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This course will be concerned with explaining the following formulas, which are in fact all special cases
of one theorem:

1. The fundamental domain of SL2(Z)

The group SL2(R) acts on the upper half­plane H by linear fractional transformations. The invariant

area form is
dx dy

y2
.

The discrete subgroup SL2(Z) has fundamental domain

D = {z = x + iy | |x| ≤ 1/2, |z| ≥ 1} .

Its area is

∫ 1/2

−1/2

dx

∫ ∞

√
1−x2

dy

y2
=

∫ 1/2

−1/2

dx√
1 − x2

= [arcsinx]
1/2

−1/2 = π/6 − (−π/6) = π/3 .

It is not an accident that, as Euler (and one of the Bernoullis before him?) knew,

π2

6
= 1 + 1/4 + 1/9 + 1/16 + · · ·

which is the value of the ζ­function

1 + 1/2s + 1/3s + 1/4s + · · ·

at s = 2.

2. Dirichlet

Let K be imaginary quadratic extension Q(
√
−D) of Q (with D the discriminat of the field, which may

have some square factors), o its ring of integers, made up of those x in K satisfying a monic quadratic

polynomial equation with integral coefficients. An o­lattice in K is an o module contained in K . Two of
these are said to be equivalent if one is a scalar multiple of the other, in which case they are isomorphic.

Let hK be the number of equivalence classes, which is finite. Also let m be the number of roots of unity

in K , χ = sgnK on (Z/D)×.
hK

m
=

√
D

2π
L(1, χ) ,
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where

L(s, χ) =
∏

p6|D

(

1 − χ(p)

ps

)−1

.

It is absolutely convergent for ℜ(s) > 1, but may be extended to a holomorphic function on ℜ(s) > 0.

If K = Q(
√
−1), for example, then o is a principal ideal domain so hK = 1, m = 4, D = 4, and

χ(p) =
{

1 if p ≡ 1 mod 4
−1 otherwise.

Here

L(1, χ) = 1 − 1

3
+

1

5
− 1

7
+ · · ·

This is, according to Leibniz, equal to π/4, and sure enough

1

4
=

2

2π

π

4
.

The series above is the value at s = 1 of the L­function

1 − 1/3s + 1/5s − 1/7s + · · ·

3. Siegel

Let Q be a positive definite, symmetric, integral, n × n matrix, and for m ∈ N and prime power q set

N(Q, n) = #{x |Q(x) = n}
N(Q) = #{X | tXQX = Q}

Nq(Q, m) = #{tQ(x) ≡ m mod qn−1} .

The limit

νp(Q, m) = lim
k→∞

Npk(Q, m)

pk(n−1)

exists. Define also

ν∞(Q, m) = lim
U→{m}

measQ−1(U)

measU
.

Define two such quadratic forms to be equivalent if one of them is obtained from the other by an integral
unimodular change of coordinates, and in the same genus if they are equivalent modulo q for every

prime power q. Thus the Nq(Qi) are all the same. Let {Qi} be the finite set of representatives of classes
in the genus of Q. Siegel’s formula is

∑ N(Qi, n)
N(Qi)

∑ 1
N(Qi)

= ν∞(Q, n)
∏

p

νp(Q, n) .

Let’s see how this works in a simple example, solving x2 + y2 = 5, for which there are 8 solutions. First

of all, because Z[i] is a unique factorization domain, there is only one form in the genus.

Second, to calculate the term for the Euclidean sphere, we look at the set of (x, y) with x2 + y2 in the

interval 1 ± ε. This has area π(1 + ε) − π(1 − ε) = 2πε, so the correct factor is 2πε/2ε = π.
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Next we have to solve x2 + y2 = 5 modulo various prime powers pn. There are four different cases:

p = 2, p = 5, p ≡ 1, p ≡ −1 modulo 4.

Lemma. For any prime p, the ratio

|{(x, y) ∈ (Z/pk)2 |x2 + y2 ≡ 5}|
pk

becomes constant for n ≫ 0.

