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I propose here a succinct account of the basic facts about the representations of Sn. Finding all the

representations of any interesting group can be very difficult. For the symmetric group, however, there
is a natural way to construct them, if a bit difficult to verify that they are irreducible and make up a

complete set. I generally follow the presentation of Bill Fulton’s book, but relymore on the use of induced

representations.
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1. The representation on polynomials

The clue to anatural constructionof representationsofSn is givenby its onedimensional representations.

One of them is the trivial representation. Not much to be said there. But a second is the sign character.
This can be most easily characterized in terms of the polynomial

∆n(x) =
∏

1≤i<j≤n

(xi − xj) .

Any permutation σ of the range [1, n] induces a permutation of the variables, replacing xi by xσ(i). It

will change∆n(x) to ±∆n(x):
σ∆n = sgn(σ)∆n .

It is easy to see that sgn(σ)sgn(τ) = sgn(στ) so that sgn is in fact a character—a onedimensional
representation—ofSn.

All other irreducible representations of |gothSn can also be defined in terms of the permutations of poly
nomials. They are parametrized by partitions of [1, n], which is reasonable because the conjugacy classes
are also parametrized by partitions, and we know that there are as many irreducible representations as

conjugacy classes. Each partition (λ1, λ2, . . . , λk] with

λ1 ≥ λ2 ≥ . . . ≥ λk

corresponds to a Young diagram, which has rows of lengths λ1 etc. arrayed under each other. For

example, the partition 6 = 3 + 2 + 1matches with
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Suppose we are given a numbering of this diagram—that is to say, we label each box with a distinct
number in the range [1, n], like this:

1

2

3

4

56

Such a numbered diagram T—which is called a (Young) tableau—with ti,j is matrix position (i, j),
corresponds to a discriminant polynomial

∆T (x) =
∏

k

∏

i<j

(xti,k
− xtj,k

) .

That is to say, to construct∆T you first traverse all pairs in the first column, adding a factor xi −xj when
i occurs before j in the column; then go on to multiply by similar factors for all the succeeding columns.
For example, the numbering above gives rise to

(x6 − x1)(x6 − x2)(x1 − x2)(x3 − x4) .

LetC(T ) be the subgroup ofSnwhich permutes entries in each of the columns of T . It is a direct product
of symmetric groups. If σ lies in C(T ) then σ∆T = sgn(σ)∆T .

Lemma 1.1. Any polynomial P in n variables with the property that σP = sgn(σ)P is a multiple of
∆T .

This because the polynomial ring is a unique factorization domain. In particular, ∆T is up to scalar the
only eigenfunction of C(T )with character sgn.

A horizontal diagram gives rise to the constant 1, and a vertical diagram gives rise, up to sign, to the
polynomial that defines sgn. In general, every diagram λ gives rise to the set of polynomials of all those
corresponding to various tableaux with the shape determined by the diagram. For example, if n = 3,
the diagram

gives rise to the tableaux and polynomials

1

2

3 1

3

2 2

1

3 2

3

1 3

1

2 3

2

1

x1 − x2 x1 − x3 x2 − x1 x2 − x3 x3 − x1 x3 − x2

Of course permutations of [1, n] permute labels in such a diagram, giving a new diagram and a new
polynomial. The linear span Pλ of these polynomials is therefore the space of a representation of Sn,
which I call πλ.
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These polynomials are not linearly independent. In the example above, we have relations

x2 − x1 = −(x1 − x2)

x3 − x1 = −(x1 − x3)

x3 − x2 = (x1 − x2) − (x1 − x3)

x2 − x3 = −(x1 − x2) + (x1 − x3) .

The polynomials x1 − x2 and x1 − x3 make up a basis of this representation space. They correspond to

the labeled diagrams

1

2

3 1

3

2

x1 − x2 x1 − x3

What characterizes these somewhat special tableaux? An ordered tableau is one with the property that

number labels increase from left to right and top to bottom. (In the literature, these are usually called
standard tableaux, but there are far too many things in the mathematical world called standard.)

The main result in this business is this:

Theorem. The polynomials associated to ordered tableaux of a given partition λ form a basis of the
representation πλ ofSn on the space of all discriminant polynomials associated to it.

Proof. In the rest of this section I’ll show that they span the space Pλ and explain an algorithm laying

out how to write down explicitly the representation of Sn in terms of ordered tableaux. In the next, I’ll

prove independence, which is best accounted for in terms of induced representations.

I take the algorithm from Chapter 7 of Bill Fulton’s book on Young tableaux, but the approach I have

taken is a bit different from the exposition there. The description of the representation associated to
a partition in terms of polynomials is Exercise 17 in that chapter, and I’ll use earlier parts to justify

its solution. Using polynomials as the basis of the construction of representations is a more natural
starting point than the somewhat abstract one Fulton’s book takes, and fits better with the more general

environment of other finite Coxeter groups.

