
11:06 a.m. December 30, 2010

On the analytic theory of quadratic forms

by C. L. Siegel (translated loosely by Bill Casselman from the preface ofAnnals of Mathematics 35, pages
527–606)

Among the best known results of number theory belongs the result first proven by Fermat, that every

prime of the form 4n + 1 and no prime of the form 4n + 3 is a sum of two squares. From this one
immediately deduces that the equation x2 + y2 = p, with p prime, has integral solutions when the

congruence x2 + y2 ≡ p (mod q) is solvable for every modulus q. Thus is raised the more general

question of the solubility of an equation in integers in terms of the solubility in q­adic numbers.

If one poses the general problem of solving

(1) ax2 + bxy + cy2 = d

by considering the corresponding congruences

(2) ax2 + bxy + cy2 ≡ d (mod q) ,

the example 5x2 + 11y2 = 1 shows that the second doesn’t imply the first. If one avoids the question

of solubility in integers but just looks for rational solutions, a well known and important theorem of

Legendre asserts that the solution of (2) in every Qq implies that of (1) in Q. This theorem of Legendre
was generalized by Hasse to deal with the problem of representing a quadratic form of dimension n
in terms of one of dimension m. Hasse’s theorem says this is possible if it is possible modulo every
prime and also over R. For m = 2, n = 1 comes out of this Legendre’s theorem, if one observes that

the solubility over R follows from that modulo the primes because of quadratic reciprocity. Another

special case of Hasse’s result, that when m = n, had already been asserted byMinkowski, but without a
detailed proof.

In order to obtain a quantitative extension of the Legendre­Hasse theorem, that is to say to obtain
information about the number of solutions and not just their existence, consider the following points.

Suppose Q and Q1 two quadratic forms with non­zero determinant. If they are equivalent—that is to

say, if one is an integral transform of the other—then representations of R in terms of Q correspond
exactly to transformations of Q1 to R. The same is true when we replace integral transformations by

integral q­adic transformations. But it can happen that two forms are equivalent over each Zq and also

over R without being equivalent over Z. As examples we have 5x2 + 11y2 and x2 + 55y2. For our
purposes we must take both Q and Q1 into account. The genus of Q is the set of all quadratic forms

equivalent over each Zq and also over R. There are a finite number of equivalences in each genus, say
with representatives Qi.

FromLegendre­Hasse it follows that ifR is representable byQ everywhere locally, then it is representable
by one of the Qi. The principal result of this paper is a quantitative version of this fact. I’l formulate it

here for positive definite forms. Let (Qi, R) be the number of ways to represent R by Qi. Let A(Qi, Qi)
be the cardinality of the integral orthogonal group of Qi. It turns out that the ratio
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can be determined solely in terms of local information, andmore particularly with the numberAq(Q, R)
of solutions of tX Q X = R (mod q). In fact the limit
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as q is eventually divisible by all integers, exists as long as n < m, and the ratio of this limit to the

number in (3) is a constant κ that depends only on m. n, and the determinants |Q| and |R|. This factor
can be defined in the following way: consider the n(n + 10/2 independent entries in the matrix R as
Cartesian coordinates in n(n+1)/2­space. Each regionG of the space corresponds through the equation
tX QX = R to a region G′ of mn­space. If v(G) and v(G′) are the volumes of these regions and one lets

G approach R let

λ = lim
v(G′)

v(G)
.

The we set κ = λ/2 for m = n + 1, κ = λ for m > n + 1.

The number λ is in some sense the expected value of A(Q, R) . . .As q passes through larger and larger

powers of a pixed p the ratio

Aq(Q, R)
/

qmn−
n(n+1)

2

becomes a constant αp(Q, R) . . .The limit value of Aq may be represented as the product over primes p
of limits over powers of p of solutions. Assigning R to a prime by convention, the principal result says

that
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If m = n + 1 put a factor of 1/2 on the right.

. . . If p does not divide 2|Q||R| then αp(Q, R) is just

Ap(Q, R)
/

qmn−
n(n+1)

2 .

The formula (5) holds also in the so far excluded casem = n, if one adds a factor of 1/2 to the definition of
αp. ifQ = R one has on the left the reciprocal of the denominator and one obtains from (5) a relation that

was derived earlier, although in a muchmore complicated and not quite correct fashion, by Minkowski.
Also implicit in this is the class number formula of Dirichlet and the formula due to Eisenstein for the

weight of the genus of a ternary quadratic form, if the genus contains just one class, and on obtains a

formula for A(Q, R) itself. This in particular holds when Q is the sum of m squares with m ≤ 8. From
the formulas (5) can be deduced those of Lagrange, Gauss, Jacobi, Eisenstein, Smith, and Minkowski.

Hardy has also proven this formula for 5 ≤ m ≤ 8, using the successful methods developed by him and

Littlewood.


