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Notes on DA, §§267–292: ternary quadratic forms

Reduction of positive definite binary forms. As a preliminary, I explain binary

reduction, which Gauss applies to arbitrary binary forms, both definite and indefinite.
The definite ones are treated in several sections starting with §171, the other in several
sections starting with §183. I’ll deal here only with definite forms.
For Gauss an integral quadratic form is of the form ax2 + 2bxy + cy2 with a, b, c all
integers, but I’ll allow b to be a halfinteger.

I’ll explain binary form reduction in my own terminology. Let

S =

[

0 −1
1 0

]

T =

[

1 1
0 1

]

.

By applyingS andT repeatedlywe can get a reduced formwith 0 < a ≤ c,−a ≤ b ≤ a.

(1) If a > cwe apply S:

[

0 1
−1 0

] [

a b/2
b/2 c

] [

0 −1
1 0

]

=

[

c −b/2
−b/2 a

]

.

getting cx2 − bxy + ay2. Note that |b| does not change in this.
(2) If |b| > awe apply T−n:

[

1 0
−n 1

] [

a b/2
b/2 c

] [

1 −n
0 1

]

=

[

a −na + b/2
−na + b/2 n2a − nb + c

]

.

The new b is b − 2na. so if we pick n such that | − na + b/2| ≤ a/2we get a new form
with−a ≤ b ≤ a. For this we require:

− a/2 ≤ −na + b/2 ≤ a/2

0 ≤ −2na + (a + b) ≤ 2a

n ≤ (a + b)/(2a) ≤ n + 1

− n ≤ −(a + b)/(2a) + 1 ≤ −n + 1

so

n =

{

⌊(a + b)/(2a)⌋ if a + b ≥ 0
−⌊1 − (a + b)/(2a)⌋ if a + b < 0.
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This step does not change a. So at each step, the previous simplification is not erased,
and eventually we must get a reduced form.

If f is reduced, then

4a2 ≤ 4ac = D + b2 ≤ D + a2, 3a2 ≤ D, a ≤
√

D/3

so a is bounded. But then b is bounded—in fact we must have D ≤ D + b2 ≤ D + a2

must be a multiple of 4a—and c = (D+ b2)/4a is determined. So there are only a finite
number of reduced positive definite forms with a given discriminantD.

Binary forms and the upper half plane. Howdo positive definite binary forms relate

to Möbius transforms on the upper halfplane? The complex number z corresponds to
the lattice spanned by 1 and z, with quadratic form

(m + nz)(m + z) = m2 + 2mn RE(z) + n2|z|2 .

These are all the real positive definite forms ax2 + bxy + cy2 with a = 1. If we start
with an arbitrary form ax2 +bxy+cy2 we can simply scale it to x2 +(b/a)xy+(c/a)y2,

and then map it to p + qi with

2p = (b/a)

p2 + q2 = (c/a)

q =
√

(c/a) − (b/2a)2

=

√
4ac − b2

2a
,

which is OK since the determinant ac−b2/4 is positive. So the reduction process agrees
with the fact that |z| ≥ 1, |RE(z)| ≤ 1/2 is a fundamental domain for SL2(Z) acting on
H.
Genera. Two forms are said to be in the same genus if the are equivalent modulo

all pn. If p does not divide the discriminant, then the discriminant alone determines
the equivalence modulo p, then by Hensel’s Lemma modulo all pn. So we just have to
figure out what happens for p dividingD. And in fact probably modulo pk if pk is the

pfactor ofD, presumably by the singular form of Hensel’s Lemma?

Cassel tells us how to decide: if p is odd all forms over Zp are sums of p
nQi where Qi

one of the two canonical forms over Z/p—a sum of hyperbolic planes plus zilch, x2,
ax2 with a/p = −1, or the norm of a quadratic extension. (This by Minkowski.)

If p = 2, we get a sum of 2k times x2, 3x2, 5x2, 7x2, xy, or x2 + xy + y2.

Outline of Gauss.

§§262–270: Introduction to ternary forms
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§§271–277: Reduction
§§278–292: Representations of numbers and binary forms by ternary forms
266. Basic idea. As for binary forms, his forms correspond to integral matrices.

267. Terminology and adjoint forms (in my own terminology). If a linear transfor
mation T has matrix

M =





m1,1 m1,2 m1,3

m2,1 m2,2 m2,3

m3,1 m3,2 m3,3





with respect to basis ei then its adjoint is the matrix of the transformation ∧2T with
respect to the (properly oriented) dual basis e2 ∧ e3, e3 ∧ e1, e1 ∧ e2

[

m2,2m3,3 − m3,2m2,3 . . .m3,2m1,3 − m1,2m3,3

m1,2m2,3 − m2,2m1,3

]

.

Why this choice of basis? Given V of dimensionn and a form ω in∧nV , ∧kV and∧n−k

are dual:

u ∧ v = 〈u, v〉ω .

We also have
(∧iTu) ∧ (∧jTv) = ∧i+j(u ∧ v)

and the fact that M times the transposed adjoint of M is equal to det(M) · I is just a
transliteration of ∧kT ∧n−k T = ∧nT = det(T ) ·I . The product in this case represents
the equation

Tei ∧ Te∧j = det(T )(ei ∧ e∧j ) .

