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1. The group Z

In this section, let G be the additive group of integers Z, in many ways the simplest group beyond the

finite ones. Assign to each point of G measure 1, so the integral of f(n) over G becomes just the sum∑
Z
f(n). There are several candidates for the analogue of what was C[G] in the case whenGwas finite.

We shall work mainly with three of them:

(a) the Schwartz space S(Z) consisting of all complexvalued functions f(n) that are rapidly de
creasing at infinity:

|f |N = sup
n

|f(n)|(1 + |n|)N <∞

for all N > 0;
(b) the space of functions F of moderate growth:

|||F |||N = sup
n

|f(n)|
(1 + |n|)N

<∞

for some N > 0;
(c) the Hilbert space L2(Z) consisting of all functions with

‖f‖2 =
∑

|f(n)|2 <∞ .

On this space we have also the Hermitian inner product

f •h =
∑

n

f(n)h(n) .

These are all infinitedimensional vector spaces. It is important that they are all topological vector
spaces—that is to say, in each case we can say when one vector is close to another, or when a sequence
of vectors convergences to a vector. For the Schwartz space, fn → f if |f − fn| → 0 as n → ∞, for all
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positive integers n. In the third, fn → f if ‖f − fn‖ → 0 as n → ∞. In the second case, defining the
topology is a bit tricky, and we won’t need it, anyway.

For F in the second space and f in S(Z) the infinite sum

〈F, f〉 =
∑

Z

F (n)f(n)

is defined. This pairing between the two spaces is continuous in the sense that if |||F |||N <∞ then

〈F, f〉 ≤ |||F |||N |f |N+2

∑ 1

(1 + |n|)2 .

Conversely:

Proposition 1.1. If Φ: f 7→ Φ(f) is any linear map from S(Z) to C such that[z-dual]

|Φ(f)| ≤ C |f |N

for some N , C > 0 then there exists F of moderate growth such that Φ(f) = 〈F, f〉.
Thus the functions of moderate growth make up the full continuous dual of the Schwartz space. For this

reason, I’ll write the second space as Ŝ(Z).

Proof. Define F (n) = 〈Φ, εn〉where

εn(k) =
{

1 k = n
0 otherwise.

The growth condition on F is immediate from the continuity of Φ. We leave it as an exercise to show
that Φ(f) = 〈F, f〉.

Incidentally, a function in L2(Z) is bounded, so we may embed L2(Z) into Ŝ(Z).

A character of Z is a homomorphism ψ into C×. It is unitary if the image is in S1. Either set forms

a group under multiplication. The map ψ 7→ ψ(1) is a bijection of characters with C×, or of unitary
characters with S1. Define the group Z∗ dual to Z to be that of ita unitary characters.

2. The group S

In this section we look at the groupG = S1, the unit circle in C. It may be identified with the quotient of
the imaginary axis by the discrete subgroup 2πiZ via x 7→ ex, or withR/Z vis x 7→ e2πix. It is sometimes

important to keep in mind that this last identification depends on a choice of
√
−1.

A character of G is a continuous homomorphism into C×.

Proposition 2.1. Every character of G has image in S1—it is unitary.[unitary]

Proof. If ψ is a character of G then so is |ψ|. The image of G must be a compact subgroup of the
multiplicative group of positive real numbers. The only possibility is 1.

The group G∗ dual to G is therefore the group of continuous homomorphisms into S1. There is an

obvious family of characters of G—to each n corresponds the character z 7→ zn. We shall see later that
every continuous character is one of these, but for the monet let’s see a weak version of this.

Proposition 2.2. Any differentiable character of G is of the form z 7→ zn.[weak-chars]
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Proof. Letψ be a differentiable character ofG. For x inR let f(x) = ψ(e2πix). Then f(x+y) = f(x)·f(y)
and

f ′(x) = lim
h→0

f(x+ h) − f(x)

h

= f(x) lim
h→0

f(h) − f(0)

h

= f(x) · f ′(0) .

All solutions to this differential equation are of the form Cef ′(0)x for some constant C. Since f(0) = 1,
C = 1; and since f has period 1we must have f ′(0) in 2πiZ.

3. Fourier series

Assign G = S1 the rotationinvariant measure of total measure 1. Thus

∫

G

f(z) dz =
1

2π

∫ 2π

0

f(eiθ) dθ .