This is a mild generalization of Hensel’s Lemma:

Lemma. If f(x) = 0 is a polynomial in n variables with coefficients in Z, and xn in (Z/pn)d satisfies (a)
f(xn) ≡ 0 mod pn and (b) 〈∇f, x〉 6= 0 mod pn then there exist exactly p solutions (xn+1, yn+1) with

xn+1 ≡ xn mod pn+1

f(xn+1) ≡ 0 mod pn+1

Here ∇f is the linear function with coordinates (∂f/∂xi). If x is any point in (Z/pn+1)d congruent to

xn modulo pn, then We have

f(x + pn∆x) = f(x) + pn〈∇f, ∆x〉 + O(p2n) ≡ f(x) + pn〈∇f, ∆x〉 modulo pn+1 .

But then the solutions modulo pn+1 are in bijection with the solutions of the linear equation

(f(x)/pn) + 〈∇f, ∆x〉 = 0 modulo p .

If p 6= 2 or 5 the curve X2 + y2 = 5 is non­singular modulo p. Hence, in these circumstances, for
every solution of f(x, y) = 0 in the field Z/p there exist exactly pn−1 modulo pn. In our case, quadratic

reciprocity tells us that the number of solutions of x2 + y2 = 5 modulo p is p − 1 if p ≡ 1 and p + 1
if p ≡ 3 modulo 4, as long as p 6= 5. Hence the limiting ratio is 1 − 1/p if p ≡ 1 and 1 + 1/p if p ≡ 3
modulo 4 and p 6= 5. Thus Siegel’s formula has on the right hand side the product

∏

p 6= 2, 5

(

1 − χ(p)

p

)−1

which is, up to a single factor, what we saw in the first example.

In general, a non­singular point of the algebraic curve f(x, y) = 0 will behave in the same way, but

singular ones behave differently. Modulo 5, the equation x2 + y2 = 5 is the cone x2 + y2 = 0, with a
singular point at (0, 0). Modulo 2 the curve x2 + y2 = 5 is singular everywhere.

Modulo powers of 2 or 5 things are more complicated. For example, (1, 0) is a solution modulo 4, and
(1, 0) in (Z/8)2 is congruent to it modulo 4 but there do not exist any solutions of x2 + y2 = 5 modulo

8 that are congruent to (1, 0) modulo 4, since (1 + 4a)2 + (0 + 4b)2 ≡ 1 modulo 4. On the other hand,

(1, 4) is congruent to (1, 0) modulo 4 and every one of the four points (1 + 4a, 4 + 4b) in (Z/8)2 will be
a solution modulo 8. So the naive extsension of Hensel’s Lemma fails in this case.

Similarly, the equation x2 + y2 = 5 modulo 5 becomes the singular cone x2 + y2 = 0, and again a naive
extension of Hensel’s Lemma fails.

I leave it as an exercise to see what happens for p = 2 and p = 5. (Hint: Try working out a systematic
algorithm that will produce all solutions modulo any 2k or 5k, and then calculate the limit ratio. Take

as a simple model the equation x2 = 1: Prove that if xn ≡ 1 modulo 2n then there exist 2 solutions
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xn+1 ≡ xn modulo 2n−1, as long as n ≥ 3. Deduce that there exist 4 solutions of x2 ≡ 1 modulo all 2n

for n ≥ 3.)

In any event, the explicit evaluation of Siegel’s formula involves again values of certain L­functions

associated to quadratic characters at integral points. Siegel’s formula is also the canonical example

of how global phenomema (the number of solutions of an equation in integers) are related to local
phenomena (the solutions in local fields), and has motivated much subsequent work along these lines,

such the celebrated Birch and Swinnerton­Dyer conjecture.

4. Minkowski, Siegel

The group SLn(Z) acts discretely on the space Xn of positive definite symmetricmatrices of determinant

1. On Xn we can assign a volume form to be The volume of the quotient Γ\Xn is . . .

5. Tamagawa, Weil

If Q is a positive definite symmetric matrix with coefficients in Q, the volume of SOQ(Q)\SOQ(A) with
respect to a rational differential form of highest degree is two.

6. Weil, Langlands, Kottwitz

Let G be a semi­simple, simply connected group defined over Q—for example G = SLn. Choose on G
a rational differential form of highest degree. It determines on each G(Qv) an invariant Haar measure,

and also one on G(A). The volume of G(Q)\G(A) is one.