(I. e./ amatrix represents all kinds of things, here a bilinear pairing). Transposed adjoint
because Tei is rendered as a row vector in a matrix multiplication.

What Gauss says is that the form

f =





a b′′ b′

b′′ a′ b
b′ b a′′





has as adjoint the form

F =





b2 − a′a′′ a′′b′′ − bb′ a′b′ − bb′′

a′′b′′ − bb′ b′b′ − aa′′ ab − b′b′′

a′b′ − bb′′ ab − b′b′′ b′′b′′ − aa′



 =





A B′′ B′

B′′ A′ B
B′ B A′′



 .
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Gauss’ matrix gives a symmetric bilinear formB(x, y)withQ(x) = B(x, x). This is an
isomorphism from Z

3 to Z
3, presumably the matrix of the form. It takes u to the linear

function T (u) defined by

〈T (u), v〉 = B(u, v), 〈T (ei), ej〉 = B(ei, ej) ,

so T (ei) has its expression in the dual basis fi equal to the column of the matrix. It

induces another bilinear form on ∧2
Z

3. Is it Gauss’?

T (e2 ∧ e3) = (b′′f1 + a′f2 + bf3) ∧ (b′f1 + bf2 + a′′f3)

= (f2 ∧ f3)(a
′a′′ − bb) + (f3 ∧ f1)(bb

′ − a′′b′′) + (f1 ∧ f2)(b
′′b − a′b′)

T (e3 ∧ e1) = (af1 + b′′f2 + b′f3) ∧ (b′f1 + bf2 + a′′f3)

= (f2 ∧ f3)(bb
′ − b′′a′′) + (f3 ∧ f1)(aa′′ − b′b′) + (f1 ∧ f2)(b

′b′′ − ab)

T (e1 ∧ e2) = (af1 + b′′f2 + b′f3) ∧ (b′′f1 + a′f2 + bf3)

= (f2 ∧ f3)(b
′′b − b′a′) + (f3 ∧ f1)(b

′b′′ − ab) + (f1 ∧ f2)(aa′ − b′′b′′)

with matrix

−





A B′′ B′

B′′ A′ B
B′ B A′′



 = −F .

The adjoint of the adjoint is fD, whereD is det f .

HisD is the negative determinant.

268. Substitute




x
x′

x′′



 =





α β γ
α′ β′ γ′

α′′ β′′ γ′′









y
y′

y′′



 .

We get a new form
txQx = tytSQSy

There is no distinction between equivalence and proper equivalence, since−I is in the
orthogonal group.

Effect of transforms on adjoints. He calls transforms transpositions.

269. Equivalent if transforms of each other. Two forms are equivalent if and only if

their adjoints are equivalent.

270. Composite of transforms by matrix multiplication.

271. Leading to Theorem that there are only a finite number of ternary classes with
a given determinant (which will be proved in §276).
Criteria for definite forms, positive ones, negative ones.
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272. Still leading to reduction. The basic idea is to transform f to g by some S, with
g simpler in some sense. Look at adjoints F ,G, transformed by adjoint of S (§269).
I. First we apply the reduction process for binary forms to

[

a b′′

b′′ a′

]

.

by taking

S =





α β 0
α′ β′ 0
0 0 1



 .

This gives us |a| ≤ (4/3) 3
√

D.

II. Next take S of the form

S =





1 0 0
0′ β′ γ′

0 β′′ γ′′



 .

and apply the binary reduction to

[

A′′ B
B A′

]

.

This gives us |A′′| ≤ (4/3)
3
√

D2.

III. If neither of these reductions can be applied, . . .we must therefore have |a| ≤
(4/3) 3

√
D and |A′′| ≤ (4/3)

3
√

D2.

IV. Apply these alternately.

Any ternary form of determinant D may be reduced to an equivalent form with the

property that |a| ≤ (4/3) 3
√

D and |A′′| ≤ (4/3)
3
√

D2.

273. An example:

f =





19 1 28
121 15
28 15 50



 .

Another example:

f =





10 4 0
426 7
0 7 2



 .
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274. After these, a further reduction can be made by applying

S =





1 β γ
0 1 γ′

0 0 1



 .

275. The previous examples continued.

276. Theorem. The number of classes into which all ternary forms of a given
determinant are distributed is always finite.

277.

278. We now have the following problems:

I. To find all representations of a given number by a given ternary form.

II. To find all representations of a given binary form by a given ternary form.

III. To judge whether or not two given ternary forms are equivalent, and if they are to

find all transformations taking one to the other.

IV. To find whether or not a given ternary form implies another, and if it does to find

all transformations of the first into the second.

In this book he will not be complete, but reduce I to II, reduce II to III, give some simple

examples, and not discuss IV at all.

279. Lemma. Given any three integers a, a′, a′′ (not all 0) how to find six others B,
B′, B′′, C, C′, C′′ such that

B′C′′ − B′′C′ = a, B′′C = BC′′ = a′, BC′ − B′C = a”” ?

291. To find all representations of M > 0 by x2 + y2 + z2 = M , or −M by

−x2 − y2 − z2 = f .

subsecI First find all binary forms of determinant −M represented by X2 + Y 2 + Z2.

WhenM ≡ 0, 4, or 7modulo 8 there are none, andM cannot be expressed as a sum of
three mutually prime squares.