Proposition 3.1. If χ is a character of G then[int-null]

∫

G

χ(x) dx =
{

1 if χ = 1
0 otherwise.

Proof. For g in G, since the integral is rotation invariant, we have

∫

G

χ(x) dx =

∫

G

λgχ(x) dx =

∫

G

χ(xg−1) dx = χ−1(g)

∫

G

χ(x) dx

so that if we can choose g with χ(g) 6= 1 the integral must be 0.

If χ(x) = zn with n 6= 0, this comes from the calculation of the integral

∫ 1

0

e2πinx dx =

[
e2πinx

2πin

]1

0

,

and in fact this is the only case we’ll need, but we are not assuming yet that all characters are of this form.

Corollary 3.2. If χ, ρ are characters of G then[orth-chars]

χ • ρ =
{

1 if χ = ρ
0 otherwise.

The characters zn thus form an orthonormal set within the space of all continuous functions on G. We
shall shwo that it is a basis of functions on G in some way, which means that for functions f of various
kinds there exists a series

∑
fmz

m converging to f in some sense. If this convergence is reasonable, we
then expect

f • z−n =
∑

fmz
−n

• zm

= fn .
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Based on this, we define the Fourier transform of an integrable function f on G to be the sequence
Ff = (fm)where

fm = f • z−m .

This may be identified with the function m 7→ fm on Z. The Fourier coefficients are the individual

terms in the sequence. and inquire in what circumstances the series

∑
fmz

m

converges to f . This is a subtle question, but we shall require an answer only in a simple case. A
piece-wise continuous function on G is one that is continuous on a finite number of arcs partitioning
G. It is trivial to see that the Fourier coefficients of such a function are bounded, but in fact something
stronger is true.

Lemma 3.3. (RiemannLebesgue Lemma) If f(x) is in L2(G) then |fn| has limit 0 as |n| goes to infinity.[riemann-lebesgue]

This is the most elementary version of the RiemannLebesgue Lemma.

Proof. We have

∥∥∥f(x) −
∑

|n|≤R

(f • zn) zn
∥∥∥

2

=
(
f(x) −

∑

|n|≤R

(f • zn) zn
)

•

(
f(x) −

∑

|n|≤R

(f • zn) zn
)

= ‖f‖2 − 2
∑

|n|≤R

∣∣f • zn
∣∣2‘ +

∑

|m|,|n|≤R

(
f • zn

)(
f • zm

)
(zn

• zm)

= ‖f‖2 −
∑

|n|≤R

∣∣f • zn
∣∣2

Therefore ∑

n∈Z

|f • zn|2 ≤ ‖f‖2 (Bessel’s inequality),

which implies the Lemma.

We shalls ee later that Bessel’s inequality becomes an equality.

Lemma 3.4. For any integrable function on G and g in G[trans-z]

Fλgf = z−n · Ff .

This is a straightforward calculation.

For x in R, set

z(x) = e2πix .

Theorem 3.5. Let f be a piecewise continuous function on G and fm = Ff(m). Then[fs-convergence]

lim
N→∞

∣∣f(z) −
∑

|n|≤N

fnz
n
∣∣ = 0

whenever z is a point where f is differentiable.
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Proof. Applying the previous Lemma, we may assume z = 1 Then

f(1) −
∑

|n|≤N

fmz
m =

∑

|n|≤N

∫ 1

0

(
f(0) − f(z)

)
z−m dx

=

∫ 1

0

(
f(0) − f(z)

)( ∑

|n|≤N

z−m
)
dx

=

∫ 1

0

(
f(0) − f(z)

) z−N − zN+1

1 − z
dx

=

∫ 1

0

f(z)− f(0)

z − 1

(
z−N − zN+1

)
dx .

But the function
f(z) − f(0)

z − 1

which is a priori defined for z 6= 1 is in fact continuouswith at 1 since f is differentiable there. According
to Lemma 3.3, the right hand side converges to 0.♣ [riemann-lebesgue]

Exercise. Show that the Fourier series of f converges to f uniformly on any interval in the neighbourhood
of which f is C1.

Example. For x in R, let {x} be xmodulo 1. Suppose

f = x− 1/2 .