Put an order on pairs (i, j):
(i1, j1) < (i2, j2)

if j1 < j2 or j1 = j2 and i1 < i2. Thus left columns are smaller than right columsn, and higher rows are
smaller than lower ones. If S and T are two tableaux, I say S < T if Si,j < Ti,j where (i, j) is the least
location where they differ. Another way to see this is to associate to each tableau a sequence of numbers,

listing the entries in each column from the bottom up, proceeding through the columns right to left. For
example, from the following figure we get the string 5 4 3 2 1 6.

1

2

3

4

56

Then S < T if the word associated to S comes first in dictionary order.

Now, suppose we want to express the polynomial ∆T associated to a tableau T as a linear combination
of polynomials associated to ordered tableaux.

Step 1. In an ordered tableaux we arrange the columns of T so that the entries are increasing in each
column, and in doing this we only change the sign of∆T .
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Step 2. Suppose that the labeling we now have is not an ordered tableau. That means that for some

j, k we have Tk,j > Tk,j+1. Let πk,j(T ) be the collection of all tableaux we get by exchanging all top
k elements of column j + 1 with k entries in column j, preserving order in the column. One of these
exchanges amounts neither more nor less than choosing from which rows we take the new entries in

column j, so the number of new tableaux we get is nj !/k!(nj − k)! if column j has nj entries. The basic

fact now is that
∆T =

∑

S∈πk,j(T )

∆S .

I postpone verifying this. If we do not now have all ordered tableaux we loop back to Step 1.

We must assure ourselves that sooner or later this process will halt. But each step we are left with

tableaux that come earlier in this ordering, so eventually we must come to a stop.

I take the following example from Fulton’s book (page 98). We start out with the tableau

4

1

5

3

6

2

T0

In Step 1 we rearrange its columns to get

4

1

5

3

6

2

= −

1

4

5

2

3

6

T0 T1

The rearrangement of columns involves 3 transpositions, so∆T0
= −∆T1

(which I shall henceforthwrite
in a more succinct fashion). The tableau T1 is not ordered, because in the second row 4 > 3. There are
three possible pairs to choose from column 1, so the collection π2,1 is made up of three tableaux, giving

1

4

5

2

3

6

=

2

3

5

1

4

6

+

2

4

3

1

5

6

+

1

2

3

4

5

6

We now loop back to Step 1, and rearrange the first column of the second tableau to bring it into order.

This gives us

1

4

5

2

3

6

=

2

3

5

1

4

6

−

2

3

4

1

5

6

+

1

2

3

4

5

6

The third tableau is ordered, but the first two are not, so we perform Step 2 on these. This gives us

2

3

5

1

4

6

=

1

3

5

2

4

6

+

2

1

5

3

4

6

+

2

3

1

5

4

6

=

1

3

5

2

4

6

−

1

2

5

3

4

6

−

1

2

3

4

5

6
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2

3

4

1

5

6

=

1

3

4

2

5

6

+

2

1

4

3

5

6

+

2

3

1

4

5

6

=

1

3

4

2

5

6

−

1

2

4

3

5

6

+

1

2

3

4

5

6

and we may halt with the equation

4

1

5

3

6

2

= −

1

3

5

2

4

6

+

1

2

5

3

4

6

+

1

2

3

4

5

6

+

1

3

4

2

5

6

−

1

2

4

3

5

6

+

1

2

3

4

5

6

−

1

2

3

4

5

6

= −

1

3

5

2

4

6

+

1

2

5

3

4

6

+

1

3

4

2

5

6

−

1

2

4

3

5

6

+

1

2

3

4

5

6

,

or more precisely

∆
4

1

5

3

6

2

= −∆
1

3

5

2

4

6

+ ∆
1

2

5

3

4

6

+ ∆
1

3

4

2

5

6

− ∆
1

2

4

3

5

6

+ ∆
1

2

3

4

5

6

.

This argument proves that the polynomials associated to ordered tableaux span the space, except that it
remains to justify the identity

∆T =
∑

S∈πk,j(T )

∆S .

For this, I follow the answer to Exercise 7.17 of Fulton’s book, who in turn follows [Peel:1975].

I’ll prove in the next section that the discriminants of ordered tableaux are linearly independent.
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2. Relations with induced representations

In this section letG = Sn.

I recall that if T is a tableau corresponding to the partition λi of n, C(T ) is the subgroup ofG permuting
only the entries within its columns. Let R(T ) be that permuting entries within its rows. The size of
R(T ), for example, is

|R(T )| =
∏

λi!

Lemma 2.1. The intersection of C(T ) and R(T ) is {1}.

Proof. Because if g in R(T ) is not 1, it must change the content of at least two columns.

There are two types of induced representations occurring in the theory of representations ofSn: the first
is the representation of G on

IT (1) = C[R(T )\G] = Ind(1 |R(T ), G) ,

which is induced from the trivial representation of R(T ) toG. The second is that on the space

IT (sgn) = Ind(sgn |C(T ), G)

Lemma 2.2. If S = gT then C(S) = gC(T )g−1 and R(S) = gR(T )g−1.

