate form over Z2 that
restricts to one of L/L ∩ pL#. The splitting is not canonical, but that doesn’t matter. The isomorphism

class of the summand is uniquely determined, so it does no harm to assume from now on that L = L1.

Under this assumption, every cross term in Q is now divisible by 2. What that means is that every term
in ∇ is divisible by 2, is defined in terms of the bilinear form (1/2)∇. In short, we are in the land in
which Gauss, Minkowski, and Cassels feel at home.

The important consequence for us is that we can define ∧m∇ on every ∧mL. The symmetric matrixMQ

defining Q is now with integral entries, and defines the map ∇ from L to L#, assigned the dual basis.
The matrix of ∧m∇ is ∧mMQ, so can be explicitly computed. The factors pmi are those of the matrix

MQ, and the successive factors are the greatest common divisors of the matrices ∧
mMQ.

The factors dk =
∏

i≤k pmi are invariants of the formQ, independent of the coordinate system expressing

MQ. IfM = D + S then dk is the gcd of ∧
k(D + S). For equivalence of quadratic forms the coordinate

changes are special, and the gcd ek of ∧
k(D + 2S) is also invariant. Define σi = ek/dk. Thus σk = 1 or

2. For example, . . .

and if Q is of level 1 then σ = 1 if Q = . . . and σ1 = 2 if Q = . . ..

Proposition 1.2. Two non­degenerate quadratic forms of the same dimension over Z2 are equivalent if[equivalence2]

and only if (a) the factors σk agree; (b) their determinants agree up to unit squares; (c) the volumes of the
associated spheres are the same.

The volume of a sphere is Siegel’s limit. Only a finite number presumably involved, since presumably
the size of the sphere of size p2nr is easily found from that of size r. I. e./ all modulo some fixed high
power of p.
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Also, we need the approximation theorem: Q1 equivalent to Q2 if close. So if b is a unit then

ax2 + bxy + cy2 ≡

{

x2 + xy + y2 if a and c are units
xy otherwise.

Need a Lemma about
t(I + X)M1(I + X) = M2

or
[

1 + a c
b 1 + d

] [

A B/2
B/1 C

] [

1 + a b
c 1 + d

]

= M1 + tXM1 + M1X + tXM1X .

so we are reduced to solving
tXM1 + M1X = M2

or
[

a c
b d

] [

A B/2
B/2 C

]

+

[

A B/2
B/2 C

] [

a b
c d

]

=

[

aA + cB/2 aB/2 + cC
bA + dB/2 bB/2 + dC

]

+

[

aA + cB/2 bA + dB/2
aB/2 + cC bB/2 + dC

]

=

[

2aA + cB bA + (a + d)B/2 + cC
bA + (a + d)B/2 + cC bB + 2dC

]

= M2 − M1 .

IfM1 ≡n M2, we look for X ≡n 0 such that (I + tX)M1(I + X) ≡n+1 M2 so we get an equation

[

2a̟nA + c̟nB b̟nA + (a + d)̟nB/2 + c̟nC
b̟nA + (a + d)̟nB/2 + c̟nC b̟nB + 2d̟nC

]

= M2 − M1 = ̟nM

or
[

cB bA + (a + d)B/2 + cC
bA + (a + d)B/2 + cC bB

]

= M

which can always be solved, since B is a unit.

Relations from [Miranda­Morrison:2009].

How to prove the Proposition, how to calculate what is needed? See [O’Meara:1963].

(L1 ⊕ L2)
# = L#

1 ⊕ L#
2

If Q is irreducible, thenQ = ax2 with a a unit or Q = 2N or Q = 2H , then L# = (1/2)L.

The quotient L#/L is a sum of copies of Z/2 if and only if Q is an orthogonal sum of copies of ax2

(a ≡ 1, 3, 5, or 7modulo 8),N , and H .

General Fq is OK, because x 7→ x2 is an automorphism.

Suppose Ax2 + Bxy = Cy2 is non­degenerate over F with B 6= 0. Since x 7→ x2 is onto, we may write

B = β2, then set x = x∗/β, y = y∗/β, getting a new formwithB = 1. So nowwe haveAx2 +xy +Cy2.

There are two cases: this factors over F , or it does not. Or: in the first case some non­trivial zero, in the
second not. Claim: in the first case, equivalent to xy, in the second toNK/F .
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