Its graph on R is therefore:

Its Fourier coefficients are

∫ 1

0

(x− 1/2)e−2πinx dx =

{
0 if n = 0

− 1
2πin

otherwise.

The terms for e±2πinx coalesce to become

− sin 2πnx

πn

The convergence of Fourier series in the neighbourhood of points of discontuity is peculiar, because of

something called Gibb’s phenomenon . The Fourier approximations oscillate around such a point. The
oscillations diusappear, as they have to according to Theorem 3.5, but thyat is because the oscaillations♣ [fs-convergence]

hoft towards the singularity, while oscillating at a fixed magnitude. The following pictures demonstrate

this. In them, the red graph is the original function, the black one is the Fourier series sum of n terms,
and the blue line shows the difference. That the magnitude of oscillations remains constant is shown by

the grey band.
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n = 2 n = 4 n = 8 n = 12

We shall see later a way in which Fourier series converge other than by pointwise convergence of
functions.

4. Fourier series of smooth functions

LetD be the derivative f 7→ f ′(x).

Proposition 4.1. If f on R/Z has a piecewise continuous derivative then[fs-diff]

FDf = 2πinFf .

This is a straightforward integration by parts.

Corollary 4.2. The Fourier transform of a smooth function on G = S1 lies in the Schwartz space of Z.[fs-schwartz]

The converse is also true:

Proposition 4.3. If (fm) is in the Schwartz space of Z then the series[fs-converse]

∑
fmz(x)

m

converges uniformly to a smooth function on G.

Proposition 4.4. The map taking f in C∞(R/Z) to its Fourier transform is a continuous bijection of[fs-iso]

C∞(R/Z)with S(Z).

5. The Plancherel theorem

Proposition 5.1. For f , h in C∞(R/Z)we have[parseval-fs]

f •h = Ff •Fh .

Term by term integration of Fourier series always works.
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6. Distributions

The space of distributions on G = S1 is the topological dual of the space V∞(G). Every integrable
function F , for example, defines by integration a distribution

〈F, f〉 =

∫ 1

0

F (x)f(x) dx .

But there are many more—most notably the Dirac delta

〈δx, f〉 = f(x)

for x in G.

If F , f both lie in C∞(G) then

∫ 1

0

F ′(x)f(x) dx = [F (x)f(x)]
1
0 −

∫ 1

0

F (x)f ′(x) dx .

In other words, for F in C∞(G) and in fact for any F with a piecewise continuous derivative

〈DF, f〉 = − < F,Df > .

which suggests defining the derivative of any distribution:

〈DΦ, f〉 = −〈Φ, Df〉 .

The Fourier transform identifies the space of distributions on R/Z with the dual Ŝ(Z)—the space of
functions of moderate growth on Z.

For any function (fm) in Ŝ(Z) the series ∑
fmz(x)

m

converges to a distribution on R/Z.

7. Bernoulli polynomials

The most interesting Fourier series are those of functions that are not smooth.

for each x in R let {x} be x modulo 1, or equivalently x − ⌊x⌋ (where ⌊x⌋ is the integer n such that
n ≤ x < n + 1). If f is any function on [0, 1], it determines the periodic function f({x}). We have
alreday seen in this regard the function {x} − 1/2.

Certain polynomials, the Bernoulli polynomials Bn(x), play a special role in this treatment. A first
version are defined by simple recursion:

β0(x) = 1

β′
n(x) = βn−1(x)

∫ 1

0

βn(x) dx = 0(n > 0) .

The condition on the derivative of βn specifies it up to a constant of integration, and the condition of

vanishing integral then fixes it unambiguously.
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The first few are
β0(x) = 1

β1(x) = x− 1

2

β2(x) =
x2

2
− x

2
+

1

24

and it is easy to see that we have

βn(x) =
xn

n!
+ terms of lower degree.

This suggests that it is a good idea to work instead with the polynomials

Bn = n!βn(x)

which are the Bernoulli polynomials.