Proof. Let colk(T ) be the set of entries in the kth column of T . The subgroup C(S) is that of all c in G
such that

colk(c T ) = c colk(T ) = colk(T )

for all k. If S = gT then

colk(xS) = colk(xgT ) = xg colk(T ), colk(S) = colk(gT ) = g colk(T )

so colk(xS) = colk(S) if and only if g−1xg lies in C(T ).

If S and T have the same shape—are associated to the same partition—then S = σT for some unique
permutation σ, and IS(χ) is canonically isomorphic to IT (χ) for χ = 1 or sgn. Therefore these represen
tations depend only on the shape of the tableau. In fact, one can identify them with a single space that

does not depend on any choices.

The set of tableaux is a principal homogeneous set for G—it acts by permuting entries in tableaux, and
the isotropy subgroup of any tableau is trivial. Therefore if we fix a tableau T , any other tableau S of the
same shape is gT for some g in G. To f in IT (sgn) assign the function F on the set of all tableaux of the
same shape according to the rule

F (S) = f(g−1) if S = gT .

This is certainly well defined, since g is uniquely determined. But then for cS = gcT g−1 in C(S) we
have cSS = cSgT = gcT and

F (cSS) = f(c−1
T g−1) = sgn(cT )f(g−1) = sgn(cS)F (S) ,

since sgn is a real character of G itself, and cS is conjugate to cT . Let Tλ be the set of tableau of shape λ.
From this equation it is straightforward to deduce:
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Proposition 2.3. The map taking f in IT (sgn) to the function F such that

F (gT ) = f(g−1)

is a Gcovariant isomorphism of IT (sgn) with the space Iλ of all functions on T such that F (cT T ) =
sgn(T )F (T ) for all T .

This identification is implicit in Fulton’s book and indeed much of the treatment of Sn in the literature.

A similar identification can be made for IT (1).

What do these induced representations have to do with the representation of G on Pλ? There is an
obvious and simple map from T to Pλ, taking T to ∆T . This gives rise to a map backwards from the
dual ofPλ to the space of functions F on T:

F (T ) = f(∆T ) .

Proposition 2.4. This map from P̂λ to the space of functions on T has its image in Iλ(sgn), and is
Gcovariant.

Proof. The Gcovariance is immediate. The second, because

F (cT T ) = f(∆cT T ) = f(sgn(cT )T ) = sgn(cT )f(T ) = sgn(cT )F (T ) .

What is the image?

Let ρT be the element in the group algebra of R(T )

ρT =
1

|R(T )|

∑

g∈R(T )

g

and let σT be this one in the group algebra of C(T ):

σT =
1

|C(T )|

∑

g∈C(T )

sgn(g) g

These are both idempotent. The first amounts to projection ontoR(T )fixed vectors, the second onto the
sgneigenspace of a representation of C(T ).

NOTE: the group C(T ) is contained in a larger group C(T ) that permutes columns of the same length
wholesale. Any one of these changes ∆T by at most a sign, since it effectively interchanges the

discriminants of columns. The groupC(T ) is normal in this? Quotient is another product of symmetric
groups. There is a splitting, into the intersection of this groupwithR(T ), whose actions do not change
∆T . There is also a similar groupR(T ) containingR(T ). What role do these larger groups play?

Explicit effect of σT , ρT via Fulton’s Lemma.

Order the ordered tableaux, and apply the sign idempotent (Fulton: Corollary in the middle of page 87).

Same argument says that the representation is irreducible, since (a) any ∆T spans the space, and (b) in

any decomposition we must have the unique eigenfunction of ST in one or the other component. Also
implies no two are the same.

We only have to look at columns j and j + 1, and in column j + 1 only the top k entries. Let A be the
group that permutes the entries in column j among themselves, likewise the top k entries of column
j + 1, and let B be the group of all permutations of those entries. Frobenius reciprocity is applied to the
representation sgn⊗ I ofA induced toB . . .The point is that the sgn representation ofB does not occur
in that induced representation. (See Fulton’s book, Claims 1 and 2 on page 100.)
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3. Characters

The final thing to do is to find the character of the representation associated to a given Young diagram.
There is in fact no simple formula, but merely a recursive algorithm . . .

4. Relations with symmetric polynomials

R = C[x] is free over I = C[x]Sn . If I = (x)Sn , R/I is isomorphic to C[Sn] as aSn module.

Symmetric polynomials?

5. Relations with conjugacy classes of nilpotent matrices

The dominance order and unipotent classes inGLn(C). The classes are parametrized by partitions of n,
each set of Jordan blocks n1 ≥ n2 ≥ . . . nk determines a class. Thus 1 corresponds to 1 + 1 + · · ·+ 1 and
the regular unipotent to a single large block. The class of λ lies in the closure of that of µ if and only if
λ ≤ µ. All this is not an accident, there is a natural way to associate a representation ofSn to every class
. . .
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