Thus
Bn(x) = n!βn(x)

Bn(x) = n

∫
Bn−1(x) dx,

∫ 1

0

Bn(x) dx = 0 (n ≥ 1)

Here are the first several:
B0 = 1

B1 = x− 1/2

B2 = x2 − x+ 1/6

B3 = x3 − 3/2x
2 + 1/2x

B4 = x4 − 2x3 + x2 − 1/30

B5 = x5 − 5/4x
4 + 5/3x

3 − 1/6x

B6 = x6 − 3x5 + 5/2x
4 − 1/2x

2 + 1/42

. . .

The Bernoulli numbers are the constants of the Bernoulli polynomials: Bn = Bn(0). Thje first several
are:

B0 = 1

B1 = −1/2

B2 = 1/6

B3 = 0

B4 = −1/30

B5 = 0

B6 = 1/42

B7 = 0

B8 = −1/30

as one can more or less easily calculate.
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Proposition 7.1. We have[brer-props]

Bn(1 − x) = (−1)nBn(x)

Bn(x) =

n∑

0

(
n

k

)
Bkx

p

Bn = − 1

n+ 1

n∑

k=1

(
n+ 1

k

)
Bn−k

Proposition 7.2. For odd n > 1, Bn = 0.[ber-vanishing]

The early Bernoulli numbers give little idea of what the rest are like:

B10 = 5/66

B12 = −691/2730

B14 = 7/6

B16 = −3617/510

B18 = 43867/798

B20 = −174611/330

B22 = 854513/138

B24 = −236364091/2730

B26 = 8553103/6

B28 = −23749461029/870

B30 = 8615841276005/14322

B32 = −7709321041217/510

B34 = 2577687858367/6

B36 = −26315271553053477373/1919190

We shall see in a moment an asymptotic estimate of these curious numbers.

Proposition 7.3. Form ≥ 1 the Fourier series for Bn converges conditionally on (0, 1):[ber-fs]

Bn(x) =
−m!

(2πi)m

∑

n6=0

1

nm
e2πinx

For n > 1 it converges uniformly and absolutely on the whole interval [0, 1].

Proof. We already know that

B1(x) = −
(

sin 2πx

π
+

sin 4πx

2π
+

sin 6πx

3π
+ · · ·

)

which implies the Proposition by the definition of Bn and termbyterm integration.
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8. L-functions

The zeta function ζ(s) is defined by the series

ζ(s) =

∞∑

1

1

ns

which converges, by a comparison to the integral
∫ ∞

1

dx

xs

for RE(s) > 1. IfN > 0 is a positive integer and χ is a primitive character of (Z/N)×, it may be extended
to all of N by setting it equal to 0 off the units moduloN . The associated series

Lχ(s) =
∑ χ(n)

ns
=

∑

(n,q)=1

χ(n)

ns

also converges for RE(s) > 1, and is called the Dirichlet series of χ. The ζ function is the special case
with χ = 1 andN = 1.

A character χ is said to be even if χ(−1) = 1 and odd if χ(−1) = 1. The function Lχ(s)may evaluated
at even positive integers if χ is even and odd ones if χ is odd. The simplest case is:

Proposition 8.1. For any integerm > 1[zeta-even]

ζ(2m) =
(−1)m(2π)2m

2(2m)!
Bm .

This follows immediately from the calculation of the Fourier series of Bm(x).

As a consequence:

Corollary 8.2. We have the asymptotic estimate[asymptotic-ber]

|Bm| ∼ 2(2m)!

(2π)2m

form→ ∞.
Suppose now ϕ to be any function on Z/N with ϕ(−x) = (−1)mϕ(x). Let Fϕ be its finite Fourier
transform:

Fϕ(y) =
1√
N

∑

x∈Z/N

ϕ(x)e−2πixy/N

and

ϕ(x) =
1√
N

∑

y∈Z/N

Fϕ(y)e2πixy/N

Assume further, in case 0, that Fϕ(0) = 0 or, equivalently, that
∑

x∈Z/N

ϕ(x) = 0 .

I then define

L(ϕ, s) =
∑

n>0

ϕ(n)

ns
.

Since we can write this as

L(ϕ, s) =
1√
N

∑

n>0

∑
y∈Z/N Fϕ(y)e2πny

ns

Because of the assum,ption on the sum of values, it will be analytic in a region RE(s) > 0, and according
to Proposition 7.3 it can be evaluated at even positive integers ifm is even, and at odd ones ifm is odd.♣ [ber-fs]


